
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2007, Article ID 62925, 7 pages
doi:10.1155/2007/62925

Research Article
Sufficient Conditions for Janowski Starlikeness

Rosihan M. Ali, V. Ravichandran, and N. Seenivasagan

Received 10 March 2007; Revised 15 June 2007; Accepted 4 July 2007

Recommended by Teodor Bulboaca

Let A,B,D,E ∈ [−1,1] and let p(z) be an analytic function defined on the open unit
disk, p(0) = 1. Conditions on A, B, D, and E are determined so that 1 + βzp′(z) being
subordinated to (1 +Dz)/(1 +Ez) implies that p(z) is subordinated to (1 +Az)/(1 +Bz).
Similar results are obtained by considering the expressions 1 + β(zp′(z)/p(z)) and 1 +
β(zp′(z)/p2(z)). These results are then applied to obtain sufficient conditions for analytic
functions to be Janowski starlike.
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1. Introduction

Let � be the class of all analytic functions f (z) defined in the open unit disk U := {z ∈
C : |z| < 1} and normalized by the conditions f (0)= 0= f ′(0)− 1. Let S∗[A,B] denote
the class of functions f ∈� satisfying the subordination

z f ′(z)
f (z)

≺ 1 +Az
1 +Bz

, (−1≤ B < A≤ 1). (1.1)

Functions in S∗[A,B] are called the Janowski starlike functions ([1, 2]). Certain well-
known subclasses of starlike functions are special cases of the class S∗[A,B] for suitable
choices of the parameters A and B. For example, when 0 ≤ α < 1, S∗[1− 2α,−1] =: S∗α
is the familiar class of starlike functions of order α and S∗[1− α,0] = { f ∈� : |z f ′(z)/
f (z)− 1| < 1− α (z ∈ U)} =: S∗(α). For 0 < α ≤ 1, let S∗[α,−α] = { f ∈� : |z f ′(z)/
f (z)− 1| < α|z f ′(z)/ f (z) + 1| (z ∈U)} =: S∗[α].

Silverman [3], Obradowic̆ and Tuneski [4], and many others (see [5–9]) have studied
properties of functions defined in terms of the quotient (1 + z f ′′(z)/ f ′(z))/(z f ′(z)/ f (z)).
In fact, Silverman [3] has obtained the order of starlikeness for the functions in the class
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Gb defined by

Gb :=
{
f ∈� :

∣∣∣∣1 + z f ′′(z)
/
f ′(z)

z f ′(z)
/
f (z)

− 1
∣∣∣∣ < b,0 < b ≤ 1, z ∈U

}
(1.2)

and Obradowic̆ and Tuneski [4] improved the result of Silverman [3] by showing
Gb ⊂ S∗[0,−b]⊂ S∗(2/(1 +

√
1 + 8b)). Later, Tuneski [10] obtained conditions for the in-

clusion Gb ⊂ S∗[A,B] to hold. If we let z f ′(z)/ f (z)=: p(z), then Gb ⊂ S∗[A,B] becomes

1 +
zp′(z)
p(z)2

≺ 1 + bz =⇒ p(z)≺ 1 +Az
1 +Bz

. (1.3)

Let f ∈� and 0≤ α < 1. Frasin and Darus [11] have shown that

(
z f (z)

)′′
f ′(z)

− 2z f ′(z)
f (z)

≺ (1−α)z
2−α =⇒

∣∣∣∣z
2 f ′(z)
f 2(z)

− 1
∣∣∣∣ < 1−α. (1.4)

Again by writing z2 f ′(z)/( f (z))2 as p(z), we see that the above implication is special case
of

1 +β
zp′(z)
p(z)

≺ 1 +Dz
1 +Ez

=⇒ p(z)≺ 1 +Az
1 +Bz

. (1.5)

Another special case of the above implications was considered by Ponnusamy and Ra-
jasekaran [12].

Nunokawa et al. [13] have shown that if p(z) is analytic in U , p(0) = 1 and 1 +
zp′(z) ≺ 1 + z, then p(z) ≺ 1 + z. Using this, they have obtained a criterion for a nor-
malized analytic function to be univalent. In this paper, we extend the result by replacing
the subordinate function 1 + z by a function of the form (1 +Dz)/(1 + Ez). In fact, we
determine conditions on A,B,D,E ∈ [−1,1] so that

1 +βzp′(z)≺ 1 +Dz
1 +Ez

=⇒ p(z)≺ 1 +Az
1 +Bz

. (1.6)

Similar results are obtained by considering the expressions 1 + β(zp′(z)/p2(z)),
1 +β(zp′(z)/p(z)). These results are then applied to obtain sufficient conditions for ana-
lytic functions to be Janowski starlike.

2. Differential subordination

Lemma 2.1. Let −1≤ B < A≤ 1, −1≤ E < D ≤ 1, and β 
= 0. Assume that

(A−B)|β| ≥ (D−E)
(
1 +B2)+

∣∣2B(D−E)−Eβ(A−B)
∣∣. (2.1)
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If p(z) is analytic in U with p(0)= 1 and

1 +βzp′(z)≺ 1 +Dz
1 +Ez

, (2.2)

then

p(z)≺ 1 +Az
1 +Bz

. (2.3)

Proof. Define the function P(z) by

P(z) := 1 +βzp′(z), (2.4)

and the function w(z) by

w(z) := p(z)− 1
A−Bp(z)

, (2.5)

or equivalently by

p(z)= 1 +Aw(z)
1 +Bw(z)

. (2.6)

Then w(z) is meromorphic in U and w(0)= 0. We need to show that |w(z)| < 1 in U . By
a computation, we get

P(z)=
(
1 +Bw(z)

)2
+ (A−B)βzw′(z)(

1 +Bw(z)
)2 . (2.7)

Therefore

P(z)− 1
D−EP(z)

= (A−B)βzw′(z)

(D−E)
(
1 +Bw(z)

)2−E(A−B)βzw′(z)
. (2.8)

Assume that there exists a point z0 ∈U such that

max
|z|≤|z0|

∣∣w(z)
∣∣= ∣∣w(z0)

∣∣= 1. (2.9)

Then by [14, Lemma 1.3, page 28], there exists k ≥ 1 such that z0w′(z0) = kw(z0). Let
w(z0)= eiθ . For this z0, we have

∣∣∣∣ P
(
z0
)− 1

D−EP(z0
)
∣∣∣∣= (A−B)k|β|[

I2 + (H − J)2 + 4HJt2 + 4I(H + J)t
]1/2

≥ (A−B)k|β|
max−1≤t≤1

{[
I2 + (H − J)2 + 4HJt2 + 4I(H + J)t

]1/2
} ,

(2.10)
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where I := 2B(D−E)− kβE(A−B), J := (D−E)B2,H := (D−E), and t := cosθ. A com-
putation shows that

∣∣∣∣ P
(
z0
)− 1

D−EP(z0
)
∣∣∣∣≥ (A−B)|β|k

H + |I|+ J
. (2.11)

Yet another calculation shows that the function ψ(k) := (A− B)|β|k/(H + |I|+ J) is an
increasing function of k. Since k ≥ 1, we have ψ(k)≥ ψ(1) and therefore

∣∣∣∣ P
(
z0
)− 1

D−EP(z0
)
∣∣∣∣≥ (A−B)|β|

(D−E)(1 +B2) +
∣∣2B(D−E)−Eβ(A−B)

∣∣ , (2.12)

which by (2.1) is greater than or equal to 1. This contradicts P(z)≺ (1 +Dz)/(1 +Ez) and
completes the proof. �

Remark 2.2. When β = 1, E = 0= B, and D = 1= A, Lemma 2.1 reduces to [13, Lemma
1, page 1035]. Further if p(z) = z2 f ′(z)/ f (z)2, Lemma 2.1 reduces to [13, Theorem 1,
page 1036].

By taking p(z)= z f ′(z)/ f (z) in Lemma 2.1, we have the following result.

Theorem 2.3. Let the conditions of Lemma 2.1 hold. If f ∈� satisfies

1 +β
z f ′(z)
f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
≺ 1 +Dz

1 +Ez
, (2.13)

then f ∈ S∗[A,B].

By taking β = 1, A= α=−B, and D =−E = δ (0 < α,δ ≤ 1) in Theorem 2.3, we have
the following result.

Corollary 2.4. Let 0 < α≤ 1 and δ = α/(1 +α)2. If f ∈� satisfies

∣∣∣∣∣
z f ′(z)
f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)∣∣∣∣∣ < δ
∣∣∣∣∣2 +

z f ′(z)
f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)∣∣∣∣∣, (2.14)

then f (z)∈�∗[α].

By taking β = 1 A= 1− 2α, B =−1, D = (1−α)/2, and E = 0 (0≤ α < 1) in Theorem
2.3, we have the following result.

Corollary 2.5. If f ∈� satisfies

∣∣∣∣∣
z f ′(z)
f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)∣∣∣∣∣ <
1−α

3
(0≤ α < 1), (2.15)

then f (z)∈�∗
α .

By replacing p(z) by 1/p(z), β = −1, A by −B, and B by −A in Lemma 2.1, we have
the following result.
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Lemma 2.6. Let −1≤ B < A≤ 1, −1≤ E < D ≤ 1. Assume that

(A−B)≥ (D−E)
(
1 +A2)+

∣∣E(A−B)− 2A(D−E)
∣∣. (2.16)

If p(z) is analytic in U with p(0)= 1 and

1 +
zp′(z)
p2(z)

≺ 1 +Dz
1 +Ez

, (2.17)

then

p(z)≺ 1 +Az
1 +Bz

. (2.18)

When p(z)= z f ′(z)/ f (z), in Lemma 2.6, we have the following theorem.

Theorem 2.7. Let −1 ≤ B < A ≤ 1, −1 ≤ E < D ≤ 1. Assume that (2.16) holds. If f ∈�
satisfies

1 + z f ′′(z)/ f ′(z)
z f ′(z)/ f (z)

≺ 1 +Dz
1 +Ez

, (2.19)

then f ∈ S∗[A,B].

Example 2.8. If f ∈G1−α/(2−α)2 (0≤ α < 1), then f ∈ S∗(α). If f ∈� satisfies

∣∣∣∣1 +
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

∣∣∣∣ < β
∣∣∣∣1 +

z f ′′(z)
f ′(z)

+
z f ′(z)
f (z)

∣∣∣∣
(
β = α

1 + 3α+α2
, 0 < α≤ 1

)
,

(2.20)

then f ∈ S∗[α]. Similarly if (2.20) holds with β = (1−α)/[1 + (1− 2α)2 + |5α− 3|] (0≤
α < 1), then f ∈ S∗α .

Remark 2.9. When E = 0 and D = b (0 < b ≤ 1), Corollary 2.5 reduces to [10, Corollary
2.6, page 203]. When A = 0 = E and D = −B = b (0 < b ≤ 1), Corollary 2.5 reduces to
[4, Theorem 1, page 61]. When A= 0= E and D =−B = 1, Corollary 2.5 reduces to [3,
Corollary 1, page 76].

Lemma 2.10. Let −1≤ B < A≤ 1, −1≤ E < D ≤ 1, AB ≥ 0, and β 
= 0. Assume that

|β|(A−B)≥ (D−E)(1 +AB) +
∣∣(D−E)(A+B)−Eβ(A−B)

∣∣. (2.21)

Let p(z) be analytic in U with p(0)= 1 and

1 +β
zp′(z)
p(z)

≺ 1 +Dz
1 +Ez

, (2.22)

then

p(z)≺ 1 +Az
1 +Bz

. (2.23)

Proof. The proof is similar to the proof of Lemma 2.1. �
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Remark 2.11. When Eβ ≤ 0, AB ≤ 0, Lemma 2.10 is valid provided the following condi-
tions hold:

(1−Aβ)2{2Eβ(A+B)(D−E)− (A−B)
[
(D−E)2 + (Eβ)2]}≥ 4β2(A−B)AB

(2.24)

instead of (2.21).

Remark 2.12. When β =−1, A= λ= E, and D = B = 0(|λ| ≤ 1), Lemma 2.10 reduces to
[12, Theorem 1(iii), page 195].

Example 2.13. By taking β = 1, B = 0, D = A/(1 +A), and E = 0 in Lemma 2.10, we have
the following result. Let 0 < A≤ 1. Let p(z) be analytic inU with p(0)= 1. If |zp′(z)/p(z)|
< A/(1 +A), then p(z)≺ 1 +Az. When p(z)= z f ′(z)/ f (z),A= 1−α, we have the follow-
ing result.

If f (z)∈� satisfies

∣∣∣∣1 +
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

∣∣∣∣ < 1−α
2−α (0≤ α < 1), (2.25)

then f (z)∈�∗(α).

By taking p(z)= z2 f ′(z)/ f 2(z) in Lemma 2.10, we have the following result.

Theorem 2.14. Let the conditions of Lemma 2.10 hold. If f ∈� satisfies

1 +β

((
z f (z)

)′′
f ′(z)

− 2z f ′(z)
f (z)

)
≺ 1 +Dz

1 +Ez
, (2.26)

then

z2 f ′(z)
f 2(z)

≺ 1 +Az
1 +Bz

. (2.27)

Remark 2.15. When β = 1, A = α, B = 0, E = 0, and D = (1− α)/(2− α) (0 ≤ α < 1),
Theorem 2.14 reduces to [11, Theorem 2.4, page 307].
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