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1. Introduction

Let F be a number field, G the general linear group of degree n defined over F. Let 7 be
an irreducible cuspidal automorphic representation of G(A). In [1-3], a Rankin-Selberg-
type integral is constructed to represent the L function of 7. That the integrals of Jacquet,
Piatetski-Shapiro, and Shalika are Eulerian follows from the uniqueness of Whittaker
models and the fact that cuspidal representations of GL, are always generic. For other
reductive group whose cuspidal representations are not always generic, in [4], Piatetski-
Shapiro and Rallis construct a Rankin-Selberg integral for symplectic group G = Sp,,, to
represent the partial L function of a cuspidal representation 7 of G(A). In this paper, we
apply similar method to the quasi-split unitary group of rank n.

Let F be a number field, E a quadratic field extension of F. Let V be a 2n-dimensional
vector space over E with an anti-Hermitian form

Hon = (—ln 1”) (1.1)

on it. Let G = U(#2,) be the unitary group of #,,. Let 7 be an irreducible cuspidal auto-
morphic representation of G(A), f a cusp form belonging to the isotypic space of 7. The
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Rankin-Selberg-type integral is defined by

[ f@Ee98ds, (12
G(F)\G(A)

where E(g,s) is an Eisenstein series associated with a degenerate principle series, 0 is a
theta series defined by the Weil representation of Sp(V ® W), where W is a nondegen-
erate Hermitian space of dimension n. We show in Theorem 6.3 that (1.2) represent the
standard partial L function LS(s,m,0) of 7.

In [4], after showing the Rankin-Selberg integral has a Euler product decomposition,
Piatetski-Shapiro and Rallis continued to show that if #/2 + 1 is a pole of partial L func-
tion, then theta lifting is nonvanishing [4, Proposition on page 120]. There should be a
parallel application of our paper, that is, relate the largest possible pole with nonvanishing
of period integral.

2. Notations and conventions

Let F be a field of characteristic 0, E a commutative F-algebra with rank two. Let p be an
F-linear automorphism of E. We are interested in (E, p) of the following two types:

(1) E is a quadratic field extension of F, p is the nontrivial element of Gal(E/F);

(2) E=F®F, (x,y)" = (y,x).
Let tr be the trace of E over F, that is, it is defined by

tr(z) =z+2°, z€E. (2.1)

Let V be a left E-module, ¢ : V X V — E a nonsingular e-Hermitian form on V, here
& = +1. The unitary group of ¢ is

U(g) = {a € GL(V,E) | p(xa, ya) = ¢(x,y), Vx,y € V}. (2.2)
Let ¢’ = —€ so that e’ = —1. Let (W, ¢") be a nonsingular ¢ -Hermitian space. Put
W=VeWw. (2.3)

Then W is a nonsingular symplectic space over F with symplectic form
p=tro(peg). (2.4)

Let G = U(g), G' = U(¢") be the unitary groups corresponding to ¢ and ¢’, respectively.
It is well known that G X G’ embeds as a dual pair in Sp(¢).
We often express various objects by matrices. For a matrix x with entries in E, put
x* = IxP, x P = (x”)_l, x='xP, (2.5)

assuming x to be square and invertible if necessary. Assume that V = E¢ for some nonzero
positive integer . Let ¢y be an € X € matrix satisfying ¢ = ego. We can define an e-
Hermitian form ¢ on V by requiring

P(x,y) = xpoy*. (2.6)
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Then the unitary group U(¢) is isomorphic to the subgroup of GL,(E) consisting ele-
ments g satisfying

89og" = po. (2.7)
In the following we let e = —1. Then ¢ is a nonsingular skew-Hermitian form, hence
¢ = 2n for some positive integer n. Let ey,..., ez, be a basis of V' such that ¢ is represented
by
1
’72” = (_1 n) . (2‘8)
Put

X = @ Ee;, Y = ®2", Ee,. (2.9)

Then X, Y are maximal isotropic spaces of V. Let P be the maximal parabolic subgroup
of G preserving Y. Then

P(F) = { (g g;) lg € GL,(E), ue S(F)}. (2.10)
Here
S(F):{bEMnxn(E) | b* :b} (2.11)

is the set of Hermitian matrices of degree n. Let N be the unipotent radical of P. Then
N(F) consists of elements of the following type:

n(b) = (1 i’) . with b e S(F). (2.12)
Let

M={geP|XgCX,YgCY} (2.13)

Then M is a Levi subgroup of P. The F-rational points M(F) of M consists of elements
of the following form:

m(a) = (“ a)’ with a € GL,(E). (2.14)
Define an action of GL,(E) on S(F) by
(a,b) — aba™, withae GL,(E), b e S(F). (2.15)
It is equivalent to the adjoint action of M on N, since
m(a)n(b)ym(a)~' = n(aba*). (2.16)

We will say “the action of M(F) on S(F)” if no confusion is caused.
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Let O be the unique open orbit of M(F)\S(F), then
O = {b e S(F) | detb # 0}. (2.17)
For 8 € O, let Mg be the stabilizer of . Since f3 is a nonsingular Hermitian matrix,
Mg =U(p) (2.18)

is the unitary group of f.
LetY =Y ® W.Forw €Y, let us write

n
w:ZenH@wi, withw; e W, i=1,...,n. (2.19)
i=1

Define the moment map y: Y — S(F) by
i) = (g (Wisw))) 1ot (2.20)

It is clear that if m = m(a) € M(F), then
p(wm) = ‘au(w)a’. (2.21)

Denote the image of p by 6, then it is invariant under M(F). Let T be a Hermitian matrix
representing ¢’. If dim W = n, then T € 6 = O. In particular, from (2.18),

Mr=G. (2.22)

3. Localization of various objects

Let F be a number field, E a quadratic field extension of F. Let v be the set of all places
of F, a, f be the sets of Archimedean and non-Archimedean places, respectively. Then
v=auUf. For v v, let F, be the v-completion of F, 0, the valuation ring of F, if v is
finite. Let A, A be the rings of adeles of F and E, respectively.

Let p be the generator of Gal(E/F). For v € v, let E, = E ® F,. We may extend p to E,,
denote it by p,. Then E, is a quadratic extension of F,, p, is an F,-automorphism of E, of
order 2. Corresponding to v is split in E or not, the couple (E,,p,) belongs to one of the
following two cases.

(1) Case NS: v remains prime in E. Hence E, is a quadratic field extension of F,,p, €
Gal(E/F) is the nontrivial element.
(2) Case S: v splits in E. Then E, = F, @ F, and (x, y)?* = (y,x) for (x,y) € E,.
Let y be a nontrivial Hecke character of E, that is, it is a continuous homomorphism

y:Af — 8! (3.1)

such that y(E*) = 1. For v € v, Let y, be the restriction of y to ES, then y = ®,y,.
For an algebraic group H defined over F, we let H(F,) be the set of F,-points of H. Put

H,=[[H(F), He=[]'H(F), (3.2)

veEa vef
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where the prime indicates restricted product with respect to H(0,). Then
H(A) = H,Hj. (3.3)

Let G = U(n,) be the quasi-split even unitary group of rank #n defined over F. We have
defined the standard Siegel parabolic subgroup P = MN of G in Section 2. Keep notations
of last section. For v € {, the localization of these algebraic groups are as follows.

(1) Case NS: v remains prime in E. In this case,

G(Fv) = U(’/In)(Fv);
M(Fv) = {m(a) |aeGL, (Ev)}> (3.4)
N(Fv) = {I’Z(X) | X e S(Fv)}'

(2) Case S: v splits in E. In this case,

G(F,) = GLy, (F,),

A
M(F,) = {m(A,B) | m(A,B) = ( B‘1> ,A,BeGL, (FV)}, (3.5)

N(F,) = {noo () = (1 )f) Xe MMAF»}.

If v € f is a finite place, let Ko, = G(0,) be a maximal open compact subgroup of G(F,).
For g € G(F, ), we have Iwasawa decomposition

(Case NS) g =n(X)m(a)k,

(CaseS) g =n(X)m(A,B)k (3.6)

for some k € Ky, n(X)m(a) or n(X)m(A,B) belong to P(F,).

4. Local computation

Our result relies heavily on the L function of unitary group in [5] derived by Li. So in this
section, we review the doubling method of Gelbart et al. [6] briefly and the main theorem
of [5].

Let F be non-Archimedean local field with characteristic 0, O the valuation ring of
F with uniformizer @. Let | - | be the normalized absolute value of F. Let (E,p) be a
couple as in Section 1. If E is a field extension of F, let O be the ring of integer of E with
uniformizer @, | - |¢ the normalized absolute value of E.

Let V be 2n-dimensional space over E with skew-Hermitian form ¢ = #,,, G = U(V).
Then

G(F) = U(nn), CaseNS;

4.1
G(F) = GL,,, CaseS. (4.1)

Let —V be the space V with Hermitian form —¢. Define

V=Ve-V. (4.2)
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Then ¢ & (—¢) is a nonsingular skew-Hermitian form on V. Let H = U(V) be the unitary
group of V. Then K = H(0O) is a maximal open compact subgroup of H(F). We embed
G x G into H as a closed subgroup.

Define two maximal isotropic subspaces of V as follows:

X={(v,-v)|veV}, Y={(v,wv)|veV}]L (4.3)

ThenV = X @ Y. Let Q be the maximal parabolic subgroup of H preserving Y. Following
[5], we define a rational character x of Q by

x(p)=det(p|x)_1, peQ. (4.4)

Choose a basis of V compatible with the decomposition (4.3), we can write p as a matrix:

p= (a 2) ,  witha e GL,,. (4.5)

Then x(p) = det(a)’.
Let y be an unramified character of F*. Then p — y(x(p)) is a character of Q(F). For
s € G, let I(s,y) be the space of smooth functions f : H(F) — C satisfying

F(p9) = y(x(p) |x(p) " f(g),  peQEF), geGE). (4.6)

H(F) acts on I(s,y) by right multiplication. Let I(s,y)X be the subspace of K-invariant
elements of I(s,y). Since y is unramified, by Frobenius reciprocity,

dimcI(s,p)X = 1. (4.7)
Let Ok ; be the unique K-invariant function in I(s,y) such that
Dk (1) =1. (4.8)

One important property of @k s is the following.

LEmMa 4.1 (see [5, Lemma 3.2]). Let Ky = G(O) be a maximal open compact subgroup of
G(F). Then for ki, k, € Ko, g € G(F),

q)K,s(klngJl) = q)K,S(g)l)) (4'9)
here (g,1) € GX G — H.
4.1. L functions. Let (71, V) be an unramified irreducible representation of G(F), (7, V)
the contragredient of 7. Let (-, - ) be the canonical pairing between V and V.ForveV,

v € V, define a matrix coefficient of 77 by

wr(gv,V) = (gv,V)r, g€ G(F). (4.10)
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If v and v are Ky-fixed elements of 7 and 7, respectively, then w,(g;v,V) is a spherical
function of 7. In addition, if (v,7V), = 1, then w,(1;v,7) = 1, we get the zonal spherical
function w, of 7.

Let G be the dual group of G. Then

LG = GL,,(C) % Gal(E/F), Case NS

(4.11)

LG = GL,,(C), CaseS.

For Case NS, the action of Gal(E/F) on GL,, is given by
g =0y, g7 105}, g€ GLy(C). (4.12)

Here
1
-1

®,, = : : (4.13)

-1

Since 7 is an unramified irreducible representation of G(F), it determines a unique
semisimple conjugacy class (a.,p)(Case NS) or a,(Case S) in LG [7]. We can take a rep-
resentative of a, as follows:

a, = diag (ay,...,an,1,...,1), Case NS,

(4.14)
a, = diag (ay,...,a2,), CaseS,
with a; € C*,i=1,...,2n [7, Section 6.9].
Let r be the natural action of GL,,(C) on C?", ¢ the induced representation
LG
=Indgy, (c)(r), Case NS, (4.15)
4.15
o= Indgiz”gg ERLL Case S,
respectively. Associate a local L function L(s,7,0) to 7 by
Case NS: L(s,m,0) = det (1 — o(aﬂ,p)tf")_1
_1_[ 1_aq 1_a71q725)] 1)
i<n
(4.16)

Case S: L(s,m,0) = det (1 — o(an)q_s)fl

= [Tl -ag)(1-a7'qg )],

i<2n

where g is the cardinality of residue field of F.
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The relation between the functions @ s, w,, and L(s,7,0) is as follows.
THEOREM 4.2 (see [5, Theorem 3.1]). Notations as above. For s € C,

_ L(s+1/2,m,0)
jG(F) Orslg Dalg) = 7 (4.17)

Here

L(ZS+ I)EE/F)
(2s+2n+1,€epr)

[ &@s+2n-2j)L(2s+2n—2j+1,epr),

0<j<n

(Case NS) dy(s) = I

2n

(CaseS) du(s) =] [(2s+ ).
i=1
J (4.18)

&(s) is the zeta function of F, €gr is the character of order 2 associated to the extension E/F
by local class field theory, L(s,y) is the local Hecke L function for a character y of F*.
We will derive a formula from (4.17) which is applicable for our computation later.
For this purpose, for g € G(F), let
(Case NS) d(g) = diag(a)g,...,@?)a Lz---21,>0,

(4.19)
(CaseS) d(g) = diag (@",...,@"), L =---=h,

such that g € Kym(5(g))Ko(Case NS) or g € K(5(g)Ko(Case S). Define a function A(g)
on G(F) by

(Case NS) A(g) = | detd(g) |5,

C (4.20)
(CaseS) A(g) = | detd(g)] .
By Lemma 4.1,
(Case NS)  Di(g,1) = Pk (m(8(g),1)),
(CaseS) Dk, (g,1) = Dk(6(g),1). (4.21)
Furthermore, reasoning as in [5, page 197], one can show that
Drs(g>1) = Alg) . (4.22)
Hence Theorem 4.2 is equivalent to the following.
THeEOREM 4.3. Fors e C,
Jpy 80 @)n ) = Het ioms) (4.23)

Here dp(s) is the meromorphic functions in Theorem 4.2.
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Before we end this section, we record a formula for the value on A(g) for some special
elements in G(F). For 8 € M, (F), let L(f) be the set of all minors of f.
LeEMMA 4.4 (see [8, Proposition 3.9]). (1) (Case NS) Let

AENE e

with v,w € GL,(E) N M,1x,(Og). Then

Alg) = | det ! detC|. 4.25
(g) = | det(vw) [ oy | detCl (4.25)

(2) (Case S) Let

1 ’
g= (W V) (1 /f) <V w'l) € G(F) (4.26)

with v,v',w,w" € GL,(F) N M,;x,(0). Then
. 2
A(g) = | det(vv'ww') |~ < max IdetCI) ) (4.27)
CeL(p)

5. Fourier coefficients

In this section, we will compute Fourier coefficients of A(g). Our method is similar to
that of [4].

Notations are as in the last section. Let ¥ be a nontrivial additive character of F. Let
(71, Vo) be an unramified irreducible admissible representation of G(F), T a square matrix
such that T € S(F)(Case NS) or T € M,,»,,(F)(Case S). Let It be a linear functional on Vj
satisfying

lT(n (1 )1() v) =y (tr(XT))Ir(v) (5.1)

forall v € Vy, X € S(F)(Case NS) or X € M,,«,(F)(Case S).

Example 5.1. Let F be a number field, 7 an irreducible cuspidal automorphic repre-
sentation of G(A) for a moment [9]. Then 7 = ®; 7, is a restricted product of irre-
ducible admissible representations 7, of G(F,), for almost all v € v, 7, is unramified
irreducible admissible representation. Let f be a cusp form in A(G(F) \ G(A)),, the iso-
typic space of . Let v € £ such that 7, is unramified irreducible admissible representation
of G(F,). Let T, € S(F,)(Case NS) or T, € Myx,(F,). Define a linear functional Ly, on
A(G(F) \ G(A)), by

Ir,(f) = Jf((l ﬁ“))w(tr(xvn))dxv, (5.2)
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where the integral is taken on S(F,)(Case NS) or M,,,(F,)(Case S). We see that Ir,(f) is
independent of f|g(,) for w € v, w # v. But m, = mlg(g,), so Ir, is a linear functional on
7, satisfying (5.1).

Back to the assumption that F is non-Archimedean local field, (7, Vj) is an unrami-
fied irreducible representation of G(F). Define a subset M(0) of M,,(E)(Case NS) or of
M>,,(F)(Case S) as follows:

(Case NS) M(0) = {m(a) = (a ﬁ) | a € Muxn(Op) N GLn(E)};

(5.3)
(CaseS) M(0) = {m(A,B) = (A B‘1> | A,B € M,x,(0)n GLn(F)}.
Let yo be a function on M(0) defined by
(Case NS)  yo(m(a)) = |detalp,
(5.4)

(CaseS) yo(m(A,B)) =|detAdetB|.

LEmMMA 5.2. Let y be an unramified additive character of F. Let T be a square matrix such
that T € S(F)(Case NS ) or T € Myx,(F)(Case S). Let (1, V) be an unramified irreducible
admissible representation of G(F). Take 0 # fy € Vf", where Ky = G(0) is a maximal com-
pact subgroup of G(F). Let It be a linear functional on Vy satisfying (5.1). Then for s € C,

| Aoty (g fo)dg = Lt 1/2ma) (5.5)
G(F) dr (s)

Proof. Asin [3], the convergence of left-hand side of the equation when Res is sufficiently
large comes from the vanishing of I7(7(a) fy) when a is sufficiently large, here a belongs
to the maximal F-torus consisting of diagonal elements in G(F).

Since both sides are meromorphic functions of s, we only need to show the equation
for Res sufficiently large. We first claim that

L{ L (n(kg) fy)dk = I (fo) wn (), g € G(F). (5.6)

In fact, the left-hand side is a bi-Kp-invariant matrix coefficient of 7, so there is some
A € C such that

JK I (m(kg) fy) dk = Awx(g), g € G(F). (5.7)

Letg = 1, then A = I7(fp).
Back to the proof of the lemma. If Res is sufficiently large, the left-hand side of (5.5)
converges absolutely. Hence

LIS of (5.5) = J J A= (kg)lr (n(g) fo) dk dg

G(F) JKo (5.8)

- j A=) (g)1p (n(kg) fo) dk dg
G(F) JK,
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we have computed the inside integral in (5.6), so

(5.8) = Ir(fy) j A6 () (g)dg

L(s+ 1/2,7,0)
du(s) ’

(5.9)
=1Ir(fo) by Theorem 4.3.

O

Apply Iwasawa decomposition (3.6) ¢ = n(X)m(a)k in the integrand of (5.5). When
Res is sufficiently large,

j A= () (re(g) fo) df = A= (n(X)m(a)k) Iy (7 (n(X)m(a)k) fo)

KoxM(F)xN(F)

x 8p(m(a))” dn(X)dm(a)dk.
(5.10)

Here §p(m(a)) is the modular function of P(F), hence §p(m(a)) = | deta|;(Case NS) or
Op(m(A,B)) = |det Adet B|"(Case S). Note that f; is K, invariant, A is bi-K invariant,

(5.10) = f A~ (n(X)m(a)) (X T))
M(F)xN(F) (5.11)
xIr (m(m(a)) f3)0p (m(a)) " dn(X)dm(a).
If we let
Jr(s,a) = JN(F)A‘<5+”)(n(X)m(a))w(tr(XT))dn(X), (5.12)

for m(a) € M(F), then
(5.11) = jM(F)JT(s,a)lT(n(m(a))fo)&:l (m(a))dm(a). (5.13)

Properties of J1(s,a), such as convergent when s sufficiently large, having meromorphic
continuation to G, is discussed by Shimura [10], for example, Proposition 3.3 there.

LEMMA 5.3. Let v be an unramified character of F. Let T be a square matrix such that
T € GL,xn(O) N S(F) or T € GL,,(0)(Case S). Then

]T(S’a):{)/o(m(a)) jr(s), a€M(O), 5.10)

0, if else .



12 International Journal of Mathematics and Mathematical Sciences
Here

(CaseNS)  j(s) = JS(F)A‘(S+")(n(X))t//(tr(TX))dX

n—1

= 1_[[,(25+ 2n— r,E;;/F),
r=0

(CaseS) ju(s) = J A~ (n(X)) y (e(TX)) dX

wxn (F)

(5.15)

n—1
= 1—[((25+2n— r).

r=0

Proof. Both sides of (5.14) are meromorphic functions for a given m(a) € M(F). We only
need to prove this lemma for Res sufficiently large.

(Case NS). Let a € GL,(E). By the principle of elementary divisors, a = 'w™! 'v with
v,W € Mysxn(Og), v = ké1,w = k'8, with k, k' € GL,(0f) and

0 = diag(@g",...,@8" 1,...,1),

8 =diag(L,...,L@g",...,95") (5.16)
withmy > -+ >m; >0, muy > -+ >m, > 0 for some 0 < i < n. Then
Jr(s,a) = Jr(s,'w™''v)
- L(F)A‘(”")(n(X)m(fw-“v))de
:J Ai(s+n)(m(twil)m(twil)_ll’l(X)m(tw’“v))
- (5.17)

Xy (tr(XT))dX

= | det(w)| ;" L(F) A=E (i (=) n(X)m (')

X y(tr (XwPTtw1))dX.

Let S(O) be the set of elements in S(F) with entries in Og. Let $ be a set of representative
of S(F)/S(0). Decompose the integral in (5.17) as a sum of integrals indexed by $:

(5.17) = |detw|g" > LJrS(@)A*(””)(m(twfl)n(X)m(tv)) Xy (tr (XwPTtw1))dX.

teg
(5.18)
Let £ € S(F). If & ¢ S(0), by Lemma 4.4,
AT (m( W)€+ X)m( 1)) = | detw?w? [TATC (n()) - (5.19)
for all X € S(0), since
max |detCl|g = max |detClg (5.20)
CeL((+X) CeL($)
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for & & S(0). If ¢ € S(0), then A(n(&)) =1,

A (m(fw Y n(E+ X)m( ') = | det(vw)? | A (n(E)) = | det(vw)? |
(5 21)

Hence for all £ € S(F), X € S(0),
Af(ern)(m(t 71) E+X)m(tv)) = | det(vw)? |;+nA—(s+n)(n(£))_ (5.22)
Apply (5.22) to (5.18), we then get

(5.18) = | detw|z" | det(vw)? |5 DT A=) (n(£))

tes (5.23)
w(tr(EW*PTtW‘l))J v (tr (Xw Trw 1)) dX.
S(0)
If a &€ M,»,(Og), then |detw|g < 1and wPT ‘w=! € S(0). Hence
j y(a (Xw T ))dx =0, (5.24)
S(0)

and Jr(s,a) = 0. If a € GL,(E) N M;x,(Og), we compute Jr(s,a) directly:

Jr(s,a) = L(F) A6 (n(X)m(a)) y (X T)) dX

=|deta\%+”J A~ (n(X))y (tr(XT))dX, by Lemma 4.4 (5.25)

= | deta\”“]T(s)

here

jo(s) = j( A=) (n(X)) y (er(TX)) dX
o (5.26)
1_[ (2s+2n—r,€p5),

where the second equality comes from [10, Proposition 6.2] by Shimura.
The proof for Case S is similar, and we omit it here. O

THEOREM 5.4. Let v be an unramified character of F, (7, Vy) an unramified irreducible
admissible representation of G(F). Let T be a square matrix such that T € GL,(0g) N
S(F)(Case NS) or T € GL,(0)(Case S). Let It be a linear functional on Vy satisfying (5.1).
Then for 0 # fy € V¢,

s+1/2 ,0)

a0

JM(@) v (m(a))lr ((m(a)) fo)dm(a) = (fo)

where dy (s) and jr(s) are given in Theorem 4.2 and Lemma 5.3.
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Proof. Lemma 5.2 and the paragraph after Lemma 5.2 have shown that

L(s+1/2,m,0)

() BT [ A @l (n(g) f)dg
H

(5.28)
=j Jr(sa)lr (m(m(a)) f3)85 " (m(a)) dm(a).
M(F)

By Lemma 5.3, Jr(s,a) vanishes when a ¢ M(0). Substitute the formula of Jr(s,a) for
a € M(0) and 8; ', the conclusion follows. a

6. Global computation

Let F be a number field, E a quadratic field extension of F. As usual, let v be the set of all
places of F, a,f the set of archimedean and non-archimedean places of F respectively. Let
F, be the localization of F at the place v of v, E, = E® F,. If v € {, let O, be the ring of
integers of F,. If v remains prime in E, then E, is a quadratic field extension of F,, let O,
be the ring of integer of E,. The ring of adeles of F (resp., E) is denoted by A (resp., Ag).
Denote by | - | (resp., | - |g) the normalized absolute value of A* (resp., Az). Let y be a
nontrivial continuous character of A trivial on F.

Let V be a 2n-dimensional vector space over E with an anti-Hermitian form #,, on it.
Let W be an n-dimensional vector space over E with a nonsingular Hermitian form T Let
G = U(#2,), G' = U(T) be the corresponding unitary groups. Then G X G’ is a dual pair
in Sp(W), where W = V' ® W is symplectic space with symplectic form trg/r (12, ® T).

Let P = MN be the maximal parabolic subgroup of G defined in Section 2. For v € v,
let K, be a maximal compact subgroup of G(F,) such that for almost all v e v, K, =
G(0,). Let Ky = [[,ey Ky. Then G(A) = P(A)Ku. For v € v, let dk, be the Haar mea-
sure on K, such that fKV dk, = 1. Then dk =[], dk, is an Haar measure on K, such that
fKA dk = 1. Let di(p,) be a left Haar measure on P(F,) for v € v. Then dip =[], di(p,)
is a left Haar measure on P(A). Since P(A) = M(A)N(A), dip = |detalz"d*adX if p =
m(a)n(X) for a € GL,(Ag), X € S(A), where d*a, dX are Haar measure on GL,(Ag),
S(A), respectively. We then let dg = d;p dk be an Haar measure on G(A).

Lets € C, let y be a Hecke character of E. Denote by I(s, ) the set of smooth functions
f:G(A) — Csatistying

(i) f(pg) = y(x(p)) Ix(p)IF"2f (g), for p € P(A), g € G(A),

(ii) f is K,-finite for all v € a.
G(A) acts on I(s,y) by right multiplication. Let ®(g,s) be a smooth function in I(s,y)
holomorphic at s. The Eisenstein series associated to ®(g,s) is given by

E(g,s7,®) = Z D(&g,s). (6.1)
EEP(F)\G(F)

In [9], it has been shown that (6.1) is convergent when Res > n/2 and has a meromorphic
continuation to the whole complex plane.
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Let 7 be a cusp automorphic representation of G(A) (cf. [9]). Let f be cusp form in
the isotypic space of . Let § € S(F). The Bth Fourier coefficient of f is

B@=[ gy (t(XB)AX, g GA) (62)

S(F)\S(A)

If B1,32 € S(F), 1 = 'aPf,a for some a € GL,(E), then

13.(8) = fz,(m(a)g), ge<G(A). (6.3)

Let y be a Hecke character of E satisfying y|ax/rx = €j/p, Where €g/r is the quadratic
character of A*/F* by global class field theory. Associate with ¥ a Weil representation
wy of G(A) acting on F(Y(A)), the set of Schwartz-Bruhat functions on Y(A). In fact,

wy is the restriction of Weil representation (associated with ) of S/pz/W)(A) to G(A) (see
Section 2 for the definition of Y,W). We will omit the subscript y when vy is clear from
the context. The explicit formula of w is given in [11], we cite here the formula on P(A).
Let ¢ € F(Y(A)), a € GL,(Ag), n(X) € N(A), then

w(m(a))p(y) = x(deta)| detalﬁ/ng(ya),

6.4
w(n(X))(y) = y(tr(bu(y)))o(y), yeY(A). (64

Here p =[], 4y : Y(A) = F(A), py is the moment map defined at Section 2 for local field
F,.
The theta series 64 for ¢ € S(Y(A)) is a smooth function on G(A) of moderate growth

05(8) = 2. w(@p&), geG(A), (6.5)

£eS(F)

6.1. Vanishing lemma. Let 7 be a cuspidal automorphic representation of G(A). We
make the following assumption: There is some cusp form f in the isotypic space of 7
such that

[ Fe0g(axn) 0 (6:6)
N(F)\N(A)
In [4], Piatetski-Shapiro and Rallis do not propose this assumption, because Li has shown
in [12] that every cusp forms supports some nonsingular symmetric matrix.

For ¢ € F(Y(A)), D(g,s) € I(s,y), f € A(G(F) \ G(A)), the isotypic space of 7 in the
space of automorphic forms on G(A), define

Hs9®,f) = | ()E(g,5 D)0y(g)d. (67)
6D, f G(F)\G(A)fg g b(g)dg
Although 6y is slowly increasing function on G(A), E(g,s, @) is of moderate growth, but f
is rapidly decreasing on G(A), (6.7) is convergent at s where the Eisenstein series is holo-
morphic. We will show that when we choose appropriate ¢, @, f, I(s,¢,D, f) is product
of meromorphic function with partial L function of 7.
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Substitute Eisenstein series (6.1), theta series (6.5) into (6.7), then

(6.7>=j ORI w<g>¢<£>dg
EeY(F (6 8)

B JKA JP(F)\P(A)f(pk)(D(pk’S) Z w(pk)p(&)dipdk.

EeY(F)

By the assumption that ®(g,s) € I(s,y), P(pk,s) = p(x( ))Ix(p)l””/zd)(k,s). Apply the
formula of Weil representation (6.4) to (6.8), then

(6.8) = JKA JM(F)\M(A) JN(F)\N(A)f(n(X)m(a)k)CD(k)S)
X (yx| - 13)(deta) > y(tr (bu(®)))w(k)p(§a)dX d”adk.

§eY(F)

(6.9)

Recall that in Section 2, we let ‘6 C S(F) be the image of moment map, which is invariant
under the action of M(F). Let $ be a set of representatives of orbits ‘6/M(F) such that
T € $. We then write (6.9) as a sum of integrals indexed by $:

(6.9) = JK JM SOS fm@k)oks)

(EN\M(A) i eeni(p)
X (px| - 1) (deta)w(k)p(Ea)d*adk
=D, S fi(m(a')ym(a)k) D(k,s)
ﬁe}J I F)\MA aEM,g \M(F) Ecu1(B)
X (yx| - |13) (deta)w(k)p(éa’a)d*adk.

(6.10)

Here f3 is fth Fourier coefficient of f, Mg is the stabilizer of 8 under the action of M (cf.
Section 2). For f € &, let

Ig(s) = > fe(m(a)m(a)k)®(k,s)
JKAJ P)\M(A aeM/xF \M(F) Eep~'(B) (6.11)
X (yx| - 13) (deta)w(k)p(éa’a)d*adk.
Then
I(s,¢,D, ) = > Is(s). (6.12)
Bes

LEMMA 6.1. Ig(s) = 0 for all B € § with detff = 0.
Proof. 1f f = 0, then for all g € G(A),

fp(g) = J f(ng)dn=0 (6.13)

N(F)\N(A)
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since f is a cusp form. Hence

BO=[ e 2 S flm@m@k)atks)

) & eMy(F)\M(F) £ (B) (6.14)
X (yx| - 3) (deta)w(k)p(éa’a)d*adk = 0.

Let 0 # f € $ with detff = 0. Then

Is(s) = jKj s S fi(m@)m(@k) dk,s)

) a eM,;(F \M(F) Eeu1(B)

X (yx! - 1) (deta)w(k)p(éa’a)d*adk

:J j j f (mymk) ©(k, 5)
Ka J Mp(A)\M(A) J Mg(F)\Mg(A)

x (yxl - 1§) (x(mim)) > w(k)$(Emym)dm; dmdk.
Eeu1(B)

(6.15)

Let x € Y such that f = p(x) = 'xPTx, r = rank(f3). Then r < n. Let a € GL,(F) such that

‘APBA = (g 79) (6.16)

where T’ is a nondegenerate r X r Hermitian matrix. So without loss of generality, we
assume that § = diag(0,—,,T7"). Then

Mg = {m( (é g) ) eM|DeUT), 'CPT'C=0,'C°T'D = o}. (6.17)

Define two subgroups M, L of Mj:

C D

L= {m( (1’6* ﬁ)) €M|B eMn,X,,r(E)}.

Then Mg = M, - L. We use this decomposition to compute the inner integral over Mg(F)\
Mpg(A) of (6.15),

M, = {m( (A 0)) EM|DeU(T),'CPT'C=0,'C’T'D = 0},
(6.18)

jMﬁ(F)\M(A)J%(mlmk)(m - |fE)(x(num))Ee;(mwmgb(fmlm)dml. (6.19)
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(Here because ®(k, s) is independent of #1; so we remove it from the integral over Mg(F)\
M(A).) The above integral equals to

X X
JMl(F)\Ml(A) «[L(F)\L(A) JS(F)\S(A) f(n( )emlmk)W(tr( ﬁ))

(6.20)
X (yxl - 1) (x(emim)) - > w(k)$(Eemim)dX dedm.
§eu'(B)
Let U be the subgroup of N consisting of elements of the following form:
n( ( t;p g) ) with c € M(n—r)x(n—r)- (621)

Then LU is the unipotent radical of the maximal parabolic group P’ preserving the flag
0 C ®[Eeuti C Y (see Section 2 for the choice of basis of V'). On the other hand, let A,
be the set of positive roots of G with respect to the Borel subgroup of G consisting of
element of following form:

A B
( A) with A be upper triangular matrix. (6.22)

For a € A, let Ny be the 1-parameter unipotent subgroup of G corresponding to . Set
I'={ae Ay | Ny C N}. Let ap be the simple root corresponding to P’, w = s,, be the
simple reflection of ap. Then U = [er wper Np. If we put Uy = [[per,wpe—r Np, then N =
U - U,. Hence we have decomposition

N(F)\N(A) = U(F)\U(A) - Ui (F)\Ui (A). (6.23)

Corresponding to the decomposition of N, we have a decomposition of S(F):

SU(F) = { < t;p g) € S(F) lce M(n—r)x(n—r)(F)}y

0 o (6.24)
SUl(F)={<O d) ES(F) |dEMr><r(F)}~
Then the isomorphism 7 : S(F) — N send Sy and Sy, onto U and Uy, respectively.
Substitute the decomposition of S(F) into (6.20), then
LS N P
M, (F)\M;(A) JL(F)\L(A) J Sy, (F)\Sy, (A) J Sy (F)\Su(A)
Xf(n(XU-I—XUl)fmlmk)l//(tr((XU+XUI)[3)) (6.25)

x (yxl - 15) (x(emm)) > w(k)¢(E6mim)dXydXy,dedm, dm.
Eep1(B)
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Direct computation shows that L centralizes U;. We can change the order of the above
integration, then

(6.20) = J

M, (F)\M;(A) -Lul (F)\Su, (A) JL(F)\L(/l\) JSU(F)\SU(A)
X f(n(Xy)en(Xy,)mimk)y(tr (Xu +Xuv,)B)) (6.26)

X (yxl - 13) (x(emm)) > w(k)¢(Eemym)dXyedXy,ddm, dm.
Eep ' (B)

Let Xy = (14 g) be an element of Sy(A). Then

0 0 d 0 0
PXu = (0 T') (,;p o) - (T’ ‘e o)' (6.27)

tr (/))(XU +XU1)) =1tr (ﬁXUl) (6.28)

So

which is independent of Xy . Since x(£) = 1 for £ € L(A), we see that
(yxl-12)(0) =1, €€L(A). (6.29)

If £ € u1(B), then rank(¢) = r. Let ay,...,a, be the column vectors of &. Recall that
the right lower corner of & is an r X r nonsingular matrix T", the space generated by
An—ri1s...,ay is of rank r. Hence there is a € Mg (depends on &, but it does not affect our
computation) such that

0 v
A
E=ta'= (0 u) (6.30)
for some nonsingular r X r matrix u. If £ = m(' ¥) € L, then
i, [0 vy (1 x\
o0 ) Y- o
The integral for fixed & € y~' () on L(F)\L(A) x U(F)\U(A) in (6.26) is

Lo Lo £ X )en (X ik (e (X + X0:)B)
L(F)\L(A) JU(F)\U(A) (6.32)
X (px! - 1) (€mym) w(k)p (E€mym)dXy de.

By (6.28), (6.29), and (6.31),

(6.32) = L(F)M) jU(F)\U(A) F(n(X0) n(Xo, )ymymk)y (tr (Xu,B))

X (yx! - 1) (mym) w(k)$ (& mym)dXy de,

(6.33)

which is 0, since LU is the unipotent radical of P’. This finishes the proof of the lemma.
(]
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By Lemma 6.1, I4(s) = 0 if B is singular. Recall that we choose T to be the representative
of the open orbit of ‘6/M. The stabilizer M7 is isomorphic to G' = U(T) the unitary group
of W. Then (6.12) reduces to

g0 )= [ S @ m@k) 0k

A) w6 (F)\M(F)

X (yxl - 15) (deta) > w(k)¢(fa’a)dxadk (6.34)

£eG(F

J J ﬁ~mmmymks (K)$(Ea) (yy| - 15)d* adk.

6.2. Main theorem. Let y, = y|g,, then y =[], y,. Similarly, y = [ ], x». Let ®, be a stan-
dard section of I(y,s) of G(F,) for all v € v. Set ® =[], ®,. Assume that ¢ =[], ¢, in
F(Y). Let f be a cusp form in the isotypic space of a cuspidal automorphic representa-
tion of G(A). Let S be a finite subset of v containing all archimedean places such that if
v &S, xv,yy are unramified, T\, € GLyx,(0g) N S(F,) and v, is unramified character of F,.
Since 7 = ®,,m, for almost all v € v, 7, is unramified for almost all places. Assume that 7,
is unramified if v ¢ S and f is K, fixed. Moreover, ¢, = char(Y(0,)) if v & S.
Let Q be a finite subset of v containing S. Put

Go=[], Ka=]]K», Ma=][][M,. (6.35)

veQ) veQ) veQ)
They embed naturally into G(A), Ka, M(A), respectively. If a € M(A), a =[], a,, put

aq = [1,eqay. Similarly, if k € Kqu vy, then k = kg - ky, for kg € Kq, k, € K,. To com-
pute (6.34), we define

@ = | [ frim@R)oke®s@o - ) @dadk.  (6.36)

THEOREM 6.2. Notations as above. Then

L(s+1/2,7,yvXv,0)
jr,(s)dm, (s)

Inuy(s) = Ia(s), (6.37)
where jr,, dy, (s) are jr(s), du(s) in Theorem 5.4 for T, H,, respectively,

1 1
L<s+ 3 T0ys Py Xv> O ) = L<s+ 3 +)Lv,m,,a>, (6.38)

where A, € C such that (y,x,)(a) = Ialév for all a € Ef(Case NS), or (yyxv)(a) = la| for
all a € F)(Case S) (See Section 3 for the definition of Case NS and Case S).
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Proof. We will apply results in Section 5, F, will be F there,
Tou i (5 JK JM H (m(@k) Dk ) (k)p(a) (yy] - 15) (deta)d*adk

:JKQMQ LM(F)CD(KQ, )@, (ky,s) fr(m(a,)m(aq)kykq) (6.39)
X (yx! - %) (detaqa,)w(ka) pa(an)w (k) ¢, (a,)d*a, d* dk,aq dko.

®, is the standard section, then ®,(k,,s) = 1 for all k, € K,. Moreover, f is K,-fixed,
hence fr(m(ayaq)k,kq) = fr(m(ayaq)kq) for all k, € K. ¢, = char(Y(0,)) which is K,
fixed element for the Weil representation, hence w(k,)$, = ¢y,
(6.39) J J alkass) fr(m(a,anka))
KoMa JK,M(F.
X (yx! - IE)(detaan) (ka)¢(aq)d(a,)d*a, dk, daq dkq
- | ®@alka.a(ka)(an) (3 - ;) (detan) |

KaoMqg M(Fv)

XfT( ( ) (aQ)kQ)(/)(av)yo(av)s()/X)(detav)dxavdxaﬂdk(L

As ¢, = char(Y(0,)), M, nY(0) = M(0,) (cf. Section 5),

(6.40)

[, () m(an) ko) ()i (a) () (detar) ",

= J o frOm(@)m(an)ka) i (@) (0 (deta ) d"a, (6.41)

B L(s+1/2,7,yvXv,0)
jr,(s)dm, (s)

fr(m(an)ka), by Theorem 5.4.
Here we are viewing fr(m(a,)m(aq)kq) as a functional I7, on m, by Example 5.1 in
Section 5. Hence

I B L(s+1/2,m, X1, 0)
OO (), (s)

In(s). (6.42)
]

To complete the computation of our global integral, let

i) =11in,  dys) =[]dus. (6.43)

veES veES

Define partial L function of  as
sf 1 1
Lo(s+ = 84 =1_[L 5+£,nv,(yvxv),a ) (6.44)
veS

Since I(s) = limq In(s), by Theorem 6.2, let Q) be a finite set of v approaching to v by
adding one place each time, then the following holds.
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TaEOREM 6.3. Choose f,¢, D and S C v as in Section 6.1. Then for all s € C,

I(s,0,D, f) = R(s) )LS (s+ %,n,yx,a), (6.45)

J(s)di (s
where R(s) = Is(s) is a meromorphic function of s.

Proof. Argue as [6, Theorem 6.1], the partial L function is a meromorphic function. Also
by the analytic property of Eisenstein series, I(s, ¢, D, f) itself is a meromorphic function,
hence R(s) = Is(s) is a meromorphic function of s. O

Remark 6.4. We remark here that following [4, pages 118-119], under our assumption
one can show that by choosing appropriate ¢, @, f, we can let that R(s) # 0.
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