

Research Article

On Classical Quotient Rings of Skew Armendariz Rings

A. R. Nasr-Isfahani and A. Moussavi

Received 7 February 2007; Accepted 2 August 2007

Recommended by Howard E. Bell

Let R be a ring, α an automorphism, and δ an α -derivation of R . If the classical quotient ring Q of R exists, then R is weak α -skew Armendariz if and only if Q is weak $\tilde{\alpha}$ -skew Armendariz.

Copyright © 2007 A. R. Nasr-Isfahani and A. Moussavi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

For a ring R with a ring endomorphism, $\alpha: R \rightarrow R$ and an α -derivation δ of R , that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for all $a, b \in R$, we denote by $R[x; \alpha, \delta]$ the skew polynomial ring whose elements are the polynomials over R , the addition is defined as usual and the multiplication subject to the relation $xa = \alpha(a)x + \delta(a)$ for any $a \in R$.

Rege and Chhawchharia [1] called a ring R an *Armendariz* ring if whenever any polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$, $g(x) = b_0 + b_1x + \cdots + b_mx^m \in R[x]$ satisfy $f(x)g(x) = 0$, then $a_i b_j = 0$ for each i, j . This nomenclature was used by them since it was Armendariz [2, Lemma 1] who initially showed that a *reduced* ring (i.e., a ring without nonzero nilpotent elements) always satisfies this condition. A number of papers have been written on the Armendariz property of rings. For basic and other results on Armendariz rings, see, for example, [1–11].

The Armendariz property of rings was extended to skew polynomial rings with skewed scalar multiplication in [7].

For an endomorphism α of a ring R , R is called an α -skew *Armendariz* ring (or, a skew Armendariz ring with the endomorphism α) if for $p = \sum_{i=0}^m a_i x^i$ and $q = \sum_{j=0}^n b_j x^j \in R[x; \alpha]$, $pq = 0$ implies $a_i \alpha^i(b_j) = 0$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$.

Recall that an endomorphism α of a ring R is called *rigid* (see [5] and [12]) if $a\alpha(a) = 0$ implies $a = 0$ for $a \in R$. R is called an α -rigid ring [12] if there exists a rigid endomorphism α of R . Note that any rigid endomorphism of a ring is a monomorphism, and α -rigid rings are reduced by [12, Propositions 5 and 6].

If R is an α -rigid ring, then for $p = \sum_{i=0}^m a_i x^i$ and $q = \sum_{j=0}^n b_j x^j \in R[x; \alpha, \delta]$, $pq = 0$ if and only if $a_i b_j = 0$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$ [12, Proposition 6].

Various properties of the Ore extensions have been investigated by many authors; (see [1–13]). Most of these have worked either with the case $\delta = 0$ and α -automorphism or the case where α is the identity. However, the recent surge of interest in quantum groups and quantized algebras has brought renewed interest in general skew polynomial rings, due to the fact that many of these quantized algebras and their representations can be expressed in terms of iterated skew polynomial rings. This development calls for a thorough study of skew polynomial rings.

Anderson and Camillo [3] assert that for a semiprime left and right Noetherian ring R , R is Armendariz if and only if the classical right quotient ring $Q(R)$ of R is reduced. Anderson and Camillo [3, Theorem 7] proved that if R is a prime ring which is left and right Noetherian, then R is Armendariz if and only if R is reduced. Kim and Lee in [9] obtained this result under a weaker condition. They proved that if R is a semiprime right and left Goldie ring, then R is Armendariz if and only if R is reduced. Kim and Lee also proved that if there exists the classical right quotient ring $Q(R)$ of a ring R , then R is reduced if and only if $Q(R)$ is reduced.

In this paper, we obtain a generalized result of [3, Theorem 7] and [9, Theorem 16], for reduced rings, onto α -skew Armendariz rings [9, Proposition 18 and Corollary 19] as corollaries.

2. The results

We first give the following definition of α -skew Armendariz ring, and notice that our definition is compatible with Hong et al.'s [7], assuming δ to be the zero mapping.

Definition 2.1. Let R be a ring with a ring endomorphism α and an α -derivation δ . R is an α -skew Armendariz ring (or, a skew Armendariz ring with the endomorphism α) if for $p = \sum_{i=0}^m a_i x^i$ and $q = \sum_{j=0}^n b_j x^j \in R[x; \alpha, \delta]$, $pq = 0$ implies $a_i \alpha^i(b_j) = 0$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$.

We notice that to extend Armendariz property to the Ore extension $R[x; \alpha, \delta]$, we do not need any more conditions. In the case $\delta = 0$, several examples of α -skew Armendariz rings are obtained in [7], and in the same method, one can provide similar results as in [7], for the more general cases, of the Ore extension $R[x; \alpha, \delta]$. For instance, it is easy to prove that α -rigid rings are α -skew Armendariz.

Definition 2.2. Let R be a ring with a ring endomorphism α and an α -derivation δ . R is a weak α -skew Armendariz ring, if for linear polynomials $f(x) = a_0 + a_1 x$ and $g(x) = b_0 + b_1 x \in R[x; \alpha, \delta]$, $f(x)g(x) = 0$ implies $a_i \alpha^i(b_j) = 0$ for all $0 \leq i, j \leq 1$.

Note that an α -skew Armendariz ring is trivially a weak α -skew Armendariz ring and a subring of an α -skew Armendariz ring is also α -skew Armendariz; while for the identity

endomorphism I_R of a ring R , R is Armendariz if and only if R is I_R -skew Armendariz and $\delta = 0$.

Let R be a ring with the classical right (left) quotient ring Q . Then each injective endomorphism α and α -derivation δ of R extends to Q , respectively, by setting $\tilde{\alpha}(c^{-1}r) = \alpha(c)^{-1}\alpha(r)$ and $\tilde{\delta}(c^{-1}r) = \alpha(c)^{-1}(\delta(r) - \delta(c)c^{-1}r)$, for each $r, c \in R$ with c regular.

A ring R is called right Ore given $a, b \in R$ with b regular if there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. It is a well-known fact that R is a right Ore ring if and only if there exists the classical right quotient ring of R .

Note that every Ore domain is an α -skew Armendariz ring for every automorphism α and α -derivation δ .

Now we obtain a generalized result of [9, Theorem 16], for reduced rings, onto α -skew Armendariz rings, by showing that the weak α -skew Armendariz condition extends to its classical quotient ring.

THEOREM 2.3. *Let R be a ring, α an automorphism, and δ an α -derivation of R . If the classical quotient ring Q of R exists, then R is weak α -skew Armendariz if and only if Q is weak $\tilde{\alpha}$ -skew Armendariz.*

Proof. Let $f(x) = c_0^{-1}a_0 + c_1^{-1}a_1x$ and $g(x) = s_0^{-1}b_0 + s_1^{-1}b_1x \in Q[x; \tilde{\alpha}, \tilde{\delta}]$ such that $f(x)g(x) = 0$. Then there exist $a'_i, b'_j \in R$ and regular elements $c, s \in R$ such that $c_i^{-1}a_i = c^{-1}a'_i$ and $s_j^{-1}b_j = s^{-1}b'_j$. We then have $(c^{-1}a'_0 + c^{-1}a'_1x)(s^{-1}b'_0 + s^{-1}b'_1x) = 0$. So $(a'_0 + a'_1x)s^{-1}(b'_0 + b'_1x) = 0$ and hence $[a'_0s^{-1} + a'_1\tilde{\delta}(s^{-1}) + a'_1\tilde{\alpha}(s^{-1})x](b'_0 + b'_1x) = 0$. Then $[a'_0s^{-1} - a'_1\alpha(s)^{-1}\delta(s)s^{-1} + a'_1\alpha(s)^{-1}x](b'_0 + b'_1x) = 0$. Now there exist $d, s_2 \in R$, with s_2 regular, such that $\delta(s)s^{-1} = s_2^{-1}d$. Thus $[a'_0s^{-1} - a'_1\alpha(s)^{-1}s_2^{-1}d + a'_1\alpha(s)^{-1}x](b'_0 + b'_1x) = 0$. There exist $a''_0, a''_1, a'''_1, s_3, s_4, s_5 \in R$, with s_3, s_4, s_5 regulars, such that $a'_0s^{-1} = s_3^{-1}a''_0, a'_1\alpha(s)^{-1}s_2^{-1} = s_4^{-1}a''_1, a'_1\alpha(s)^{-1} = s_5^{-1}a'''_1$. So $[s_3^{-1}a''_0 - s_4^{-1}a''_1d + s_5^{-1}a'''_1x](b'_0 + b'_1x) = 0$. There exist $t, d_0, d_1, d_2 \in R$, with t regular, such that $s_3^{-1}a''_0 = t^{-1}d_0, s_4^{-1}a''_1 = t^{-1}d_1, s_5^{-1}a'''_1 = t^{-1}d_2$. Hence $t^{-1}(d_0 - d_1d + d_2x)(b'_0 + b'_1x) = 0$. Now the Armendariz condition implies the following equations:

$$\begin{aligned} (d_0 - d_1d)b'_0 &= 0, \\ (d_0 - d_1d)b'_1 &= 0, \\ d_2\alpha(b'_0) &= 0, \\ d_2\alpha(b'_1) &= 0. \end{aligned} \tag{2.1}$$

We have $(d_0 - d_1d + d_2x)(b'_0 + b'_1x) = 0$, so $(d_0 - d_1d)b'_0 + d_2\delta(b'_0) + ((d_0 - d_1d)b'_1 + d_2\alpha(b'_0) + d_2\delta(b'_1))x + d_2\alpha(b'_1)x^2 = 0$. Thus we get the following equations:

$$\begin{aligned} (d_0 - d_1d)b'_0 + d_2\delta(b'_0) &= 0, \\ (d_0 - d_1d)b'_1 + d_2\alpha(b'_0) + d_2\delta(b'_1) &= 0, \\ d_2\alpha(b'_1) &= 0. \end{aligned} \tag{2.2}$$

These equations and (2.1) imply that

$$\begin{aligned} d_2\delta(b'_0) &= 0, \\ d_2\delta(b'_1) &= 0. \end{aligned} \tag{2.3}$$

Now we have

$$\begin{aligned} (d_0 - d_1 d)b'_0 = 0 &\iff t^{-1}(d_0 - d_1 d)b'_0 = 0 \iff (s_3^{-1}a''_0 - s_4^{-1}a''_1 d)b'_0 = 0 \\ &\iff (a'_0 s^{-1} - a'_1 \alpha(s)^{-1} s_2^{-1} d)b'_0 = 0 \iff (a'_0 s^{-1} - a'_1 \alpha(s)^{-1} \delta(s) s^{-1})b'_0 = 0 \\ &\iff (a'_0 s^{-1} + a'_1 \tilde{\delta}(s^{-1}))b'_0 = 0. \end{aligned} \tag{2.4}$$

A similar argument shows that

$$(d_0 - d_1 d)b'_1 = 0 \iff (a'_0 s^{-1} + a'_1 \tilde{\delta}(s^{-1}))b'_1 = 0. \tag{2.5}$$

Also we have

$$\begin{aligned} d_2\delta(b'_0) = 0 &\iff t^{-1}d_2\delta(b'_0) = 0 \iff s_5^{-1}a'''_1 \delta(b'_0) = 0 \iff a'_1 \alpha(s)^{-1} \delta(b'_0) = 0 \\ &\iff a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_0) = 0. \end{aligned} \tag{2.6}$$

A similar argument shows that

$$d_2\delta(b'_1) = 0 \iff a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_1) = 0, \tag{2.7}$$

$$d_2\alpha(b'_0) = 0 \iff a'_1 \tilde{\alpha}(s^{-1}) \tilde{\alpha}(b'_0) = 0, \tag{2.8}$$

$$d_2\alpha(b'_1) = 0 \iff a'_1 \tilde{\alpha}(s^{-1}) \tilde{\alpha}(b'_1) = 0. \tag{2.9}$$

Now take $h(x) = a'_0 + a'_1 x$ and $k(x) = s^{-1}b'_1 \in Q[x; \tilde{\alpha}, \tilde{\delta}]$, and using (2.9), (2.5), (2.7), then we get

$$\begin{aligned} h(x)k(x) &= (a'_0 + a'_1 x)(s^{-1}b'_1) = a'_0 s^{-1}b'_1 + a'_1 \tilde{\alpha}(s^{-1}b'_1)x + a'_1 \tilde{\delta}(s^{-1}b'_1) \\ &= a'_0 s^{-1}b'_1 + a'_1 \tilde{\delta}(s^{-1}b'_1) + a'_1 \tilde{\alpha}(s^{-1}) \tilde{\alpha}(b'_1)x \\ &= a'_0 s^{-1}b'_1 + a'_1 \tilde{\delta}(s^{-1})b'_1 + a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_1) \\ &= (a'_0 s^{-1} + a'_1 \tilde{\delta}(s^{-1}))b'_1 + a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_1) = 0. \end{aligned} \tag{2.10}$$

Therefore, we have $(a'_0 + a'_1 x)(s^{-1}b'_1) = 0$. Now there exist $m, n \in R$ with n regular, we get $s^{-1}b'_1 = mn^{-1}$. Thus $(a'_0 + a'_1 x)mn^{-1} = 0$, hence $(a'_0 + a'_1 x)m = 0$. Since R is weak skew-Armendariz, we can deduce that $a'_0 m = a'_1 \delta(m) = 0$. But

$$a'_0 m = 0 \iff a'_0 mn^{-1} = 0 \iff a'_0 s^{-1}b'_1 = 0. \tag{2.11}$$

Equations (2.5) and (2.11) imply that

$$a'_1 \tilde{\delta}(s^{-1}) b'_1 = 0. \quad (2.12)$$

Now take $p(x) = a'_0 + a'_1 x$ and $q(x) = s^{-1} b'_0$, using (2.8), (2.4), (2.6) then we get

$$\begin{aligned} p(x)q(x) &= (a'_0 + a'_1 x)s^{-1} b'_0 = a'_0 s^{-1} b'_0 + a'_1 \tilde{\alpha}(s^{-1} b'_0) x + a'_1 \tilde{\delta}(s^{-1} b'_0) \\ &= a'_0 s^{-1} b'_0 + a'_1 \tilde{\delta}(s^{-1}) b'_0 + a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_0) + a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_0) x \\ &= (a'_0 s^{-1} + a'_1 \tilde{\delta}(s^{-1})) b'_0 + a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_0) = 0. \end{aligned} \quad (2.13)$$

So $(a'_0 + a'_1 x)s^{-1} b'_0 = 0$. But there exist $u, v \in R$ with v regular such that $s^{-1} b'_0 = uv^{-1}$. Thus $(a'_0 + a'_1 x)uv^{-1} = 0$ and hence $(a'_0 + a'_1 x)u = 0$. The Armendariz condition implies that $a'_0 u = 0$, and so $a'_0 uv^{-1} = 0$. So we get

$$a'_0 s^{-1} b'_0 = 0. \quad (2.14)$$

By (2.14) and (2.4), we have

$$a'_1 \tilde{\delta}(s^{-1}) b'_0 = 0. \quad (2.15)$$

By (2.14),

$$a'_0 s^{-1} b'_0 = 0 \iff c^{-1} a'_0 s_0^{-1} b_0 = 0 \iff c_0^{-1} a_0 s_0^{-1} b_0 = 0. \quad (2.16)$$

By (2.11),

$$a'_0 s^{-1} b'_1 = 0 \iff c^{-1} a'_0 s_1^{-1} b_1 = 0 \iff c_0^{-1} a_0 s_1^{-1} b_1 = 0. \quad (2.17)$$

By (2.6) and (2.15), we have $a'_1 \tilde{\delta}(s^{-1}) b'_0 = 0 = a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_0)$. Thus

$$\begin{aligned} a'_1 (\tilde{\delta}(s^{-1}) b'_0 + \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_0)) = 0 &\iff a'_1 \tilde{\delta}(s^{-1} b'_0) = 0 \iff c^{-1} a'_1 \tilde{\delta}(s^{-1} b'_0) = 0 \\ &\iff c_1^{-1} a_1 \tilde{\delta}(s_0^{-1} b_0) = 0. \end{aligned} \quad (2.18)$$

By (2.12) and (2.7), we have $a'_1 \tilde{\delta}(s^{-1}) b'_1 = 0 = a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_1)$. Thus

$$a'_1 \tilde{\delta}(s^{-1}) b'_1 + a'_1 \tilde{\alpha}(s^{-1}) \tilde{\delta}(b'_1) = 0 \iff a'_1 \tilde{\delta}(s^{-1} b'_1) = 0 \iff c_1^{-1} a_1 \tilde{\delta}(s_1^{-1} b_1) = 0. \quad (2.19)$$

Using $(c_0^{-1} a_0 + c_1^{-1} a_1 x)(s_0^{-1} b_0 + s_1^{-1} b_1 x) = 0$ and (2.16), (2.17), (2.18), (2.19), we also have $c_1^{-1} a_1 \tilde{\alpha}(s_0^{-1} b_0) = 0$ and $c_1^{-1} a_1 \tilde{\alpha}(s_1^{-1} b_1) = 0$. Therefore Q is a weak $\tilde{\alpha}$ -skew Armendariz ring. \square

Now we show that skew-Armendariz rings are Abelian (i.e., every idempotent is central).

LEMMA 2.4. *Every weak α -skew Armendariz ring is Abelian.*

Proof. Let R be a weak α -skew Armendariz ring and let $e^2 = e$, $a \in R$. Consider the polynomials $f(x) = e - ea(1 - e)x$ and $g(x) = 1 - e + ea(1 - e)x \in R[x; \alpha, \delta]$. Then we have $f(x)g(x) = 0$. Since R is weak skew Armendariz, $eea(1 - e) = 0$. So $ea = eae$. Next let $h(x) = 1 - e - (1 - e)aex$ and $k(x) = e + (1 - e)aex \in R[x; \alpha, \delta]$. We have $h(x)k(x) = 0$ and since R is weak skew Armendariz, it implies that $(1 - e)(1 - e)ae = 0$. Thus $ae = eae$ and so $ae = ea$ which implies that R is Abelian. \square

COROLLARY 2.5. *Let R be a semiprime Goldie ring and α -automorphism and δ an α -derivation of R . Then the following are equivalent:*

- (1) R is weak α -skew Armendariz;
- (2) R is α -skew Armendariz;
- (3) Q is $\tilde{\alpha}$ -skew Armendariz;
- (4) Q is weak $\tilde{\alpha}$ -skew Armendariz;
- (5) R is α -rigid;
- (6) Q is $\tilde{\alpha}$ -rigid.

Proof. The proof follows by Theorem 2.3. For the implication $2 \Rightarrow 5$, notice that when R is a weak α -skew Armendariz ring, then by Theorem 2.3, Q is weak $\tilde{\alpha}$ -skew Armendariz and hence Q is Abelian by Lemma 2.4 so Q is an aAbelian semisimple ring and hence is reduced. Now, suppose that $a\tilde{\alpha}(a) = 0$ for $a \in Q$. So we have $\tilde{\delta}(a)\tilde{\alpha}(a) = \tilde{\alpha}(a)\tilde{\delta}(\tilde{\alpha}(a)) = 0$. Now, let $h(x) = \tilde{\alpha}(a) - \tilde{\alpha}(a)x$ and $k(x) = a + \tilde{\alpha}(a)x \in Q[x; \tilde{\alpha}, \tilde{\delta}]$. Then $h(x)k(x) = 0$. Since Q is weak $\tilde{\alpha}$ -skew Armendariz, we have $\tilde{\alpha}(a)\tilde{\alpha}(a) = 0$. But Q is reduced and $\tilde{\alpha}$ is a monomorphism, therefore $a = 0$. Thus Q is $\tilde{\alpha}$ -rigid, so R is α -rigid. \square

By Corollary 2.5, it is shown that a semiprime right Goldie ring R with an automorphism α is weak α -skew Armendariz if and only if it is reduced.

Acknowledgment

The authors are thankful to the referee for a careful reading of the paper and for some helpful comments and suggestions.

References

- [1] M. B. Rege and S. Chhawchharia, "Armendariz rings," *Proceedings of the Japan Academy, Series A*, vol. 73, no. 1, pp. 14–17, 1997.
- [2] E. P. Armendariz, "A note on extensions of Baer and p.p.-rings," *Journal of the Australian Mathematical Society, Series A*, vol. 18, pp. 470–473, 1974.
- [3] D. D. Anderson and V. Camillo, "Armendariz rings and Gaussian rings," *Communications in Algebra*, vol. 26, no. 7, pp. 2265–2272, 1998.
- [4] E. Hashemi and A. Moussavi, "Polynomial extensions of quasi-Baer rings," *Acta Mathematica Hungarica*, vol. 107, no. 3, pp. 207–224, 2005.
- [5] Y. Hirano, "On annihilator ideals of a polynomial ring over a noncommutative ring," *Journal of Pure and Applied Algebra*, vol. 168, no. 1, pp. 45–52, 2002.
- [6] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, "Extensions of generalized Armendariz rings," *Algebra Colloquium*, vol. 13, no. 2, pp. 253–266, 2006.
- [7] C. Y. Hong, N. K. Kim, and T. K. Kwak, "On skew Armendariz rings," *Communications in Algebra*, vol. 31, no. 1, pp. 103–122, 2003.

- [8] C. Huh, Y. Lee, and A. Smoktunowicz, “Armendariz rings and semicommutative rings,” *Communications in Algebra*, vol. 30, no. 2, pp. 751–761, 2002.
- [9] N. K. Kim and Y. Lee, “Armendariz rings and reduced rings,” *Journal of Algebra*, vol. 223, no. 2, pp. 477–488, 2000.
- [10] T.-K. Lee and T.-L. Wong, “On Armendariz rings,” *Houston Journal of Mathematics*, vol. 29, no. 3, pp. 583–593, 2003.
- [11] A. Moussavi and E. Hashemi, “On (α, δ) -skew Armendariz rings,” *Journal of the Korean Mathematical Society*, vol. 42, no. 2, pp. 353–363, 2005.
- [12] C. Y. Hong, N. K. Kim, and T. K. Kwak, “Ore extensions of Baer and p.p.-rings,” *Journal of Pure and Applied Algebra*, vol. 151, no. 3, pp. 215–226, 2000.
- [13] A. Moussavi and E. Hashemi, “Semiprime skew polynomial rings,” *Scientiae Mathematicae Japonicae*, vol. 64, no. 1, pp. 91–95, 2006.

A. R. Nasr-Isfahani: Department of Mathematics, Tarbiat Modares University,
P.O. Box 14115-170, Tehran, Iran
Email address: a_nasr_isfahani@yahoo.com

A. Moussavi: Department of Mathematics, Tarbiat Modares University,
P.O. Box 14115-170, Tehran, Iran
Email addresses: moussavi_a5@yahoo.com; moussavi_a@modares.ac.ir

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru