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Let R be a ring and M a right R-module. It is shown that (1) §(M) is Noetherian if and
only if M satisfies ACC on §-small submodules; (2) §(M) is Artinian if and only if M
satisfies DCC on §-small submodules; (3) M is Artinian if and only if M is an amply 6-
supplemented module and satisfies DCC on §-supplement submodules and on §-small
submodules.
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1. Introduction and preliminaries

In this note, all rings are associative with identity and all modules are unital right modules
unless otherwise specified.

Let R be a ring and M a module. The concept of §-small submodules was introduced
by Zhou in [1]. Motivated by [2—4], we study modules with ACC (resp., DCC) on §-small
submodules and prove that §(M) is Noetherian (resp., Artinian) if and only if M satisfies
ACC (resp., DCC) on §-small submodules in Section 2. In Section 3, we give the con-
cepts of (amply) §-supplemented modules via §-small submodules. It is shown that M is
Artinian if and only if M is an amply §-supplemented module and satisfies DCC on §-
supplement submodules and on §-small submodules. In Section 4, we introduce the con-
cept of §-semiperfect modules and investigate the connections between §-supplemented
modules and §-semiperfect modules.

Let M be a module and N < M. N is said to be §-small in M (see [5]) if, whenever
N+X =M with M/X singular, we have X = M. §(M) =Rej,, () =N{N < M | M/N € p},
where § be the class of all singular simple modules. M is called an amply supplemented
module if for any two submodules A and B of M with A+ B = M, B contains a supple-
ment of A. M is called a supplemented module if for each submodule A of M there exists
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a submodule B of M such that M = A+ B and A N B < B. The notions which are not
explained here will be found in [6].

LemMa 1.1 (see [7, Proposition 5.20]). Suppose that Ky < My <M, K, < M, < M, and
M =M, ®&M,. Then K, & K, <, My @ M, if and only if K <, M and K, <, M.

2. Modules with chain conditions on §-small submodules

In this section, we study modules with chain conditions on §-small submodules and
prove that §(M) is Noetherian (resp., Artinian) if and only if M satisfies ACC (resp.,
DCC) on §-small submodules. Let us start with the following.

LEmMmA 2.1 (see [1, Lemma 1.3]). Let M be a module.
(i) For submodules N, K, L of M with K < N,
(1) N <s M ifand only if K <5 M and N/K <5 M/K;
(2) N+ L <sMifandonly if N <5 M and L <5 M.
(ii) If K <s M and f : M — N is a homomorphism, then f(K) <s N. In particular, if
K <sM < N, then K <4 N.
(iii) Let Ky <My <M, Ky <My, <M, and M = M; ® M,. Then K1 & K, <5 My & M,
if and only if Ky <5 My and Ky <5 M.

LEmMmA 2.2 (see [1, Lemma 1.5]). Let M and N be modules.
(1) §(M) =Z{L <M | L is a §-small submodule of M }.
(2) If f : M — N is a homomorphism, then f(6(M)) < 6(N).
(3) If M = D M, then (M) = Dje; 6(M;).
(4) If every proper submodule of M is contained in a maximal submodule of M, then
O0(M) is the unique largest §-small submodule of M.

THEOREM 2.3. Let M be a module. Then §(M) is Noetherian if and only if M satisfies ACC
on §-small submodules.

Proof. “=” It is clear by Lemma 2.2.

“«” Suppose that §(M) is not Noetherian. Let A} < A, < - - - be an infinite ascending
chain of submodules of §(M). Let a; € A; and a; € Aj — A;_, for each j > 1. For any
k>1,let N, = Z’;zlajR. Then Ny is finitely generated and Ny < §(M). Hence Ny <5 M.
It is clear that N} < N, < - - - and so M fails to satisfy ACC on §-small submodules. This
completes the proof. O

Recall that a module M has finite uniform dimension k, for some nonnegative k, if M
does not contain any infinite direct sum of nonzero submodules and k is the maximal
number of summands in a direct sum of nonzero submodules of M. In this case, we call
k the uniform dimension of M, and write udimM = k.

ProrosITION 2.4. Let M be a module. Then the following statements are equivalent.
(1) (M) has finite uniform dimension.
(2) Every §-small submodule of M has finite uniform dimension and there exists a pos-
itive integer k such that udimN < k for any N <5 M.
(3) M does not contain an infinite direct sum of nonzero §-small submodules.
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Proof. “(1)=(2)” It is obvious because udim N < udim (M) for any N <5 M.

“(2)=(3)” Let Ny ® N, @ - - - be an infinite direct sum of nonzero §-small submodules
of M. Then N1 @ - - - ® Ni, is a §-small submodule of M and udim(N; & -+ - ® Nj4q) =
k + 1. This is a contradiction.

“(3)=>(1)” Let N; ® N, & - - - be an infinite direct sum of nonzero submodules of
O0(M). For every i > 1, let n; be a nonzero element of N;. Then n;R <5 M. Thus n, R+
mR+ - - - is an infinite direct sum of nonzero §-small submodules of M. This is a con-
tradiction and so §(M) has finite uniform dimension. O

THEOREM 2.5. Let M be a module. Then the following statements are equivalent.
(1) 6(M) is Artinian.
(2) Every &-small submodule of M is Artinian.
(3) M satisfies DCC on §-small submodules.

Proof. “(1)=(2)=(3)” They are clear.

“(3)=>(1)” It suffices to prove that any factor module of §(M) is finitely cogenerated.
If there exists a factor module of §(M) that is not finitely cogenerated, then the set Q
of submodules of §(M), such that §(M)/L is not finitely cogenerated, is nonempty. Let
{Ly: A € A} be any chain of submodules in Q. Let L = (e Ly. If LEQ, then §(M)/L is
finitely cogenerated and hence L = L, for some A € A. Thus L € Q. By Zorn’s lemma, Q
has a minimal member A. O

Let N be a finitely generated submodule of §(M). Then N is a §-small submodule of M
and hence Artinian by hypothesis. Thus §(M) is locally Artinian. Now let x € §(M), xEA.
Then xR is Artinian and (xR+ A)/A ~ xR/(xRN A). So (xR+ A)/A is a nonzero Artinian
module and hence §(M)/A has essential socle. Let S denote the submodule of §(M), con-
taining A, such that $/A is the socle of §(M)/A. Thus S/A is not finitely generated by [7,
Proposition 10.7].

Next we show that A <5 M. If M = A + B for some B < M and M/B is singular, then
S = A+ (SN B). Suppose that AN B # A. Then §(M)/(A N B) is finitely cogenerated by
the choice of A. But YA =(A+ (SN B))/A ~(SNB)/(ANB) < Soc(6§(M)/(AnB)) and
hence S/A is finitely generated. This is a contradiction. Thus A = A N B < B and we have
M=A+B=B.S0oA <sM.

Now suppose that M = S+ V of some submodule V of M and M/V is singular. Then
M/(A+V)=(S+V)/(A+V)=S(A+(SNV)). Thus M/(A+ V) is semisimple. If M #
A+ V, then there exists a maximal submodule W of M such that A+ V < W. But S <
0(M) < W since M/W is a singular simple module and this gives the contradiction M =
W.Thus M = A+ V,hence M = V since A <§ M. Thus S <5 M and hence S is Artinian
by hypothesis. It follows that S/A is Artinian, and, in particular, S/A is finitely generated.
This is a contradiction. Thus 6 (M) is Artinian.

Example 2.6. Let R = Z, p is a prime and M = Z(,~), the Priifer p-group, then every
proper submodule of M is Noetherian, but M is not Neotherian. Indeed, every proper
submodule of M is §-small. Moreover, M = §(M). Thus every §-small submodule of M
is Noetherian, but §(M) is not Noetherian.
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CoROLLARY 2.7. Let R be a ring which satisfies DCC on §-small right ideals. Then R satisfies
ACC on §-small right ideals.

Let N < M. N is called a §-semimaximal submodule of M if N = (N, L; with M/L;
singular simple for any i = 1,...,n.

ProrosiTioN 2.8. Let M be a module. Then the following statements are equivalent.
(1) M is Artinian.
(2) M satisfies DCC on §-small submodules and on §-semimaximal submodules.
(3) M satisfies DCC on §-small submodules and §(M) is a §-semimaximal submodule.

Proof. “(1)=(2)” Tt is clear.

“(2)=(3)” Suppose that M satisfies DCC on §-semimaximal submodules. Let N be a
minimal §-semimaximal submodule of M. Clearly §(M) < N.If M = §(M), then §(M) =
N. Suppose that M # §(M). If P is a maximal submodule of M with M/P singular, then
N N P is a §-semimaximal submodule of M and hence N = N NP, so that N < P. It
follows that N < §(M). Hence N = §(M). Thus §(M) is a §-semimaximal submodule of
M.

“(3)=(1)” It is clear §(M) is Artinian. If M = §(M), then M is Artinian. Suppose
that M # 6(M). Then §(M) =Py NPy N - - - N Py, where M/P; is singular simple for any
i=1,...,n. It follows that M/§(M) embeds in the finitely generated semisimple module
M/Py @ - - - ® M/P,. Hence M/8(M) is Artinian and so M is Artinian. a

3. §-supplemented modules

Let M be a module. Let N and L be submodules of M. N is called a §-supplement
of Lif M=N+Land NNL <3 N. N is called a §-supplement submodule if N is a
d-supplement of some submodule of M. M is called a §-supplemented module if ev-
ery submodule of M has a §-supplement. On the other hand, M is called an amply J-
supplemented module if for any submodules A, B of M with M = A + B there exists a §-
supplement P of A such that P < B. Clearly, supplemented modules are §-supplemented
modules and every amply §-supplemented module is §-supplemented. But the converses
are not true.

LemMa 3.1. Let M be a §-supplemented module. Then
(1) M/8(M) is semisimple;
(2) L a submodule of M with LN §(M) = 0, then L is semisimple.

Proof. (1) Let N be any submodule of M containing §(M). Then there exists a §-supple-
ment K of N in M, that is, M = N+ K and N N K <3 K. Thus M/6(M) = N/6(M) &
(K+6(M))/6(M), and so every submodule of M/§(M) is a direct summand. Therefore
M/5(M) is semisimple.

(2) Itis clear by (1), since L= L& 6(M)/8(M) < M/§(M). O

ProrosiTioN 3.2. Let M be an amply §-supplemented module. Then homomorphic images
are amply §-supplemented modules.

Proof. Assume M is amply §-supplemented and f : M — N is any epimorphism. We want
to show that N is amply §-supplemented. Let N = A+ B. Then M = f~!(A) + f~(B).
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Since M is amply §-supplemented, there exists a submodule X of M such that M =
FHA)+X, f YA NX <X < fI(B).Now,N=A+ f(X)andAn f(X) = f(f1(A)n
X) <5 f(X). Clearly f(X) <B. O

ProrosiTiON 3.3. Let M be a §-supplemented module. Then M = N & L for some semisim-
ple module N and some module L with §(L) <, L.

Proof. For §(M), there exists N < M such that NN §(M) = 0 and N @ §(M) <, M. Since
M is a §-supplemented module, there exists L < M suchthat N+L=Mand NNL < L.
Since NNL=NN(NNL)<NNJ§L)<NnNJM)=0,M=N®oL. By Lemma 3.1, N
is semisimple. Thus §(M) = §(N) ® 6(L). Since N@ §(L) <. M =Ne&L, §(L) <. L by
Lemma 1.1. This completes the proof. O

LeEmMMA 3.4. Let My, U < M and let M, be a §-supplemented module. If M, + U has a -
supplement in M, then so does U.

Proof. Since M, + U has a §-supplement in M, there exists X < M such that X + (M, +
U)=Mand X n (M, +U) <4 X. For (X + U) N My, since M is a §-supplemented mod-
ule, there exists Y < M; such that ( X+ U)NnM;+Y =M;and (X+U)NY <5 Y. Thus
wehave X+U+Y =Mand (X+U)NY <57, thatis, Y is a §-supplement of X + U
in M. Next, we will show that X + Y is a §-supplement of U in M. It is clear that (X +
Y)+ U = M, so it suffices to show that (X +Y)NU <5 X+Y.Since Y+U < M; + U,
XNn(Y+U)<sXNn(M+U) <s X. Thus X+Y)NnU<XN(Y+U)+YNn(X+U) <5
X +Y by Lemma 2.1, as required. O

ProrosiTioN 3.5. Let My and M, be §-supplemented modules. If M = My + M,, then M is
a §-supplemented module.

Proof. Let U be a submodule of M. Since M, + M, + U = M trivially has a §-supplement
in M, M, + U has a §-supplement in M by Lemma 3.4. Thus U has a §-supplement in M
by Lemma 3.4 again. So M is a §-supplemented module. O

ProprosITION 3.6. If M is a §-supplemented module, then every finitely M-generated mod-
ule is a §-supplemented module.

Proof. From Proposition 3.5, we know that every finite sum of §-supplemented mod-
ules is a §-supplemented module. Next we will show that every factor module of a §-
supplemented module is again a §-supplemented module.

Let M be a §-supplemented module and M/N any factor module of M. For any sub-
module L of M containing N, since M is a §-supplemented module, there exists K < M
suchthat L+ K=Mand LN K <5 K. Thus M/N = L/N + (N + K)/N and (L/N) n ((N +
K)/N)=(N+(LnK))/N <5 (N +K)/N, thatis, (N + K)/N is a §-supplement of L/N in
M/N, as required. O

ProrosITION 3.7. Let M be a module. If every submodule of M is a §-supplemented module,
then M is an amply 8-supplemented module.

Proof. Let LN < M and M = N + L. By assumption, there is H < L such that (LN N) +
H=Land LNN)NH=NNH <sH.Thus H+ N >H+ (LN N) =L and hence H +
N > (N +L) =M. Therefore, M = H + N as desired. O
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CoROLLARY 3.8. Let R be any ring. Then the following statements are equivalent.
(1) Every module is an amply §-supplemented module.
(2) Every module is a §-supplemented module.

A module M is said to be m-projective if for every two submodules U, V of M with
U+ V = M there exists f € End(M) withIm f < Uand Im(1 - f) < V.

THEOREM 3.9. Let M be a module. If M is a m-projective §-supplemented module, then M
is an amply §-supplemented module.

Proof. Let A, B be submodules of M such that M = A + B. Since M is -projective, there
exists an endomorphism e of M such that e(M) < A and (1 — e)(M) < B. Note that (1 —
e)(A) < A. Let C be a §-supplement of A in M. Then M = e(M) + (1 —e)(M) = e(M) +
(1-e)(A+C)<A+(1-¢)(C)<M,sothat M =A+(1—e)(C). Note that (1 —e)(C) is
a submodule of B. Let ye An (1 —¢)(C). Then y € A and y = (1 —e)(x) = x — e(x) for
somex € C.Nextx = y+e(x) € A,sothat y € (1 —e)(An C). But An C < C gives that
ANn(1-e)(C)=(10-e)(ANC) <5 (1 —e)(C). Thus (1 —e)(C) is a §-supplement of A
in M. It follows that M is an amply §-supplemented module. O

TaeoreM 3.10. Let M be a module. Then M is Artinian if and only if M is an amply
O-supplemented module and satisfies DCC on §-supplement submodules and on §-small
submodules.

Proof. The necessity is clear. Conversely, suppose that M is an amply §-supplemented
module which satisfies DCC on §-supplement submodules and on §-small submodules.
Then §(M) is Artinian by Theorem 2.5. Next, it suffices to show that M/§(M) is Artinian.
It is clear that M/§(M) is semisimple by Lemma 3.1.

Now suppose that §(M) < N; <N, < N3 < - - - is an ascending chain of submodules
of M. Because M is an amply &-supplemented module, there exists a descending chain
of submodules K; > K, > - - - such that K; is a §-supplement of N; in M for each i > 1.
By hypothesis, there exists a positive integer ¢ such that K; = Ky1j = K4z = - - - . Because
M/S(M) = Ni/6(M) & (K; + 6(M))/6(M) for all i > ¢, it follows that Ny = Npyy = - - -.
Thus M/§(M) is Noetherian, and hence finitely generated. So M/§(M) is Artinian, as
desired. O

Example 3.11. For Zz, the only §-supplement submodules are 0 and Z and the only §-
small submodule is 0, but Z7 is not Artinian.

COROLLARY 3.12. Let M be a finitely generated &-supplemented module. Then M is Artinian
if and only if M satisfies DCC on §-small submodules.

Proof. “<” Since M/§(M) is semisimple and M is finitely generated, M/S§(M) is Artinian.
Now that M satisfies DCC on §-small submodules, §(M) is Artinian by Theorem 2.5.
Thus M is Artinian.

“=” It is clear. O

Remark 3.13. Let Rbe a ring. If Ry is an amply §-supplemented module, then R is a right
Artinian ring if and only if R satisfies DCC on §-small right ideals. Thus a right perfect
ring which satisfies DCC on §-small right ideals is a right Artinian ring.
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Let us end this section with the following.

ProrosriTioN 3.14. If M is a §-supplemented module and satisfies DCC on §-small sub-
modules, then so does M/A for any submodule A of M.

Proof. Let A be any submodule of M and B;/A < By/A < - - - where each Bi/A <5 M/A.
Let C be a §-supplement of A in M. Then M/A = (A + C)/A = C/A n C. Since Bi/A is
d-small in M/A, Bi/A = D;/A N C < C/A N C for some D;. Next we prove that D; <5 M.
Let D; + E = M with M/E singular. Then (D; + (E+A N C))/An C = M/An C. Hence
E+ANnC=M and E = M. Thus we have D; < D, < - - -. Since M satisfies ACC on §-
small submodules, there exists n such that Dy = Dy, for all k > n. Thus Bi/A = Bi:1/A
for all k = n. Therefore M/A satisfies ACC on §-small submodules, as required. O

4. §-semiperfect modules

In this section, we introduce the concept of §-semiperfect modules and investigate the
interconnections between §-supplemented modules and §-semiperfect modules. Let P
and M be modules, we call an epimorphism f: P — M a §-cover in case Ker f <5 P. A
d-cover f : P — M is called a projective §-cover in case P is a projective module.

Definition 4.1. A module M is called a §-semiperfect module if any homomorphic image
of M has a projective §-cover.

ProrosiTioN 4.2. If f: M — N is an epimorphism with Ker f < §(M), then §(N) =
f(6(M)).

Proof. It follows from [7, Corollary 8.17]. O
LemMa 4.3. Ifboth f :P — M and g : M — N are §-covers, then gf : P — N is a §-cover.

Proof. Ifboth f:P — M and g: M — N are §-covers, then Ker f <5 P and Kerg <5 M.
We want to show that Kergf <5 P. Let P = Kerg f + L with P/L singular. Then M =
Kerg + f(L). Since M/ f(L) is singular, M = f(L). This implies that P = L since P/L is
singular and Ker f < P, as desired. O

LemMma 4.4. Ifeach f;: P;— M, (i=1,2,...,n) isa 8-cover, then ®_, fi: B_, Pi— B, M;
is a §-cover.

Proof. It is straightforward. O

THEOREM 4.5. Let M be a module and U < M. Then the following statements are equivalent.
(1) M/U has a projective §-cover.
(2)IfV<Mand M =U+YV, then U has a §-supplement U’" <V such that U’ has a
projective §-cover.
(3) U has a §-supplement U’ which has a projective §-cover.

Proof. “(1)=>(2)” Let f : P — M/U be a projective §-cover. Since M =U+V, g:V —
M/U via v — v+ U is an epimorphism. Since P is projective, there is a homomorphism
h:P — V such that f = gh. It is easy to see that M = U + h(P), where h(P) < V. Now
Ker f < P, so we have U N h(P) = h(Ker f) <5 h(P) and h(P) is a §-supplement of U in
M. Since Kerh = Ker f <5 P, h: P — h(P) is a projective §-cover.
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“(2)=(3)” It is obvious.

“(3)=>(1)” Let f : P — U’ be a projective §-cover. Since U’ is a §-supplement of U,
the natural epimorphism g: U’ — U/UNU’ = U+ U'/U = M/U is a §-cover. Hence
hgf : P — M/U is a projective §-cover by Lemma 4.3, where h: U'/UNU' = U+ U'/U is
an isomorphism O

THEOREM 4.6. Let M be a module. Then the following statements are equivalent.
(1) M is §-semiperfect.
(2) M is amply §-supplemented by §-supplements which have projective §-covers.
(3) M is §-supplemented by §-supplements which have projective §-covers.

Proof. Itis clear from Theorem 4.5. O

Example 4.7. A §-semiperfect module is not necessarily semiperfect. Let Q = 12, F;,
where each F; = Z,. Let R be the subring of Q generated by @;°, F; and 1q. Then Ry
is §-semiperfect but not semiperfect. It is also seen that Ry is a §-supplemented module
but not a supplemented module (see [1, Example 4.1]).
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