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Received 31 January 2007; Revised 11 May 2007; Accepted 12 June 2007

Recommended by Michael M. Tom

Let F be a distribution and let f be a locally summable function. The distribution F( f )
is defined as the neutrix limit of the sequence {Fn( f )}, where Fn(x) = F(x)∗δn(x) and
{δn(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac
delta-function δ(x). The composition of the distributions x−sIn|x| and |x|μ is evaluated
for s= 1,2, . . . ,μ > 0 and μs �= 1,2, . . . .

Copyright © 2007 B. Jolevska-Tuneska and E. Özçaḡ. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

In the following, we let � be the space of infinitely differentiable functions with com-
pact support, let �(a,b) be the space of infinitely differentiable functions with support
contained in the interval (a,b), and let �′ be the space of distributions defined on �.

We define the locally summable functions xλ+, xλ−, xλ+ lnx+, xλ− lnx−, |x|λ, and |x|λ ln|x|
for λ >−1 (see [1]) by

xλ+ =
⎧
⎨

⎩

xλ, x > 0,

0, x < 0,
xλ− =

⎧
⎨

⎩

|x|λ, x < 0,

0, x > 0,

xλ+ lnx+ =
⎧
⎨

⎩

xλ lnx, x > 0,

0, x < 0,
xλ− lnx− =

⎧
⎨

⎩

|x|λ ln|x|, x < 0,

0, x > 0,

|x|λ = xλ+ + xλ−, |x|λ ln|x| = xλ+ lnx+ + xλ− lnx−.

(1)

The distributions xλ+ and xλ− are then defined inductively for λ <−1 and λ �= −2,−3, . . . by

(
xλ+
)′ = λxλ−1

+ ,
(
xλ−
)′ = −λxλ−1

− . (2)
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It follows that if r is a positive integer and −r− 1 < λ <−r, then

〈
xλ+,ϕ(x)

〉=
∫∞

0
xλ
[

ϕ(x)−
r−1∑

k=0

ϕ(k)(0)
k!

xk
]

dx,

〈
xλ−,ϕ(x)

〉=
∫ 0

−∞
|x|λ

[

ϕ(x)−
r−1∑

k=0

ϕ(k)(0)
k!

xk
]

dx

(3)

for arbitrary ϕ in �. In particular, if ϕ has its support contained in the interval [−1,1],
then

〈
xλ+,ϕ(x)

〉=
∫ 1

0
xλ
[

ϕ(x)−
r−1∑

k=0

ϕ(k)(0)
k!

xk
]

dx+
r−1∑

k=0

ϕ(k)(0)
k!(λ+ k+ 1)

,

〈
xλ−,ϕ(x)

〉=
∫ 0

−1
|x|λ

[

ϕ(x)−
r−1∑

k=0

ϕ(k)(0)
k!

xk
]

dx+
r−1∑

k=0

(−1)kϕ(k)(0)
k!(λ+ k+ 1)

,

(4)

〈|x|λ,ϕ(x)
〉=

∫ 1

−1
|x|λ

[

ϕ(x)−
r−1∑

k=0

ϕ(k)(0)
k!

xk
]

dx+
r−1∑

k=0

[
1 + (−1)k

]
ϕ(k)(0)

k!(λ+ k+ 1)
,

〈|x|λ ln|x|,ϕ(x)
〉=

∫ 1

−1
|x|λ ln|x|

[

ϕ(x)−
r−1∑

k=1

ϕ(k)(0)
k!

xk
]

dx+
r−1∑

k=0

[
1 + (−1)k

]
ϕ(k)(0)

k!(λ+ k+ 1)2

(5)

if −r− 1 < λ <−r.
We define the distribution x−1 ln|x| by

x−1 ln|x| = 1
2

(
ln2 |x|)′, (6)

and we define the distribution x−r−1 ln|x| inductively by

x−r−1 ln|x| = x−r−1− (x−r ln|x|)′
r

(7)

for r = 1,2, . . . . It follows by induction that

x−r−1 ln|x| = φ(r)x−r−1 +
(−1)r

(
x−1 ln|x|)(r)

r!
= φ(r)x−r−1 +

(−1)r
(

ln2 |x|)(r+1)

2r!
, (8)

where

φ(r)=

⎧
⎪⎪⎨

⎪⎪⎩

r∑

i=1

i−1, r = 1,2, . . . ,

0, r = 0.

(9)

In the following, we let N be the neutrix, see [2], having domain N ′ the positive in-
tegers and range N ′′ the real numbers, with negligible functions which are finite linear
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sums of the functions

nλ lnr−1n, lnr n, λ > 0, r = 1,2, . . . (10)

as well as all functions which converge to zero in the usual sense as n tends to infinity.
Now let ρ(x) be an infinitely differentiable function having the following properties:

(i) ρ(x)= 0 for |x| ≥ 1,
(ii) ρ(x)≥ 0,

(iii) ρ(x)= ρ(−x),
(iv)

∫ 1
−1 ρ(x)dx = 1.

Putting δn(x) = nρ(nx) for n = 1,2, . . . , it follows that {δn(x)} is a regular sequence of
infinitely differentiable functions converging to the Dirac delta-function δ(x).

Next, for an arbitrary distribution f in �′, we define

fn(x)= ( f ∗ δn
)
(x)= 〈 f (t),δn(x− t)〉 (11)

for n = 1,2, . . . . It follows that { fn(x)} is a regular sequence of infinitely differentiable
functions converging to the distribution f (x).

The following definition was given in [3].

Definition 1. Let F be a distribution and let f be a locally summable function. Say that
the distribution F( f (x)) exists and is equal to h on the open interval (a,b) if

N− lim
n→∞

∫∞

−∞
Fn
(
f (x)

)
ϕ(x)dx = 〈h(x),ϕ(x)

〉
(12)

for all test functions ϕ with compact support contained in (a,b).

The following theorems were proved in [4, 5] and [6], respectively.

Theorem 2. The distribution (xr)−s exists and

(
xr
)−s = x−rs (13)

for r,s= 1,2, . . . .

Theorem 3. The distribution (|x|μ)−s exists and

(|x|μ)−s = |x|−μs (14)

for s= 1,2, . . . , μ > 0 and μs �= 1,2, . . . .

Theorem 4. If Fs(x) denotes the distribution x−s ln|x|, then the distribution Fs(xr) exists
and

Fs
(
xr
)= rFrs(x) (15)

for r,s= 1,2, . . . .

We need the following lemma which can be easily proved by induction.
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Lemma 5.

∫ 1

−1
viρ(r)(v)dv =

⎧
⎨

⎩

0, 0≤ i < r,
(−1)rr!, i= r (16)

for r = 0,1,2, . . . .

We now prove the following theorem on the composition of distributions in the neu-
trix setting.

Theorem 6. If Fs(x) denotes the distribution x−s ln|x|, then the distribution Fs(|x|μ) exists
and

Fs
(|x|μ)= μ|x|−μs ln|x| (17)

for s= 1,2, . . . , μ > 0 and μs �= 1,2, . . . .

Proof. We will suppose that r < μs < r + 1 for some positive integer r. We put

[
Fs
(|x|μ)]n = Fs

(|x|μ)∗ δn(x)

= φ(s− 1)
[(|x|μ)−s]n−

(−1)s

2(s− 1)!

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dt,
(18)

and note that

∫ 1

−1
xk
∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

=
⎧
⎪⎨

⎪⎩

0, k odd,

2
∫ 1

0
xk
∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx, k even.

(19)

Then

∫ 1

0
xk
∫ 1/n

−1/n
ln2∣∣xμ− t∣∣δ(s)

n (t)dtdx

=
∫ 1/n

−1/n
δ(s)
n (t)

∫ n−1/μ

0
xk ln2∣∣xμ− t∣∣dxdt

+
∫ 1/n

−1/n
δ(s)
n (t)

∫ 1

n−1/μ
xk ln2∣∣xμ− t∣∣dxdt

= n(μs−k−1)/μ

μ

∫ 1

−1
ρ(s)(v)

∫ 1

0
u−(μ−k−1)/μ ln2

∣
∣
∣
∣
u− v
n

∣
∣
∣
∣dudv

+
n(μs−k−1)/μ

μ

∫ 1

−1
ρ(s)(v)

∫ n

1
u−(μ−k−1)/μ ln2

∣
∣
∣
∣
u− v
n

∣
∣
∣
∣dudv

= I1 + I2,

(20)

on using the substitutions u= nxμ and v = nt.
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It is easily seen that

N− lim
n→∞ I1 = 0 (21)

for k = 0,1, . . . ,r− 1.
Now,

I2 = n(μs−k−1)/μ

μ

∫ 1

−1
ρ(s)(v)

∫ n

1
u−(μ−k−1)/μ[ ln

∣
∣
∣
∣

1− v
u

∣
∣
∣
∣+ lnu− lnn

]2
dudv

= n(μs−k−1)/μ

μ

∫ 1

−1
ρ(s)(v)

∫ n

1
u−(μ−k−1)/μ ln2

∣
∣
∣
∣

1− v
u

∣
∣
∣
∣dudv

+
2n(μs−k−1)/μ

μ

∫ 1

−1
ρ(s)(v)

∫ n

1
u−(μ−k−1)/μ lnu ln

∣
∣
∣
∣

1− v
u

∣
∣
∣
∣dudv

− 2n(μs−k−1)/μ

μ
lnn

∫ 1

−1
ρ(s)(v)

∫ n

1
u−(μ−k−1)/μ ln

∣
∣
∣
∣

1− v
u

∣
∣
∣
∣dudv

= J1 + J2 + J3,

(22)

since
∫ 1
−1 ρ

(s)(v)dv = 0 for s= 1,2, . . . , by Lemma 5.

It is easily seen that

N− lim
n→∞ J3 = 0. (23)

Next, we have

J1 = n(μs−k−1)/μ

μ

∫ 1

−1
ρ(s)(v)

∫ n

1
u−(μ−k−1)/μ

( ∞∑

i=1

vi

iui

)2

dudv

= 2n(μs−k−1)/μ

μ

∞∑

i=1

φ(i)
i+ 1

∫ 1

−1
vi+1ρ(s)(v)

∫ n

1
u(k+1)/μ−i−2dudv

= 2n(μs−k−1)/μ

μ

∞∑

i=1

φ(i)
i+ 1

μ
(
n(k+1)/μ−i−1− 1

)

k−μ(i+ 1) + 1

∫ 1

−1
vi+1ρ(s)(v)dv,

(24)

and it follows that

N− lim
n→∞ J1 = 2φ(s− 1)

s(μs− k− 1)

∫ 1

−1
vsρ(s)(v)dv = 2(−1)sφ(s− 1)(s− 1)!

μs− k− 1
, (25)

on using Lemma 5, for k = 0,1, . . . ,r− 1.
Finally,

J2 = 2n(μs−k−1)/μ

μ

∞∑

i=1

1
i

∫ 1

−1
viρ(s)(v)

∫ n

1
u(k+1)/μ−i−1 lnududv

= 2
∞∑

i=1

1
i

[
ns−i lnn
k−μi+ 1

− μ
(
ns−i−n(μs−k−1)/μ

)

(k−μi+ 1)2

]∫ 1

−1
viρ(s)(v)dv,

(26)
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and it follows that

N− lim
n→∞ J2 = 2μ(−1)s−1(s− 1)!

(μs− k− 1)2
, (27)

on using Lemma 5, for k = 0,1, . . . ,r− 1.
Hence,

N− lim
n→∞

∫ 1

0
xk
∫ 1/n

−1/n
ln2∣∣xμ− t∣∣δ(s)

n (t)dtdx

= 2(−1)s(s− 1)!
[
φ(s− 1)
μs− k− 1

− μ

(μs− k− 1)2

] (28)

for k = 0,1, . . . ,r− 1, on using (19) to (23). Then using (19) and (25), we see that

N− lim
n→∞

∫ 1

−1
xk
∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

= 2(−1)s(s− 1)!
[
φ(s− 1)
μs− k− 1

− μ

(μs− k− 1)2

]
(
(−1)k + 1

)
(29)

for k = 0,1, . . . ,r− 1.
When k = r, (18) still holds, but now we have

I1 = n(μs−r−1)/μ

μ

∫ 1

−1
ρ(s)(v)

∫ 1

0
u−(μ−r−1)/μ ln2

∣
∣
∣
∣
u− v
n

∣
∣
∣
∣dudv, (30)

and it follows that for any continuous function ψ

lim
n→∞

∫ n−1/μ

0
xr
∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtψ(x)dx = 0. (31)

Similarly,

lim
n→∞

∫ 0

−n−1/μ
xr
∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtψ(x)dx = 0. (32)

Next, when |x|μ ≥ 1/n, we have
∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dt = ns
∫ 1

−1
ln2∣∣|x|μ− v/n∣∣ρ(s)(v)dv

= ns
∫ 1

−1

[

ln|x|μ−
∞∑

i=1

vi

ini|x|μi
]2

ρ(s)(v)dv

=
∞∑

i=s

−2ln|x|μ + 2φ(i− 1)
ini−s|x|μi

∫ 1

−1
viρ(s)(v)dv.

(33)

It follows that
∣
∣
∣
∣
∣

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dt

∣
∣
∣
∣
∣
≤

∞∑

i=s

(
4μ ln|x|+ 4φ(i− 1)

)
Ks

ini−s|x|μi (34)
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for s= 1,2, . . . , where

Ks =
∫ 1

−1

∣
∣ρ(s)(v)

∣
∣dv. (35)

If now n−1/μ < η < 1, then

∫ η

n−1/μ
xr
∣
∣
∣
∣
∣

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)

∣
∣
∣
∣
∣
dtdx

≤
∞∑

i=s

4Ksμ
ini−s

∫ η

n−1/μ
xr−μi lnxdx+

∞∑

i=s

4Ksφ(s− 1)
ini−s

∫ η

n−1/μ
xr−μi dx

=
∞∑

i=s

4Ksμ
ini−s

[
ηr+1−μi lnη−ni−(r+1)/μ lnn−1/μ

r + 1−μi − ηr+1−μi−ni−(r+1)/μ

(r + 1−μi)2

]

+
∞∑

i=s

4Ksφ(s− 1)
ini−s

ηr+1−μi−ni−(r+1)/μ

r + 1−μi .

(36)

It follows that

lim
n→∞

∫ η

n−1/μ
xr
∣
∣
∣
∣
∣

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)

∣
∣
∣
∣
∣
dtdx =O(η lnη) (37)

for s= 1,2, . . . .
Thus, if ψ is a continuous function, then

lim
n→∞

∣
∣
∣
∣
∣

∫ η

n−1/μ
xrψ(x)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

∣
∣
∣
∣
∣
=O(η lnη) (38)

for s= 1,2, . . . .
Similarly,

lim
n→∞

∣
∣
∣
∣
∣

∫ −n−1/μ

−η
xrψ(x)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)

∣
∣
∣
∣
∣
dtdx =O(η lnη) (39)

for s= 1,2, . . . .
Now let ϕ(x) be an arbitrary function in � with support contained in the interval

[−1,1]. By Taylor’s theorem, we have

ϕ(x)=
r−1∑

k=0

xk

k!
ϕ(k)(0) +

xr

r!
ϕ(r)(ξx), (40)
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where 0 < ξ < 1. Then

〈∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dt,ϕ(x)

〉

=
∫ 1

−1
ϕ(x)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

=
r−1∑

k=0

ϕ(k)(0)
k!

∫ 1

−1
xk
∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

+
∫ n−1/μ

−n−1/μ

xr

r!
ϕ(r)(ξx)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

+
∫ η

n−1/μ

xr

r!
ϕ(r)(ξx)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

+
∫ 1

η

xr

r!
ϕ(r)(ξx)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

+
∫ −n−1/μ

−η
xr

r!
ϕ(r)(ξx)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx

+
∫ −η

−1

xr

r!
ϕ(r)(ξx)

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dtdx.

(41)

Using equations (27) to (32) and noting that on the intervals [−1,−η] and [η,1],

lim
n→∞

(−1)s

2(s− 1)!

∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dt = φ(s− 1)|x|−μs−μ|x|−μs ln|x|. (42)

Since |x|μ and Fs(x) are continuous on these intervals, it follows that

N− lim
n→∞

(−1)s

2(s− 1)!

〈∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dt,ϕ(x)

〉

=
r−1∑

k=0

[
φ(s− 1)
μs− k− 1

− μ

(μs− k− 1)2

]
ϕ(k)(0)
k!

(
(−1)k + 1

)

+O
(
η| lnη|)+

∫ 1

η

xr−μs

r!
ϕ(r)(ξx)

(
φ(s− 1)−μ lnx

)
dx

+
∫ −η

−1

|x|r−μs
r!

ϕ(r)(ξx)
(
φ(s− 1)−μ ln|x|)dx.

(43)
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Since η can be made arbitrarily small, it follows that

N− lim
n→∞

(−1)s

2(s− 1)!

〈∫ 1/n

−1/n
ln2∣∣|x|μ− t∣∣δ(s)

n (t)dt,ϕ(x)

〉

=
r−1∑

k=0

[
φ(s− 1)
μs− k− 1

− μ

(μs− k− 1)2

]
ϕ(k)(0)
k!

(
(−1)k + 1

)

+φ(s− 1)
∫ 1

−1
|x|−μs

[

ϕ(x)−
r−1∑

k=0

xk

k!
ϕ(k)(0)

]

dx

−μ
∫ 1

−1
|x|−μs ln|x|

[

ϕ(x)−
r−1∑

k=0

xk

k!
ϕ(k)(0)

]

dx

= φ(s− 1)
〈|x|−μs,ϕ(x)

〉−μ〈|x|−μs ln|x|,ϕ(x)
〉

(44)

on using (5). This proves (15) on the interval [−1,1]. However, (15) clearly holds on any
interval not containing the origin, and the proof is complete. �
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As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
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to demonstrate how it can be used effectively in a financial
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algorithm, and fuzzy models) can be used to develop intelli-
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