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A connection between the separability and the countable chain condition of spaces with
L-property (a topological space X has L-property if for every topological space Y, sepa-
rately continuous function f : X X Y — R and open set I < R, the set f~!(I) is an F,-set)
is studied. We show that every completely regular Baire space with the L-property and
the countable chain condition is separable and constructs a nonseparable completely reg-
ular space with the L-property and the countable chain condition. This gives a negative
answer to a question of M. Burke.
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1. Introduction

A function f : X — R defined on a topological space X is called a first Baire class function
if there exists a sequence (f,),~; of continuous functions f, : X — R which converges
pointwise to f on X; and a first Lebesgue class function if f~1(G) is an F,-set for every
open set G < R. Standard reasons (see [1, page 394]) show that every first Baire class
function is a first Lebesgue class function.

Investigations of Baire and Lebesgue classifications of separately continuous functions
were started by Lebesgue in [2] and were continued in papers of many mathematicians
(see [3]).

We say that a topological space X has the B-property (the L-property) if for every topo-
logical space Y each separately continuous function f : X XY — R is a first Baire class
function (a first Lebesgue class function).

It is known [4, 5] that any topological space X has the B-property (the L-property)
if and only if the evaluation function cx : X X C,(X) — R, cx(x,y) = y(x) is a first Baire
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class function (a first Lebesgue class function), where C,(X) means the space of continu-
ous on X functions with the pointwise convergence topology.

Baire and Lebesgue classifications of separately continuous function were investigated
in [6]. In particular, it was shown in [6] that any completely regular space X with the
B-property and the countable chain condition is separable (topological space X has a
countable chain condition (CCC) if every system of disjoint open-in-X sets is at most
countable). In this connection the following question arose in [6, Problem 4.6].

Question 1. Is every completely regular space X with the L-property and the countable
chain condition a separable space?

In this paper, we show that if a space X is a Baire space, then Question 1 has a positive
answer and construct an example which gives a negative answer to the question in general
case.

2. Density of Baire spaces with the L-property

The minimal cardinal 8 > & for which any system of disjoint open in a topological space
X sets has the cardinality at most X is called a Souslin number of X and is denoted by ¢(X).
Note that the countable chain condition of X means that c¢(X) = 8. It is easy to see that
c(X) =d(X), where d(X) is the density of X.

The following result implies that for a Baire space X Question 1 has a positive answer.

THEOREM 2.1. Let X be a completely regular Baire space with the L-property. Then ¢(X) =
d(X).

Proof. Since the evaluation function cx is a first Lebesgue class function, the set E =
{(x,y) : y(x) = 0} is a Gs-set in X X Y, where Y = C,(X). Choose a sequence (W,),,
of open-in-X X Y sets W,, such that E = (,,_; W,,. Denote by y, the null-function on Y.
For every n € N and an x € X find open neighborhoods U(x,n) and V(x,#) of x and y,
in X and Y, respectively, such that U(x,n) X V(x,n) € W,.

Fix an n € N and show that there exists a set A,, € X with |A,| < ¢(X) = X such that
the open set G, = Uyeq, U(x, 1) is dense in X. Consider a system U of all open-in-X
nonempty sets U such that U € U(x,n) for some x € X and choose a maximal system
U" = U which consists of disjoint sets. It is clear that |U'| < K. For every U € U’ find an
x =x(U) € X such that U € U(x,n) and put A, = {x(U) : U € U'}. Then [A,] < |U'| <
R. Besides, it follows from the maximality of U that G, is dense in X.

Since X is a Baire space, the set Xy = (,_; G, is dense in X. For every n € N and
x € X choose a finite set B(x,n) € X such that y € V(x,n) for each y € Y with ylpu,n) =
YolB(n). Put B = U,en Uxea, B(x,n). Note that [B| < Ro - R = K.

Show that B is dense in X. Since X is a completely regular space, it is enough to prove
that y, is a unique continuous on X function which equals to 0 at every point from B.
Let y € Y be a function such that y(b) = 0 for every b € B. Fix a point x € Xj and an
integer n € N. Find a € A, such that x € U(a,n). Then B(a,n) < B implies y € V(a,n).
Therefore, (x,y) € W,.. Thus Xo X {y} < ,_; W, = E, that is, y(x) = 0 for every x € Xj.
Hence y = y, because X is dense in X.

Thus d(X) < |B| < ¢(X). Therefore, c¢(X) = d(X). O
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COROLLARY 2.2. Every completely regular Baire space with the L-property and the countable
chain condition is a separable space.

3. Nonseparable spaces with the L-property and CCC

The following notion was introduced in [4], where some properties of spaces with the
B-property were studied.
A topological space X with a topology 7 is called quarter-stratifiable if there exists a
function g : N x X — 7 such that
(1) X = Uxexg(n,x) for every n € N;
(ii) if x € g(n,x,) for each n € N, then x,, — x.
The following result follows from [7, Proposition 2.1].

ProrosiTioN 3.1. Every quarter-stratifiable space X has the L-property.

A topological space X is called o-discrete if there exists an increasing sequence (X,),—;
of closed discrete subspaces X, of X such that X = U,_; X,.

PRrROPOSITION 3.2. Every o-discrete space is a quarter-stratifiable space.

Proof. Let (X,),-, be an increasing sequence of closed discrete subspaces X,, of X such
that X = |J;,_, X,,. For every n € N and x € X,, denote by U(x,7n) an open-in-X neighbor-
hood of x such that U(x,n) N X, = {x}. We define a function g: N X X — 7, where 7 is
the topology of X, by g(x,n) = U(x,n) if x € X,, and g(x,n) = X \ X, if x € X,,. It is easy
to see that g satisfies (i) and (ii). O

Show now that Question 1 has a negative answer.

THEOREM 3.3. There exists a completely regular nonseparable space with the L-property and
with the countable chain condition.

Proof. Let T be a set with |Ty| > Ry, let (a,);-, be a sequence of distinct points a, & Lo,
I, =TouU {akx:1 <k <n}, and let A, be a system of all subsets A = T',,_; such that |[A] =
n. Denote by X,, a set of all function x € {0, 117 such that x = XAu{a,; for some A € s,
where y5 means the characteristic function of B, and put X = U,_, X,,.

Show that X is a o-discrete space. For every n € N put Y,, = J;_; Xx. Fix an integer
neNandforeachl <k <mnput Gy = {x e X:x(ar) =1, x(a;) =0, k<i<n}.Itiseasy
to see that Gx N'Y,, = Xi. Since all spaces Xj are discrete, Y, is discrete in X too. Besides,
Y, is closed in X. Thus, X has the L-property by Propositions 3.1 and 3.2.

Note that X is dense in Y = {0,1}'. Indeed, let A < T be a finite setand y : A — {0,1}.
Choosing n = |A| with A = T,, find x € X,,4; such that x[4 = y. Then ¢(X) = R since
c(Y)=8pand X isdense in Y.

It remains to note that X is nonseparable because for every separable subspace Z of X
there exists a countable set B < T’ such that z(y) = 0 for every y € T'\ B. O

This example shows that there exists a quarter-stratifiable space which has not the B-
property. Thus, Proposition 3.1 cannot be generalized for spaces with the B-property.
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A family (A;:i € I) of sets A, is called pointwise finite if ();c; A; = © for each infinite
set J < I. A cardinal

p(X) = sup {|s] : o is a pointwise finite family of nonempty open-in-X sets} ~ (3.1)

is called a point-finite cellularity of a topological space X. Clearly ¢(X) < p(X). Besides,
it is known that p(X) = ¢(X) for each Baire space X. Therefore, the following question
arises naturally from Theorem 2.1 and the fact that p(X) = |T'| > X, for the space X from
Theorem 3.3.

Question 2. Is every completely regular space X with the L-property and p(X) = Ry a
separable space?
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