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1. Introduction

In this paper, we consider the existence of periodic travelling-waves solutions and the
study of nonlinear orbital stability of these solutions for the one-dimensional Boussinesq-
type equation

q)tt - cDxx + aq)xxxx - b(Dxxtt + q)tq)xx + zq)xq)xt =0, (11)

where a and b are positive numbers.
One can see that this Boussinesq-type equation is a rescaled version of the one-
dimensional Benney-Luke equation

(Dtt - q)xx +.u(aq)xxxx - bq)xxtt) te€ (q)tq)xx + zq)xq)xt) = 0: (1-2)



2 International Journal of Mathematics and Mathematical Sciences

which is derived from evolution of two-dimensional long water waves with surface ten-
sion. In this model, ®(x,t) represents the nondimensional velocity potential at the bot-
tom fluid boundary, y represents the long-wave parameter (dispersion coefficient), € rep-
resents the amplitude parameter (nonlinear parameter), and a — b = 0 — 1/3, with ¢ be-
ing named the Bond number which is associated with surface tension.

An important feature is that the Benney-Luke equation (1.2) reduces to the Korteweg-
de-Vries equation (KdV) when we look for waves evolving slowly in time. More precisely,
when we seek for a solution of the form

t) = f(X,7), (1.3)

where X = x —t and 7 = €#/2. In this case, after neglecting O(€) terms, # = fx satisfies
the KdV equation

1
Nr — (O’—g)l’]xxx-l—?)}’]?])(:(). (1.4)

It was established by Angulo [1] (see also [2]) and Angulo et al. [3] that cnoidal
waves solutions of mean zero for the KdV equation exist and they are orbitally stable
in H,,,[0,To]. The proof of orbital stability obtained by Angulo et al. was based on the
general result for stability due to Grillakis et al. [4] together with the classical arguments
by Benjamin in [5], Bona [6], and Weinstein [7] (see also Maddocks and Sachs [8]). This

approach is used for obtaining stability initially in the space of functions of mean zero,

To
W= {qe Hpe, ([0, To]) : . q(y)dy=0}. (1.5)

The reason to use the space W' to study stability is rather simple. Cnoidal wave solutions
are not critical points of the action functional on the space per([0 To]), however on
the space W' cnoidal waves solutions are characterized as critical points of the action
functional, as required in [4, 7]. The meaning of this is that the mean-zero property makes
the first variation effectively zero from the point of view of the constrained variational
problem, and so the theories in [4-7] can be applied.

Due to the strong relationship between the Benney-Luke equation (1.1) and the KdV
equation (1.4), we are interested in establishing analogous results in terms of existence
and stability of periodic travelling-waves solutions as the corresponding results obtained
by Angulo et al. in the case of the KdV equation. More precisely, we want to prove ex-
istence of periodic travelling-wave solutions for the Benney-Luke equation (1.1) and to
study the orbital stability of them.

In this paper, we will study travelling-waves for (1.1) of the form ®(x,t) = ¢.(x — ct)
such that y, = ¢, is a periodic function with mean zero on an a priori fundamental period
and for values of ¢ such that 0 < ¢ < min{1,a/b}. So, ¢. will be a periodic function. The
profile ¢, has to satisfy the equation

(& = )¢+ (a—be) g - 2 (90) = Ao, (1.6)
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where A is an integration constant. So, by following the paper of Angulo et al., we obtain
that y. is of type cnoidal and it is given by the formula

e(x) ———[ﬁ2+(/33—/32)cn (dl_bc ﬁs_ﬁlxk)} (1.7)

with 81 < B2 <0< B3, f1+ 2+ B35 = 3(1 — ¢2). Moreover, for Ty appropriate, this solution
has minimal period Ty and mean zero on [0,Ty]. So, we obtain by using the Jacobian
Elliptic function dnoidal, dn(-; k), that (1.6) has a periodic solution of the form

_ Lox
$e(x) = fé gzLofj | dn’(wskdu+ M, (1.8)

for appropriate constants M and Lo.

We will show that the periodic travelling-wave solutions ¢, are orbitally stable with
regard to the periodic flow generated by (1.1) provided that 0 < |¢| < 1 < /a/b, which
corresponds to the Bond number ¢ > 1/3 and when for 8 small, 0 < [¢]| < ¢« + 6 < /a/b <
1, which corresponds to the Bond number o < 1/3. Here ¢y is a specific positive constant
(see Theorem 4.3). These conditions of stability are needed to assure the convexity of the
function d defined by

1

d(c) - EJOTO(l—cz)t//3+(a—bc2)(1//c) +eylds, (1.9)

where ¥, = ¢ and ¢, is a travelling-wave solution of (1.6) of cnoidal type, with speed ¢
and period Ty.

Unfortunately from our approach, it is not clear if our waves are stable for the full
interval 0 < |¢| < Va/b < 1.

We recall that in a recent paper, Quintero [9] established orbital stability/instability
of solitons (solitary wave solutions) for the Benney-Luke equation (1.1) for 0 < ¢? <
min{l,a/b} by using the variational characterization of d. Orbital stability of the soliton
was obtained when 0 < ¢ < 1 < +/a/b and orbital instability of the soliton was obtained
when 0 < ¢y < ¢ < /a/b < 1 for some positive constant c.

Our result of stability of periodic travelling-wave solutions for (1.1) follows from
studying the same problem to the Boussinesq system associated with (1.1),

qr = T'x>

B B (1.10)
e =B ' (qx — aquxx) — B~ (rqx +2qr+),

where g = @y, r = ®, and B = 1 — bd2. More exactly, we will obtain an existence and
uniqueness result for the Cauchy problem associated with system (1.10) in H;er( [0,Ty]) x
1Der([O Ty]) and also that the periodic travelling-wave solutions (v, —cy.) are orbitally
stable by the flow of (1.10) with periodic initial disturbances restrict to the space W™ x

per( [0, Ty]). In this point, we take advantage of the Grillakis et al.’s stability theory. More
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concretely, the stability result relies on the convexity of d defined in (1.9) and on a com-
plete spectral analysis of the periodic eigenvalue problem of the linear operator

2

SEcnz—(a—bcz)%+(1—c2)+3a//c, (1.11)
which is related with the second variation of the action functional associated with system
(1.10). We will show that &, has exactly its three first eigenvalues simple, the eigenvalue
zero being the second one with eigenfunction y/ and the rest of the spectrum consists
of a discrete set of double eigenvalues. This spectral description follows from a careful
analysis of the classical Lame periodic eigenvalue problem

2
d—A+ [y — 12k*sn*(x;k)|A = 0,

dx> (1.12)
A0) = A(2K(K)),  A'(0) = A (2K(K)),
where K = K (k) represents the complete elliptic integral of first kind defined by
1
K= | dt . (1.13)
0 \(1-12)(1-ke)

We will show here that (1.12) has the three first eigenvalues simple and the remainder of
eigenvalues are double. The exact value of these eigenvalues as well as its corresponding
eigenfunctions are given.

We note that our stability results cannot be extended to more general periodic pertur-
bations, for instance, by disturbances of period 2Ty. In fact, it is well known that problem
(1.12) has exactly four intervals of instability, and so when we consider the periodic prob-
lem in (1.12) but now with boundary conditions A(0) = A(4K(k)), A’(0) = A’ (4K (k)),
we obtain that the seven first eigenvalues are simple. So, it follows that the linear oper-
ator &, with domain H;er([0,2To]) will have exactly three negative eigenvalues which
are simple. Hence, since the function d defined above is still convex with the integral in
(1.9) defined in [0,2T], we obtain that the general stability approach in [4, 10] cannot
be applied in this case.

This paper is organized as follows. In Section 2, we establish the Hamiltonian struc-
ture for (1.10). In Section 3, we build periodic travelling-waves of fundamental period
T, using Jacobian elliptic functions, named cnoidal waves, with the property of having
mean zero in [0, Ty]. We also prove the existence of a smooth curve of cnoidal wave solu-
tions for (1.10) with a fixed period Ty and the mean-zero property in [0, Ty]. In Section 4,
we study the periodic eigenvalue problem associated with the linear operator in (1.11).
We also prove the convexity of the function d in a different fashion as it was done by
Angulo et al. in [3, KdV equation (1.3)]. In Section 5, we discuss the main issue regard-
ing orbital stability for the Boussinesq system (1.10). This requires proving the existence
and uniqueness results of global mild solutions for this system, and applying Grillakis,
Shatah, and Strauss stability methods, as done in [3]. Finally, in Section 6, we state the
orbital stability of periodic wave solutions of the Benney-Luke equation, by showing the
equivalence between the Cauchy problem for the Benney-Luke equation (1.1) and the
Boussinesq system (1.10).
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2. Hamiltonian structure

The Boussinesq system (1.10) can be written as a Hamiltonian system in the new variables

(a:p) = (q,BH %qz) (2.1)
as

1
g = 0xB™! <P - qu),
P =0x(Ag—rq),

(2.2)

with A =1—ad? and B = 1 — bd2. This system arises as the Euler-Lagrange equation for
the action functional

t q
$=| 2 ( ) dt, (2.3)
to p

where the Lagrangian 9 and the Hamiltonian are given, respectively, by

(1) 207 - 3o 3) e -

] L (T L - (2.4)
w(5) =31 (o= 30)m (o 30) vanaar
In this way, we obtain the canonical Hamiltonian form
o< ¥y = q1, ox9y = ps, (2.5)
and the Hamiltonian system in the variable V = (g) as
v, = (ao ao) 9 (V). (2.6)

We observe that the Hamiltonian in (2.4) is formally conserved in time for solutions of
system (2.2), since

d T
E%(V) = J {#4q: +9Cpp:}dx
0 (2.7)

To Ty
= | 2, + 03, dx = | 919, .
0

0

So, the Hamiltonian

qy _1 ("
¥ == {rBr+qAq}dx (2.8)
r 2 Jo
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associated to (1.10) is formally conserved in time. Moreover, since the Hamiltonian is
translation-invariant, then by Noether’s theorem there is an associated momentum func-
tional N which is also conserved in time. This functional has the form

N (z) = JOTO (Br+ %qz)qu. (2.9)

Next we are interested in finding periodic travelling-waves solutions for system (1.10),
in other words, solutions of the form (q,r) = (y(x — ct),g(x — ct)). By substituting, we
have that the couple (y,g) satisfies the nonlinear system

g=—cy+A, (2.10)
E(1-bd)y = (1—a8§)w+%w2—Aow+&d, (2.11)
with Ay and o integration constants. Now, since our approach of stability is based on the

context of the stability theory of Grillakis et al. (see proof of our Theorem 5.1), we need
to show that (y,g) satisfies the equation

0F (1@ = (‘f) (2.12)

F=H+cN, (2.13)

with

therefore it follows from (2.10) that we must have Ag = 0. In other words, we have to solve
the system

g=—cv, (2.14)
(1—c2)1//+(bc2—a)1//"+%1//2=sﬁ. (2.15)

On the other hand, if we look for periodic travelling-wave solutions ®(x,t) = ¢(x — ct)
for (1.1), then # = ¢’ has mean zero and satisfies equation

(1—C2)11+(b62—a)1/]”+%1’]2=&Q1, (2.16)

where &, is an integration constant. Note that if # is a periodic solution with mean
zero on [0,L], then sd; # 0 and ¢ is periodic of period L. As a consequence of this, we
have to look for periodic solutions ¥ with mean zero for (2.15), and so s # 0. This
simple observation shows that V, = (,VC/;,C) cannot be a critical point of the action func-
tional . This shows the need to adapt Grillakis et al’s stability result to the present case
(see Theorem 5.1). More precisely, we need in our stability theory to have F'(V,)v =
((4,0),v) =0, for v = (f,g). So, we need to have f € W
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3. Existence of a smooth curve of cnoidal waves with mean zero

In this section, we are interested in building explicit travelling-wave solutions for (1.1)
and (1.10). Our analysis will show that the initial profile of ¢, can be taken as periodic or
not, with a periodic derivative y, of cnoidal form. Our main interest here will be the con-
struction of a smooth curve ¢ — y. of periodic travelling-wave with a fixed fundamental
period L and mean zero on [0,L], so we will have that ¢, is periodic. More precisely, our
main theorem is the following.

TaEOREM 3.1. For every Ty > 0, there are smooth curves

celz(—\/min{l,Z}\/mm{ })\{0}—»% 1, ([0,Ty]) (3.1)

of solutions of the equation

(a—b)y! —(1-)ye— wc Ay, (3.2)

where each . has fundamental period T, and mean zero on [0,T]. Moreover, there are
smooth curves ¢ € I — Bi(c), i = 1,2,3, such that

-3
Ay, ¢

.= Z—TO YR8 dE = ——Z/S(c)ﬁ] (3.3)

l<]

and y. has the cnoidal form

wi =g gy (Lo B | e

with B < B2 <0< B3, Bi+ B2+ B3 =3(1—c*) and k* = (B5 — B2)/(Bs — Pu).

The proof of Theorem 3.1 is based on the techniques developed by Angulo et al. in
[3], so we use the implicit function theorem together with the theory of complete elliptic
integrals and Jacobi elliptic functions. We divide the proof of Theorem 3.1 in several steps.
The following two subsections will show the construction of cnoidal waves solutions with
mean zero. Sections 3.3 and 3.4 will give the proof of the theorem. Section 3.5 gives a more
careful study of the modulus function k.

3.1. Building periodic solution. One can see directly that travelling-waves solutions for
(1.1), that is, solutions of the form ®(x,t) = ¢(x — ct), have to satisfy the equation

(2 =1)¢" + (a—bc?) W —3cp” ¢’ = 0. (3.5)
Integrating over [0,x], we find that ¢ satisfies equation

3¢

5 (¢')* = Ao, (3.6)

(c*=1)¢"+ (a—bc*)¢" —
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and so ¥ = ¢’ satisfies equation

(=Dy+(a-b)y" - %wz = Ao, (3.7)

where Ay is an integration constant. Note that for periodic travelling-wave solution ¢
with a specific period L, we have that v has mean zero on [0, L], therefore A needs to be
nonzero. Moreover, if y is a periodic solution with mean zero on [0, L], then A # 0 and
¢ is periodic of period L.

Next we scale function y. Defining

x) = —Py(6x), withf=3c, 6 =a-bc, (3.8)

we have that ¢ satisfies the ordinary differential equation

rr 1
¢ +E(P2_(1_Cz)¢:A(P (3.9)

with Ay = —3cAy. For 0 < ¢ < 1, a class of periodic solutions to (3.9) called cnoidal waves
was found already in the 19th century work of Boussinesq [11, 12] and Korteweg and de
Vries [13]. It may be written in terms of the Jacobi elliptic function as

0c(x) = 9(x) = o + (B — Bo) cn® (w/& A k), (3.10)

Bi<Bo<ps  Bi+Potps=3(1-0), kzzﬁigi (3.11)

Here is a classical argument leading exactly to these formulas. Fix ¢ € (—1,1) and mul-
tiply (3.9) by the integrating factor ¢’, a second exact integration is possible, yielding the
first-order equation

where

3(¢') = —¢> +3(1 — c*) 9> + 6A,¢9 + 6B,, (3.12)

where B, is another constant of integration. Suppose ¢ to be a nonconstant, smooth,
periodic solution of (3.12). The formula (3.12) may be written as

[/ @1 = 3Ey(9(2) (3.13)

with Fy(t) = =7 +3(1 — ¢*)t* + 6A,t + 6B, a cubic polynomial. If F, has only one real
root f3, say, then ¢’(z) can vanish only when ¢(z) = 8. This means that the maximum
value of ¢ which takes on its period domain [0, TN“] is the same, with T = T/, as its mini-
mum value there, and so ¢ is constant, contrary to presumption. Therefore F, must have
three real roots, say f8; < 52 < 33 (the degenerate cases will be considered presently). Note
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that for the existence of these different zeros, it is necessary to have that (1 —¢?)* +24, >
0. So, we have

Fy(t) = (t=p1) (t=B2) (Bs — 1), (3.14)

where we have incorporated the minus sign into the third factor. Of course, we must have
Bi+Batps=3(1-¢%),
1
78(/31/32 +B1Bs +afs) = Ags (3.15)

éﬁlﬁzﬂs = B,.

It follows immediately from (3.13)-(3.14) that ¢ must take values in the range 8, < ¢ <
B3. Normalize ¢ by letting p = ¢/f3, so that (3.13)-(3.14) become

2= Lo m)lp-m)1-p), (3.16)
where #; = 8i/B3, i = 1,2. The variable p lies in the interval [#,1]. By translation of the
spatial coordinates, we may locate a maximum value of p at x = 0. As the only critical
points of p for values of p in [#,,1] are when p = 77, < 1 and when p = 1, it must be the
case that p(0) = 1. One checks that p”” >0 when p = #, and p”’ < 0 when p = 1. Thus it is
clear that our putative periodic solution must oscillate monotonically between the values
p =1 and p = 1. A simple analysis would now allow us to conclude that such periodic
solutions exist, but we are pursuing the formula (3.10), not just existence.

Change variables again by letting
p=1+(172—1)sinzg (3.17)

with p(0) = 0 and p continuous.
Substituting into (3.16) yields the equation

(Q')2=/13;(1—771)[1—1_stin29]. (3.18)

To put this in standard form, define

1-—
K= 1__’;?, = %(1_,72). (3.19)

Of course 0 < k? < 1 and ¢ > 0. We may solve for p implicitly to obtain

o) dt
0 V1-—k2sin’t -

The left-hand side of (3.20) is just the standard elliptic integral of the first kind (see [14]).
Moreover, the elliptic function sn(z;k) is, for fixed k, defined in terms of the inverse of

F(o;k) = £x. (3.20)
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the mapping o — F(p;k). Hence, (3.20) implies that
sing = sn(+/ex;k), (3.21)
and therefore
p=1+(n—1)sn*(Vex;k). (3.22)

As sn?+cn? = 1, it transpires that p = 775 + (1 — #72) cn?(v/€x;k), which, when properly
unwrapped, is exactly the cnoidal wave solution (3.10), or y, has the form

llfc(x)=—3lc[/32+([33—ﬁz)cn2< ﬁ ﬁSI_zﬂlx;kﬂ. (3.23)

Next we consider the degenerate cases. First, fix the value of ¢ and consider whether or
not periodic solutions can persist if 1 = 5, or 8, = 3. As ¢ can only take values in the
interval [f,,3], we conclude that the second case leads only to the constant solution
¢(x) = B, = 3. Indeed, the limit of (3.10) as 8, — 85 is uniform in x and is exactly this
constant solution. If, on the other hand, ¢ and f3; are fixed, say, f, | 1 and 33 = 3(1 —
¢?) — B2 — B, then k — 1, the elliptic function cn converges, uniformly on compact sets,
to the hyperbolic function sech and (3.10) becomes, in this limit,

@(x) = @o + ysech? ( %x) (3.24)
with ¢ = f1 and y = 85 — 5. If f; = 0, we obtain
M-
@(x) = 3(1 - ¢?) sech? ( 12 ¢ x). (3.25)

So, by returning to the original function v, we obtain the standard solitary-wave solution

1= o1 [1-2
Ilf(x)———c sech (2 a—bc2x>’ (3.26)

of speed 0 < ¢? < min{1,a/b} of the Benney-Luke equation (see [9]).
Next, by returning to original variable ¢., we obtain after integration and using the
formula (see [14])

Jcnz(u;k)du = kiz [Lu dn?(x;k)dx — (1 — kz)u] (3.27)
that

o0 = P BB (™ 4ok (3.28)
¢ 3¢ 3CL()k2 0 ’ ’ ’

where M is an integration constant and

B 1 Bs— B
Lo_m,/ o (3.29)
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3.2. Mean-zero property. Cnoidal waves ¢, having mean zero on their natural minimal
period, T¢, for (3.9) are constructed here. The condition of zero mean, namely that

Te
jo 0 (E)dE = 0, (3.30)

physically amounts to demanding that the wavetrain has the same mean depth as does
the undisturbed free surface (this is a very good presumption for waves generated by an
oscillating wavemaker in a channel, e.g., as no mass is added in such a configuration).
Wavetrains with non-zero mean are readily derived from this special case as will be re-
marked presently.

Let a phase speed ¢, be given with 0 < ¢4 <min{1,a/b}, and consider four constants B,
B2, B3 and k as in (3.10). The complete elliptic integral of the first kind (see [1, Chapter
2], or [14]) is the function K (k) defined by the formula

! dt
= K(k) = J . (3.31)
0\J(1-1£)(1- k)
The fundamental period of the cnoidal wave ¢, in (3.10) is T;, = Ty, ,
B k), (332)

Tcn S TC() (ﬂ],/))Z)ﬂ?ﬁ) - \/ﬁ

with K as in (3.31). The period of cn is 4K (k) and cn is antisymmetric about its half
period, from which (3.32) follows.
The condition of mean zero of ¢, over a period [0, T, ] is easily determined to be

1 2K
0=t (B~ o) g | en?Eshode (5:33)

Simple manipulations with elliptic functions put (3.33) into a more useful form, namely
2K K 2 ,
J cn?(&;k)dE = zf en(usk)du = = [EK) - KK (K], (3.34)
0 0

where k' = (1 — k?)/2 and E(k) is the complete elliptical integral of the second kind de-

fined by the formula
b1 -k2
E=E() = | [ pd (335)

Thus the zero-mean value condition is exactly

2
B+ (B3 —B2) %k(kf(k) =0. (3.36)
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Because (85 — 2)k’* = (B, — 1)k? and

dK(k)  E(k)-k"K(k)

P TR (3.37)

(see [14]), the relation (3.36) has the equivalent form
BiK(k)+ (Bs — B1)E(k) =0, (3.38)
Kk ___PB K (3.39)

=— K.
dk Bs— P2 k?

We note that by replacing K(k) and E(k), we have that (3.38) is equivalent to have
A(f32,33) = 0, where

(o Bs — (Bs —B2)t*
ABp) - | = T (3.40)

with B1 + B2+ 5 = g, atg = 3(1 — ¢}). Now we are in a good position to prove that under
some consideration, ¢, has mean zero.

THEOREM 3.2. Letag = 3(1 — c2). Then for B3 > « fixed, there are numbers 31 < B, < 0 < f33
satisfying that 3y + B, + B3 = &g and the cnoidal wave defined in (3.10), ¢, = ¢(+, 1,52,
B3) has mean zero in [0, T, ]. Moreover,

(1) the map B, : (ag, ) = ((eto — $3)/2,0), B3 — B2(B3) is continuous,
(2) limg, .o¢ T, = o0, and limg, .o, T, = 0.

Proof. Let 83 > ap and note that for ¢ € [0,1] and (&g — f33)/2 <5< 0,
2[334‘5—0(0—([33—5)1'2Zﬂ3+25—0£0 > 0. (3.41)

In other words, A(s,f3) is well defined for s € I = ((ap — f3)/2,0). We observe that
A(0,83) >0 and a straightforward computation shows that

lim  A(s,;) = —oo. 3.42
L (s,83) = —o0 (3.42)

In fact, for s = (ap — $3)/2, we have that

B3 — (Bs —s)t? _ V2P _ﬁ(ﬁs—(xo)< t )
\/l—tz\/2ﬂ3+5—0(o—(ﬁ3—5)t2 \/3ﬂ3—060 21/3/53—060 1-2)

Moreover, from (see [1, Theorem 5.6]), we have that d;A(s, $3) >0 with s€ ((ap — 53)/2,0).
Then we can conclude that there exists a unique sy € ((ap —f33)/2,0) such that
A(s0,3) = 0.

The continuity of the map S, : (ag, %) — ((ap — $3)/2,0), B3 — B2 = B2(f33) follows by
the implicit function theorem applied to the function A(s, 33).

(3.43)
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Now if the fundamental period T, of ¢, is regarded as function of the parameter f33,
then for 5, = B2(B3), we have

_ 43 2 | BB
TCO (ﬁ.’)) - \/mK(k)) k = 2/33 +/),2 _ (XO. (344)

Since K(1) = +o0 and 233 + 3, — g — ap as B3 — ap, we conclude that

ﬁlim+ Te, (B3) = +o0. (3.45)

On the other hand, from the fact that E is a decreasing function in k with E(k) <
E(0) = 77/2 and (3.38), we have that

Using that —(f5 — a)/2 < 5, < 0, we obtain that

43 K(k) gzﬂ\/g(\/m) S4ﬂﬁ\/Zﬁai—ocO

IA

7 (2B5+P2— a
. (7/33+/32 — ) (3.46)

0=< TCn (/53) =

J2Bs+ o — a0 B3+ B2 —ao Bs—ao
(3.47)
So, we conclude that
ﬁlim T, (Bs) = 0. (3.48)
300 0

3.3. Fundamental period. The first step to establish the existence of a curve of periodic
wave solutions to the Benney-Luke equation with a given period is based on proving the
existence of an interval of speed waves for cnoidal waves ¢, in (3.10).

LemMa 3.3. Let ¢y be a fixed number with 0 < ¢} < min{1,a/b}, consider Bi1<Ba<0<fs
satisfying Theorem 3.2 and ¢¢, = @, (+> 1,32, 33) with mean zero over [0, T,]. Define

MJ% 5.49)

(a=be?)(1-c5)’

with ¢ such that 0 < ¢2 < min{1,a/b}. Then _ _
(1) there exist an interval I(cy) around cy, a ball B( ) around B = (B1,52,53), and a
unique smooth function

I:1(co) — B(B),

(3.50)
¢ — (a1(c),ax(c),a3(c))
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such that TI(cy) = (B1,B2,B3) and o; = ai(c) with ay < a; < 0 < a3 satisfying

43
/3 — X

a; + oy + o3 =,

K(k) = Mc) T,
(3.51)

a1 K (k) + (a3 — a1)E(k) = 0,

where k*(c) = (a3(c) — a2(c))/(az(c) — a1 (c));
(2) the cnoidal wave @, (-,a1(c),a2(c),a3(c)) has fundamental period T, = A(c)Tq,,
mean zero over [0, T.], and satisfies the equatzon

1
+ Eﬁ"gg —(1-¢))¢e = A, (ai(0)> (3.52)
where
Ay (au(e) = 2T, I 9z, (%, ai(c)) dx = —chx, c)aj(c), (3.53)
i<j
forall c € I(co).

Proof. We proceed as by Angulo et al. in (see [3]). Let Q C R* be the set defined by
Q= {((xl,ocz,og,c) ta<ar<0<as, a3 >ap, 0<c?< min{l,%}}, (3.54)

let k2 = (a3 — @)/ (a3 — a1), and let @ : Q — R? be the function defined by
D (a1, 00,03,¢) = (D1 (o1, 00,03, ¢), Do (a1, 00,03,¢), D3(ar,a2,0a3,¢)), (3.55)

where

43
/X3 — ]

D, (a1, 00,03,¢) = a1 + a0z + a3 — axg,

(DI (al)(xZ)“S)C) = K(k) _A(C)Tcw

(3.56)

D3 (ay, 000, a3,¢) = i K (k) + (o3 — a1 ) E(k).
From Theorem 3.2, ®(f3,2,3,¢c0) = 0. The first observation is that

v(al,az,a3)®2(aac) =(L1,1). (3.57)
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On the other hand, a direct computation shows that

2+/3K (k) N 4./39,, K (k)

0o, D1 () = ,
1 (063 . a1)3/2 (063 B 061)1/2
. 4./30,,K (k
00, ®1(a,c) = ((X\/3——061)(1/2), (3.58)
o (5.0) - - 2K 40K (k)
a > (s — 041)3/2 (o5 — a1)1/2 >
and that
o3 — Ky -1 o) — ]
wk=—"-""-, Ok = —F—, Ok = ———. 3.59
2k((X3—(X1)2 2k(0(3*0£1) » 2k(0€3—0€1)2 ( )
If we assume that a; K (k) + (a3 — a1 )E(k) = 0, then using that
, E(k) —k"*K(k , E-K
k(= TR EEKO - pgy S B K (3.60)
we obtain the following formulas:
K (k) K (k)
0, K(k) = — , 0, K (k) = ,
) 2o — 1) (a3 — 1) © 2(0 — o) (a3 — 2)
KK) (3.61)
)
0a, K (k) = — .
K () 2(az —ay) (a3 — )
Similarly, under such assumptions, we conclude that
a3 K (k) asK (k)
O, E(k) = — , 0, E(k) = ,
(k) 2(az — o) (a3 — o) ) 2(a3 —a1) (a3 — )
( )K (k) (362
A3 () — X1
0u, E(k) = — )
(k) 2(az — o) (a3 —ar) (a3 — )
Replacing these in previous equalities, we have, for (@, c) satisfying
\/%K(k) _MOT, = 0, (3.63)
that
. 4./3K (k) ( —a ) —aAe) T,
a(xlq) > = = b
i) (063—0(1)1/2 2(0(3—061)(0(2—061) 2(063—0(1)(062—0(1)
~ 4./3K (k) ( o ) 0T,
aach > = = : > .
= e 2w —a)(w—a) )~ 2w —a) (@ -w) 0P
- 4./3K (k) ( —a3 ) —a3A(c) T,
a(x3q) > = = . 5
(@0 (a3 —ay) " \ 2@ —aon) (a3 —a2) ) 2(a5 — ) (a5 — at2)
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and that

v(“l:“z:“3)®3 (‘_’E:CO)

_K(k)( 003 — 10y — X103 03 — 03 T o) O] — 103 — (X003 )
2(a — o) (@ — )" 2(a3 —a2) (2 — 1) " 2(a3 — 22) (3 — 1) /°
(3.65)
In particular, for (E,co), we obtain that A(¢) = 1, so it follows that
2 _ﬁlTCo
aal(D )C = >
VB) = ST = Ry (B )
e /32TC0
00, @1 (B,c0) = , 3.66
B = S ) (5= ) (3.66)
_ﬁ3TCo

L Ay S YR N

and that

v(“l;“lw“})q)f}(gyc())
=K (k) ( Bofs —PiBa—Bifs PaPs —BiBs+PiBr PaPi—BiPs — Baps ))
(

2(B2 = B1) (Bs = B1) " 2(Bs — B2) (B2 = B1) " 2(Bs = B2) (Bs — 1)

with k} = (85 — B2)/(Bs — B1). The properties of the cnoidal wave ¢, (-, E) lead to

1 (To -
5T ), P& PIE=A, . (3.68)

Using previous calculation, the Jacobian determinant of ®(-, -, -,¢c) at (E,co) is given by

VoD,
det (VaCD2> T, K(k) (12 + P13 + Baf3)

Va®3) 5. ~4(Ba—B1) (Bs — B2) (Bs — Br) (569)

_ “3K(K) o © 92 (£, B)dE
4B =) (B =) (Bs = 1)

As a consequence of this, the implicit function theorem implies the existence of a function
IT from a neighborhood of I(cy) of ¢y to a neighborhood of (51,2, 83) satisfying the first
part of the lemma. The second part of the lemma is immediate. O

#0.

3.4. Existence of curve of solutions. In this subsection as a consequence of the previous
results, we establish the proof of Theorem 3.1.



J. Angulo and J. R. Quintero 17

Proof of Theorem 3.1. We start by proving the existence of a smooth curve of cnoidal
waves solutions for (3.7) with a fixed period +/a —bc}T,, and with mean zero on

[0,r/a — b3 T, ]. In fact, let ¢, (-, a;) be the cnoidal wave determined by Lemma 3.3 with
a; = a;(c) for c € I(cy). Define

_ 2 _
oc(Cai) = —1 C2 gDCO( ! CZC oc,), (eR. (3.70)
iy \1

Then ¢.(+,a;) has period T,, = 0(c)T,, with 08(c) = \Ja— bcd//a—bc?, and mean zero
on [0, Ty, ]. Moreover, it is not hard to see that ¢ (-, «;) satisfies the differential equation

¢2’+%<p3— (1-¢%)ge = Ag, (3.71)

where

1 Toc
Ay = Fg)c Jo 9z (& ai(c)) déE

- 2 11 (3.72)
—c —c
=— ] A ) = f i
(125) oo =-4(15) Fesomo
Next, we obtain a smooth curve of solution for (3.7). From (3.8), define
() = e[ == (o) (3.73)
Ve =750 Va—pa ™) :

Then it is easy to see that y, has period T = \/a — bc}T,, and mean zero on [0, Ty]. On
the other hand, from (3.71) and (3.72), it follows that y. satisfies the differential equation
(3.2) with A, given by (3.3).

Now, the regularity of the map ¢ — vy, follows from the properties of ¢, and «;. More-
over, from Theorem 3.2, we obtain that T,, = T,,(f33) can be taken arbitrarily in the in-
terval (0,+00), and so the solution y, can be taken with an arbitrary period T, with
Ty € (0,+0c0). Finally, by uniqueness of the map IT in Lemma 3.3 and by ¢, being arbi-
trary with 0 < ¢§ < min{1,a/b}, we can conclude that the map IT can be extended such
that we obtain the following smooth curves of cnoidal wave solutions to (3.7):

ce (—\/min{l,Z} \/mln{ })\{O}—»I/JCEHSM([O,TCO]), (3.74)

with an arbitrary period T, and mean zero on [0, T, ]. This finishes the proof of Theorem
3.1 (]

3.5. Monotonicity of the modulus k. In this subsection, we show some properties of
the modulus k determined in Lemma 3.3. We start by recalling that for every ¢ € I(co),
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O(II(c),c) = (0,0,0), where TI(c) = (a;(c),x2(c),a3(c)). As done above, from formulas
(3.57), (3.64), and (3.65) it is not hard to see that

Va®s = . (3.75)

det v“q)l A(C)TCQK(k)(al(xz+(X1(X3+(X2(X3)
VD3 . 4(ay — o) (a3 — a2) (a3 — 1)

As a consequence of this, we conclude that

p Va1 (AT,
2 1(0) = — | V@ 0 , (3.76)
¢ vV, D5 0

with & = (a1, ®2,a3). Next by finding the inverse matrix in (3.76), we obtain that

, a3 (o1 — ) + a5 (o1 — a3)
il‘[(c) = 2o ot (o —as) + 3 (e —ay) |. (3.77)
AMo)Xaja;

[

o

ot (o3 — o) + a5 (a3 —ay)

Using this fact, we are able to establish that k is a monotone function, depending on the
wave speed.

THEOREM 3.4. Consider ¢ with 0 < ¢* < min{1,a/b}. Define the modulus function

_Jas(e) —aa(e)
KO = o ato (3.78)
Then,
(1) for0 < |cl < Va/b< 1, = c(d/dc)k(c) >0,
(2) for0 < |cl <1< +a/b, = c(d/dc)k(c) < 0.

Proof. Denoting A(c) = Za;etj and B(c) = 2(a3 — a;1)*? /a3 — az, we obtain from (3.77)
and Lemma 3.3 that

:_ﬂé%é%Eﬂ%_“”W”““”%‘“ﬂﬂh (3.79)

o 6(l-q)(m—a) .,
=_ NOAWQ) A (o)k(c).

Next, since A(c) < 0 and

. la=bc c(b-a)
Her= 1-cj (a—bcz)m«/l—cz’ (3.80)

we obtain immediately our theorem. O
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4. Spectral analysis and convexity

In this section, attention is turned to set the main tools to be used in order to establish
stability of the cnoidal-wave solutions (v, —cy,) determined by Theorem 3.1 for system
(1.10).

4.1. Spectral analysis of the operator £, = —(a — bc?)(d?/dx*) + (1 — ¢*) + 3cy.. By
Theorem 3.1, we consider for L = T > 0 the smooth curve of cnoidal wave ¢ — y. €
ngr([O,L]) with fundamental period L. As it is well known, the study of the periodic
eigenvalue problem for the linear operator &, considered on [0,L] is required in the
stability theory. The spectral problem in question is

Lenx = [ —(a- Iacz)dd—xz2 +(1-¢%) +3c1//c]x =
x(0)=x(L),  x'(0)=x'(L),

(4.1)

where ¢ is fixed such that 0 < ¢> < min{1,a/b}. The following result is obtained in this
context.

THEOREM 4.1. Let . be the cnoidal wave solution given by Theorem 3.1. Then the linear
operator

¥

Pen = —(a—bcz)@+(l—cz)+3cwc (4.2)

defined on Hp,, ([0,L]) has exactly its three first eigenvalues Ao < A1 < A, simple. Moreover,

v is an eigenfunction with eigenvalue Ay = 0. The rest of the spectrum is a discrete set of
eigenvalues which is double. The eigenvalues only accumulate at +co.

Proof. From the theory of compact symmetric operators applied to the periodic
eigenvalue problem (4.1), it is known that the spectrum of £, is a countable infinity
set of eigenvalues with

AOSA1SA2SA3S"', (43)

where double eigenvalue is counted twice and A, — o as n — co. Now, from the Floquet
theory [15], with the eigenvalue periodic problem, there is an associated eigenvalue prob-
lem, named semiperiodic problem in [0,L],

Ln¥ = uy,
, , (4.4)
v(0)=—y(L),  y'(0)=—y'(L)
As in the periodic case, there is a sequence of eigenvalues
Po<p1 <pp<ps<---, (4.5)

where double eigenvalue is counted twice and y, — o0 as n — co. So, for the equation

L f =vf, (4.6)
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we have that the only periodic solutions, f, of period L correspond to y = A; for some j
whilst the only periodic solutions of period 2L are either those associated with y = A;, but
viewed on [0,2L], or those corresponding y = u;, but extended as f (L +x) = f(L — x) for
0=<x<L.

Next, from oscillation theory [15], we have that the sequences of eigenvalues (4.3) and
(4.5) have the following property:

A<po=mp <M =< <pz<Az<---. (4.7)

Now, for a given value y, if all solutions of (4.6) are bounded, then y is called a stable
value, whereas if there is an unbounded solution, y is called unstable. The open intervals
(Ao>H0)> (U1,A1), (A2, 42), (U3,A3),... are called intervals of stability. The endpoints of these
intervals are generally unstable. This is always so for y = A¢ as Ay is always simple. The
intervals (—o0,A¢), (4o, 41), (A1,A2), (p2,43),.. ., and so on are called intervals of instability.
Of course, at a double eigenvalue, the interval is empty and omitted from the discussion.
Absence of an interval of instability means that there is a value of y for which all solutions
of (4.6) are either periodic of period L or periodic with basic period 2L.
We also have the following characterization of the zeros of the eigenfunctions associ-
ated with the problems (4.1) and (4.4), x, and v, respectively,
(1) xo has no zeros in [0, L],
(2) x2n+1 and y2442 have exactly 21 +2 zeros in [0, L),
(3) Yan+1 and Yoo have exactly 2n+ 1 zeros in [0, L).
Using this fact and the relationship between the sequence of eigenvalues (4.7) and
Lenw! =0, we conclude that Ay < A; <A, with A; =0or A, =0.
We will show that A, > A, = 0. First define the transformation R, (x) = y(#x), where
n? =12(a— bc?)/(Bs — B1). It is not hard to see using the explicit form for y, in (3.4) that
the problem (4.1) is equivalent to the eigenvalue problem for A = Ry,

d? 2 2 _
dx2A+ [y — 12k*sn*(x;k)|A = 0, (48)
A(0) = A(2K), A'(0) = A'(2K),
where K = K (k) is defined by (3.31) and
12 [1-c*—B5—Al (4.9)

" RR

The differential equation in (4.8) is called the Jacobian form of Lame’s equation. Now, from
[15, 16], we obtain that Lame’s equation has four intervals of instability which are

(= 00,90), (o> t41)> (y1592) (351455 (4.10)

where p; > 0 are the eigenvalues associated to the semiperiodic problem determined by
Lame’s equation (see [1, 15]). So, we have that the first three eigenvalues y, y1, y2 as-
sociated with (4.8) are simple and the rest of eigenvalues are double, namely, y3 = ya,

Y5 = V6se-ee
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We present the first three eigenvalues y, y1, 2 and their corresponding eigenfunc-
tions Ag, A1, Ay. Since y; = 4+ 4k? is an eigenvalue of (4.8) with eigenfunction A;(x) =
cn(x)sn(x)dn(x) = CR, (y/(x)), it follows from (4.9) that A = 0 is a simple eigenvalue of
problem (4.1) with eigenfunction . It was shown by Ince (see [16]) that the eigenfunc-
tions of (4.8) Ay and A, have the forms

Ag(x) = [1 - (1 +2k* —V1-k2 +4k4) snz(x)] dn(x),

(4.11)
Ar(x) = [1 - (1 +2k* +1 - k2 +4k4> sn2(x)] dn(x).
In this case, the associated eigenvalues y, and y, have to satisfy the equation
2
y=k>+ ok (4.12)

1+ (9/4)k% — (1/4)y’
which has two roots

Yo = 2+5k* — 24/1 — k2 + 4k*, Y2 = 245k + 241 — k2 + 4k*. (4.13)

Now note that Ay has no zeros in [0,2K] and A, has exactly 2 zeros in [0,2K], then Ay

corresponds to eigenfunction associated to yo, which must be the first eigenvalue of (4.8).
On the other hand, (B3 — f1)k* = 85 — B2 and 1 + B2+ B3 = 3(1 — ¢?), then

Bk +1) = (2—K)Bs—3(1— &), A0=[1fzﬁ%%5yd(1féfﬁg.
(4.14)

Since yo < y1 = 4(1 +k?), we have that Ay < 0 and it is the first negative eigenvalue of £,
with eigenfunction xo(x) = Ao(x/#) which has no zeros. We also have that y; < y, for any
k € (0,1), then we get from (4.9) that

1
A2=[1—my2](1—c2—/33)>0. (4.15)

This implies that A, is the third eigenvalue of &£, with eigenfunction y»(x) = Az (x/7),
which has exactly 2 zeros in [0,L). On the other hand, it can be shown that the first two
eigenvalues of Lame’s equation in the semiperiodic case are

to=5+2k>—2VA—k2+k4, ] =5+5k*—2vV4 - 7k2 +4k4, (4.16)
with corresponding eigenfunctions with exactly one zero in [0,2K),

Cosp = cn(x)[l - (2 +k* - m) snz(x)],

(4.17)
(rsp = 3sn(x) — (2 +2k* - m) sn®(x).
But we have that o < y} < y1 = 4+ 4k? and that
, 12
[1-¢*—Bs—ul. (4.18)

CRR
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As a consequence of this, we found that the first three intervals of instability of £, are
(—0,10), (10> 1), (A1,A2). (4.19)
We also have,
Wy =542k + 24— k2 + k%, pb = 5+5k> +2v/4 — 7k2 + 4k* (4.20)
eigenvalues with corresponding eigenfunctions

$op = cn(x) [1 - (2 +I2 4k + k4) snz(x)],
(4.21)
Gp = 3s0(x) — (24 2k% + /4 = 7k2 + 4k sn’ (x),

respectively, with exactly three zeros in [0,2K). Finally, we conclude from (4.18) that the
last interval of instability for £, is (¢2,43). O

4.2. Convexity of d(c). As we showed in Section 2, cnoidal wave solutions y. are charac-

c

terized in such a way that the couple V. = (_vc/%) is a solution of

SF(V.) = 8%+ cN)(V.) = (f) , (4.22)

with o being a nonzero number. Now we consider the study of the convexity of the func-
tion d defined by

d(c) =F(Ve), (4.23)

where the cnoidal wave solution y. is given by Theorem 3.1. If we differentiate (4.23) with
respect to ¢, we get that

d'(c) = 6F (V) (%VC) FN(V) = <w,%%> LNV, (4.24)

where (-,-) represents the pairing between Hlier([O, To]) and Hp’ei([O, To]). Using that

JOTO (d/dc)y.(x)dx = 0, we have (i, (d/dc)y.) = 0. As a consequence, we obtain

T()
& =N (Vo) == | (v +be(y)’ - Jy2 )ax. (4.25)

Next we obtain the following expression to d’ in (4.25):

) 2T\ Ja—bcga(l—c?) + 62 (4 +1) a+2c%b
a() = -V [ o o B%], (4.26)
where 6y = v/a — bc2. Indeed, since Ty = \/a — bc3 T,, and from formula (3.73), we obtain
from (4.25) that

, - Ty 1 2 b , 2 1 3
d(c)——HOJO 5700+ g [T + gyseld (4.27)
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where g, satisfies (3.71) and T, = 0(c)T,,, with 0(c) = \Ja - bcd/v/a—bc2. Next from

(3.71), we obtain the following formula:

[— 9l +3(1—c?) gl +6Ay 0. +6By ], (4.28)

W=

(¢))" =
where A, is given by (3.72) and from (3.52), (3.12), (3.15), and (3.70), we have that
l-c¢ . 1
B, = (—) By, (c), with By, (c) = ~Tlay(c). (4.29)
1- CO 0 6

Moreover, from (3.71) we obtain

c Ty _ 2 Tye
J ’ dx— - @ldx — 20=¢) @dx. (4.30)
3 0 3 0

So integrating (4.28), we obtain from (4.30) that

Toe 2o 1 Toc 6
|, G0dx=s1-c) | " gt 2B, T, @31)
0

0
Similarly, by integrating (4.28) and from (4.31), it follows that

Toc 12 Toc 12
' @ldx = ?(1 - cZ)J ' @rdx+ ?B%Tq,[. (4.32)
0
Hence by substituting formulas (4.31) and (4.32) in (4.27), we obtain (4.26) after some
manipulations.
Next, by using the formula for d’-(4.26), formula for A, _-(3.72), and formula for B, -
(4.29), we find that

ToJa—b
d'(c) = $< aogi(c )Z‘xi‘xj —gz(C)leOCzOB), (4.33)
405( ) i<j

where

g1(c) = [—4bc*+ (Ba—b)+2a](1—2)’c(a—be?) ',

5 . (4.34)
£(c) =3(2bc* +a) (1 —c*) ¢ (a—bc?)
In order to establish the convexity of d, we have to compute
Z(x ; i((X]OQO(};). (4.35)
dc

i<j

The following result is obtained in this context.
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LEMMA 4.2. Let ay, oy, and o3 be as in Lemma 3.3. Then,

d
I Z(xi(xj = 6Faga 03 — ZM(Zociocj) ,

i<j i<j
J (4.36)
= (ayon03) = 4Fadagaras — ocoM<Zoc,~(xj> —3Ma a0,
i<j
where ag = 3(1 — c3), M(a,b,c) = 21" (c)/Mc), and F = M/sz ;.
Proof. First we note that for d/dc = “’” that
<Zcx ocj> =) (+az) +ay(a +as) +aj (o +a)
- (4.37)

= o] (oo —ar) + a5 (@) — ) + a5 (ag — a3)

— (o) + oy + azay) + ap (o) = — (1) + ca 0y + a3},

Using expressions for «; obtained in Lemma 3.3, we have that for i, j,k € {1,2,3} with
j#1i,j#k,and k # i that

;o =F[oc,2(oc§+oc,2<) — aojou (ot + o) |- (4.38)

Then summation over i gives us that

(Z(x a]> = [ 2a0a1a2a3+22a ] (4.39)
l<] l<]
But a direct computation shows that
(20@0@) (za ) + 2007 00 013, (4.40)
i<j i<j
Using these formulas in previous equation lets us conclude that
’ 2
<Z(x,~0cj) =—F [—6ocooc10c20c3 +2 ( z ociocj) ] =6Fago 0003 — ZMZaiaj. (4.41)
i<j i<j i<j
To get the second part, we note that
(aopas) = ez + o ahas + oo (4.42)

and for i, j,k € {1,2,3} with j # i, j # k, and k # i,

aiojoy = F[ (g — ock)zocloczocg — (oo — o)} oc — 207l ay ). (4.43)
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Thus, we get
’ 2
(a1op03) = F|:061062(X3(Z (o — ;) ) — o (Zoc%(x?) — 0003 (Zocioci)}
i<j i<j
= F|:0£1062(X3 (Zoc(z) - 220@0@-) - (x()(zoc,z(x?) - a1a2a3(2(xiai>]
i<j i<j i<j
, (4.44)
=F|loaos <4oc% — 3Zcx,~(x]~> — (x()(Zoc,-ocj)
i<j i<j
= 4Fad o o003 — ocoM<Zoc,-rxj> —3Majoas.
i<j 0

Now we are in position to prove the convexity of function d.

TuEOREM 4.3. d is a strictly convex function for 0 < [c| <1 < ~/a/b, and for 0 < |c| < ¢y +
0 < a/b < 1, where 0 is small and c is the unique positive root of the polynomial

P(c) = 12b%c® + (13b% — 19ab) c* + (9ab — 9a?) c* — 6a°. (4.45)

Proof. From our previous computations and using formulas in Lemma 4.2 for the deriva-
tives of > ;. ot and a; a3 with respect to ¢, we obtain that

Tco a—bc
d’(c) = M{ao(gl(C)+M[g2 -2q1(c %(x(x]
2
+ [% (3g1(c) —2¢2(¢)) + (3g2(c)M —gz’(c))]alaz%}
(4.46)
Using that
W) 2e(b—a)
M = o) (1_C2)(a_bcz)’ (4.47)
we obtain by a direct computation that
g{(c) +M[g2(c) — Zgl(c)]
_ (1-¢) (126%¢" + (136 — 19ab)* + (9ab — 9a%)* — 6a%) (4.48)
ct(a- bcz)2 >
~ =30(a—-b)*(1-c%)
a0 - 2g (1M = 2(a-be2)’ <0
(4.49)

9(1—¢2)’ (20%c* + abc® + a?)

5 > 0.
5c4(a— bc?)

3¢ ()M —g5(c) =
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Now, let us define the following polynomial:
P(c) = 12b%c® + (13b% — 19ab) c* + (9ab — 9a?) c* — 6a°. (4.50)
The first observation is that
P(c) = 6b*c*(? — 1) +6(b*c® — a?) +19bc* (b — a) +9ac*(b — a). (4.51)

If we assume that a > b and c? < 1, we have that b*c® — a*> < 0. Thus we conclude that
P(c) <0, for a > b and ¢ < 1. On the other hand, if we assume that a < b and 0 < |c| <
Va/b, we have that P(++/a/b) = 16a%(b—a)/b > 0, but P(0) = —6a% < 0. As a conse-
quence of this, there exists a unique ¢y with P(cy) =0, 0 < ¢y < Va/b < 1, such that
P(c) <0 for 0 < |c| < cy in case of having b > a. Note that P’'(c) > 0 for ¢ > 0.
Therefore we have from Lemma 3.3 that ajay a3 > 0 and from (3.72) that > aiarj <0,
so we can conclude initially from (4.46) and (4.49) that
(1) d is a strictly convex function in 0 < [¢| < 1 for a > b,
(1*) d is a strictly convex function in 0 < |c| < ¢4 for 0 < ¢y < a/b < 1.
Next, note that d”(c4) > 0, and so from continuity we can choose 6 small such that
(2) d is a strictly convex function in 0 < [c| < ¢ +0 for 0 < ¢y +0 < Va/b< 1,
as desired. O

5. Stability theory for the Boussinesq-type system (1.10)

In this section, we establish a theory of stability for the branch of cnoidal waves solutions

¢ — (ye(x = ct), —cy(x — ct)), (5.1)

associated to system (1.10) determined by Theorem 3.1. These smooth curves of solutions
to (3.7), ¢ € (—/min{1,a/b},v/min{1,a/b}) \ {0} — v, € H;er([O, To]), have an arbitrary
period T and mean zero on [0, T ].

We first note from (2.12) that v, = (W, —cy,)! is not a critical point to the action
functional & in (2.13) indicating that the general theory of Grillakis, Shatah, and Strauss
cannot be applied directly to the problem at hand over all H;er( [0,Ty]) x H;er( [0,Ty]). To
overcome this, we will proceed as in the proof of orbital stability of cnoidal wave solutions
with respect to the periodic flow of solutions with mean zero for the initial value problem
associated with the KdV equation (see [3]). In other words, we consider the following
spaces:

To
wi={gen (o [ apdy=o],  w=wixHL(0n]), 2

where || - ||g := || - ”H,%erXHéu- We will see below that Grillakis et al’s approach in [4] can be

used to obtain the stability of v, by perturbations belonging to ¥. In fact, in this case we
consider & defined on the space ¥ and so the cnoidal waves . is a critical point, namely,
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forv = (f,g) €%, we obtain

To
F (ye)v = ((—Ay,,0),v) = —Ay, ) fdx=o0. (5.3)

More exactly, we obtain the following stability result associated to system (1.10).

THEOREM 5.1. Consider ¢ with 0< ¢*< min{1,a/b} and let {y.} be the cnoidal wave branch
of period Ty given in Theorem 3.1. Then, for c satisfying the conditions in Theorem 4.3, the
orbit {(y:(- +5),—cye(- +5))}ser is stable in X with regard to Ty-periodic perturbations
and the flow generated by system (1.10). More precisely, given any € >0, thereisa & = §(€)
such that if (qo,10) € & and ||(qo,70) — (We, —cye)llgr < 8, then

inf||(q(t),r(£)) = (we(- +5), —cye(- +5)) || < € (5.4)

seR

for all t, where (q(t),r(t)) is the solution of system (1.10) with initial value (g, o).

The proof of Theorem 5.1 needs some preliminary results. First of all, we have to es-
tablish the existence and uniqueness of global mild periodic solutions for the periodic
Cauchy problem associated with system (1.10), and second, we need to study the peri-
odic eigenvalue problem associated with the operator F" (v, —cy.).

5.1. Global existence and uniqueness of mild solutions. The proof of global mild so-
lution for system (1.10) follows by the use of classical theory of semigroups. We will use
that #€ in (2.8) is conserved in time along classical solutions of system (1.10) to prove that
local mild solutions are already global mild solutions. To do this, we will use a density ar-
gument and the fact that the nonlinear part has a nice behavior (see [17]). We start by
rewriting the first-order system (1.10) as

(9 ()4 ).

0 o q 0
M= <8xBlA 0)’ o (r) - (—Bl(rqx+zqrx)>- (5.6)

In order to study the initial value problem for system (5.5), we have to consider the
natural spaces given by the Hamiltonian #. In other words, we will seek for solutions
(q(t,),r(t,-)) € H;,er([O, To]) % H;,er([O, To]). We start discussing some properties of the
operator M which is defined in the Hilbert space Hﬁer([O, To]) X Hﬁer([O, To]). In this
space, we have that M € L(H., ([0, To]) X Hp, ([0, To]), Hpe, ([0, To]) X Hp, ([0, To])).
Moreover, M is the infinitesimal generator of a bounded Cy-group ¥ (¢) on ngr( [0,Ty])

X H}o ([0, To)). If we define S'(t) := S P (4)e2 ™ To it can be shown by using

where
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Fourier series that the n-symbol for $!(¢) is

sin (nA(n)t)
o ( . lA(n))’ with () = LA AT
iN(n)sin (nA(n)t)  cos(nA(n)t) 1+4nb|n|?/T;
(5.7)

Now note that B~! is a bounded linear operator from Lper( [0, Ty]) to ngr( [0, Ty]) since
it is defined as

B o0 1 ~ ) o] ;
Bf-2 (1+4bnznz/T§>f”eZm”X/T°7 for f = 3 fue™™/™ € L3 ([0,To)).
(5.8)

On the other hand, if f € H, per ([0,To]), then f € L*(R). Thus, if we assume that (q,7) €

Per([0 To]) X Héer([O To]), then g and r are bounded functions. Since gy, 7y € Lper, we
conclude that rqx +2grx € L3, ([0,To]), and so we have that B~ (rqx +2qry) € Hp,([0,
To]). In other words, we have shown that 9; maps Hper([O, To]) X H;er([O, To]) into

per([0 To]) X ngr([o Ty]), meaning that %, gains some regularity. Moreover, inequality

1B~ (r1(q1), +241(r1),.) = B~ (r2(2) . + 242 (r2) Mgz, < [(q15m1) = (q272) gy e

per per

(5.9)

implies that %, is locally Lipschitz from H, per([0 To]) % Héer([O, To]) into Héer([O, To]) X

Hy, ([0, To]). Using this fact, it is easy to prove the following existence and uniqueness
result.

THEOREM 5.2. Let (qo,70) € Per([0 To]) X HFl,er([O, To]). The initial value problem

a\ _.,(4 q

(T>t =M <r> +6, <r> : (5.10)
q _(a
(r> (0,) = (rz) (5.11)

has a unique global mild solution (q(t,-),r(t,-)) € H}..([0,To]) X 1Der([O Tol).

per

CoRrOLLARY 5.3. Let (qo,70) € X. Then (q(t,-),r(t,-)) solution of (5.10) with initial data
(qo>10) belongs to X for all t € R.

Corollary 5.3 is a direct consequence of Theorem 5.2 and the conservation property of
the functional

To
M(g,r) = . q(x)dx (5.12)

by the flow of (5.10).
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Proof of Theorem 5.2. The first step to prove this result is to show local (in-time) existence
and uniqueness of Ty-periodic classical solutions for initial data (qo, 1) € H;er( [0, Tp]) x

Per([0 Ty1), which follows because M is the infinitesimal generator of a bounded Cp-
group S(t) in Hp, ([0, To]) X Hp,([0, To]) and 4, is locally Lipschitz form Hy,,([0, To]) X
per([0 To]) to Hﬁer([O To]) X per([0 To]). Now, from the variation of constants for-
mula, we can obtain for a (g,7) — H2,, X H., solution the a priori bound

per per
D <q> (t,") < c( ’ (q) (t,") ) (5.13)
r L2x12 4 Hjoe XH e

+t
L[2x1?

(1)

Since the Hamiltonian % (equivalent norm in H},, X Hp,,) is a conserved quantity in time

on classical solutions for (5.5), it follows that any local Ty-periodic classical solution in

Per([0 To]) X ngr([O, To]) can be extended to [0, o).
The second step is to prove that a local mild Ty-periodic solution (g,7) € per( [0, To])
X Hp, ([0, To]) exists with initial data (qo,70) € Hpe ([0, To]) X Hpe, ([0, To]), which fol-
lows from classical semigroup theory.
Finally, by using that the embedding per( [0, Ty]) — ngr( [0,Ty]) is dense and we have
classical solutions in H;er( [0, To]) x per( [0, To]), we prove that the Hamiltonian ¥ is also

conserved in time on mild Ty-periodic solutions, and therefore for any #, > 0 we have

(e

which implies global existence. O

lim
t1ty

< 00, (5.14)
H} ., xH}

per per

5.2. Spectral analysis for F"'(y.,—cy.) = H'"'(ve, —cye) + N (Yo, —cy.). As already
known, the study of the periodic eigenvalue problem considered on [0, Ty] is required
to use the stability theory outlined in [3, 4]. The spectral problem in question is given for

Ex =My,
’ ’ (515)
x(0)=x(To),  x'(0)=x'(To),
where
. ( ) 1—ad2+3cy. c(1—bd?%) (5.16)
=% o W) = > .
Yooy c(1-b32)  1-b

¥, being the cnoidal wave solution given in Theorem 3.1 for 0 < ¢? < min{1,a/b}. The
following result is obtained in this context.

THEOREM 5.4. Let 0 < ¢ < min{1,a/b} and let v, be the cnoidal wave given in Theorem 3.1.
Then the periodic eigenvalue problem (5.15) on Hp., ([0, Tol) X Hp ([0, To]) has exactly a
negative eigenvalue which is simple. A = 0 is a simple eigenvalue with eigenfunction (v,

—cy.)! and the rest of the spectrum is bounded away from zero.
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Proof. The proof is based on the min-max principle and Theorem 4.1. Indeed, for { =

(yl,—cyl)t, it follows that £{ = (L,y!,0)" = (0,0)". In other words, A = 0 is an eigen-

value of & with eigenvector { = (y.,—cy.)". Moreover, A = 0 is simple. In fact, con-

sider y = (f,£)" such that £y = (0,0)". Then we obtain that ¢ = —cf and £, f = 0.

So, f = ay/, and therefore (f,g) = a(y/,—cy.), showing that A = 0 is simple. Now, for
= (f,g)", it is easy to see that

(PO = (Lenf o f) + B2 f + B¢l (5.17)

where B2 is the square root of the positive linear operator B and (-,-), {-,-) represent
the scalar products in L? X L? and L?, respectively. So, by taking yo such that L,y =
Aoxo for Ag < 0, we obtain from (5.17) that (£, (o) = (Len)o,x0) <0 for {o = (x0, —cxo)"-
Therefore, & has a negative eigenvalue. Now, we show that this negative eigenvalue is
unique, and so will be simple. In fact, let {; = (x0,0)" and { = (¥/,0)". Then for ¢ =
(f>9)% llell = 1, it follows from min-max principle that the third eigenvalue for &£, #3
satisfies

ms=sup inf (ZLg,0)= inf (Fg,¢)
[61,6] PLE9LE 910,910

, (5.18)
= inf [( cnf’f> + HCBl/zf"'Bl/zg” ] 2 >0,
fLxo. fLyi
where in the last inequality we have used Theorem 4.1. So, we finish the theorem. O

Now we focus on a mean-zero branch {y.} of cnoidal waves as was guaranteed by
Theorem 3.1. As we saw in (4.25),

To
d'(c) = —L [cwg Tbe(yl) - %wf]dx. (5.19)

Next, differentiating (3.2) with respect to ¢, we also have for { = (d/dc)(y,, —cy.) that

t_ _ é 2 _ i _ )t
Pl = (th//C 21115 ch"’" By, | . (5.20)
Thus we obtain the basic relation
r’ d
—(L{¢) =d (o) = oV (o —cye). (5.21)

We note in this point that even if we have that { € & and (£{*,{*) < 0, we cannot
assure that the restriction of & to &, £|y, will have a negative eigenvalue. In fact, since &
in general does not map vectors with first component having mean zero in vectors with
this same property, we cannot perform a min-max principle’s argument for £|y.

Proof of Theorem 5.1. Next, for convenience of the readers, we will establish the basic
changes in the abstract theory by Grillakis et al. such that we can apply it to the so-
lutions 1,55 = (Yo, —cy). In fact, from [4, Lemma 3.2], there exist € >0 and a C' map
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a:Ue — R/Ty, where

U = {P € Hi([0,To]) x H}er ([0, To]) :

(5.22)
1nf||p (we(-+5), —cye(- +59)) ||HI <HY, Se}

such that for all f; e U,
(Ta@)p,t/fc') =0, T,p=p(-+a). (5.23)

Now, from (5.20), (5.21), and Theorem 4.3 which assure that d’(c) > 0, we can use the
ideas in [4, Theorem 3.3] and [18] to show that

n =inf {(L9,9) : (p,&) = (9, v") =0, llplI> = 1} >0, (5.24)

where & = (cBy. — (3/2)y? — (d/dc)Ay.,—By,) has the main property that £* = &L
Moreover, from (5.24) and from the specific form of &, there is a positive constant f3
such that if (¢,&) = (go,lﬁ’) =0, then

(Lo, 0) >/3||<pHH1 HL - (5.25)

per

Now for p = (p,r) with fOTO pdx =0, write Ta(;)ff — ¥, = & + ¢, where (¢,&) = 0. Then
by taking N'(p) = N'(y;) and Taylor’s theorem, we have

(5.26)

H}lerXH;ler ) :

(N’(vfc) 1,5 P — V) +O(llrz) P — el

So, we obtain that 4 = O(ll 7,5 P — lﬁllfqgernger).
Considering L(Z;) = %(E) +cN (ﬁ ), then another Taylor expansion gives

— — — ;= 1,., ,—
L(P) = L(Toc(f)') P) = L(‘//c) + <L (l//c))v> + E (L (V’C)Va V) +0(||V||12F153r><H1§ﬂ)> (5.27)

where v = 7,57 — V. Now, for v = (f,g), we have [, f dx = 0. Therefore, since

To
L'(ye)v = —((Ay,,0),v) = —Ay, . fdx=0, (5.28)
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N(p)=N(y.) and L" () = &, we get
- - 1 5 1 ,
H(P)— (W) = S (Evv) +o(Ivlliy g, ) = 5 Lon@) +o (vl ) (5:29)

Now, since (Iﬁ’,fc) =0, it follows from (5.23) that (go,l/_/;’) = 0. Therefore, (5.25) implies
that

H(B) = H(¥e) Z 5 Dlgllyy ppy +0(IvIFy i) (5.30)

per

N | —

for some constant D > 0. Finally, since [|¢|| HloxHl, = vl HloxHly — O(”V”%igangcr)’ we
obtain that for ||v|| H}. % H] small enough,

per

H(P) — 9(v0) Z Dillray P — Velliny, g, (531)

forall p = (p,r) € Ue which satisfy N(7) = N(¥;) and J,° pdx = 0.

Thus by using standard arguments, we show from inequality (5.31) and from the in-
variance of the functional M(p,r) = fOTO p(x)dx with regard to system (1.10) that the orbit
{(ye(- +5), —cye(- +5))}ser is stable in &. O

6. Orbital stability for the Benney-Luke equation

In order to prove the stability of periodic solutions for the Benney-Luke equation, we have
to establish existence and uniqueness of mild solutions in an appropriate space for the
Cauchy problem associated with (1.1). We start by defining the natural space to consider
the existence result. Let

% = {we Cp,([0,To]) : wx € Hy, ([0, To )}, (6.1)

and define the equivalence relation on % given by: u ~ v if and only if u(x) — v(x) = 6 for
x € R and 6 a real constant. Now define the quotient space Y = %/ ~ with the norm

Ml = [yl = el Vuelyl (6.2)
Let (V1 - llv) be the closure of Y with respect to || - [ly. In particular, if [®] € ¥,
(@l = 1T@ oy = [Pl (6.3)

Hereafter we will identify any equivalence class with a representative. Roughly speaking,
the space V' can be viewed as the closure of # with respect to the “norm” || - ||4-. Moreover,
as we will see below, V' can be identified with the space W'! through the linear operator dy.
So, it will give us an easy way to recover all the stability theories associated to system (1.10)
in W' to V. Finally, we note that as (1.1) is invariant by the translation ® — ® + const, V'
is a natural space to be considered in our stability study.
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Now we have to note that the Benney-Luke equation can be written as the system in

the variables ® and ®; = r,
) [} 0]
<r>t:M0<r>+(g0(r>, 4

where operators My and % are given by

0 1 <D 0
Mo= <8§BIA 0)’ o (r) - (—Bl(rd)xx+2®xrx)>' (65)

It is not hard to verify that associated with the linear operator M, there exists a ¥, group
defined in V" x Hy,,, whose Fourier symbols are given by

sin (nA(n)t)
@n(t) _ ( cos (nA(n)t) A ) (6.6)
—nA(n)sin (nA(n)t) cos (nA(n)t)

In this paper, we are going to say that a mild solution of the Benney-Luke equation (1.1)
with initial data (ug,u;) is a couple (®,r) such that

((D,T) € C(IRtJOVXHper([O)TO]))’ (67)

and it satisfies the integral equation

(f) <r>=5fo<t< ) [ y)%( )(y)dy (6.8)

The first observation is that we have the following relationship between ¥ and ¥5:

(aox (I’) Py = S, (% ?) , (6.9)

where 9, is the bounded linear map defined from V" to W such that 9,(®) = @’ for
® € Y. Moreover, each element in W' induces an element (antiderivative) in %'. More
precisely, there is an operator 9, ! : W' — V" defined by

Z Qn Zmnx/T() for q Z n eZlnnx/Tn c owl (6.10)
n#0

0, (q)(x) 2

Note that d;!(q) is a well-defined element in V" since the sequence {®} = Cper( [0, To])
defined by

1 n=k )
Dp(x) === > n gimns/Ty (6.11)
T n#0,n=—k mn
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is a Cauchy sequence in %Y. So, we have that

n=k
9:(9:'(9)) = Eg@k = 1111‘1‘1 > guerm™ =g, (6.12)
n#0,n=—k

Moreover, it is easy to see that d; ! is a bounded linear operator. As a consequence of this
fact, we obtain that 0;!0,® = @ for all ® € V.

We will see that the existence and uniqueness associated with the Benney-Luke equa-
tion (1.1) follow directly from the existence and uniqueness of mild periodic solutions
for the Cauchy problem associated with the Boussinesq system (1.10) (see Theorem 5.2).
In fact, let (ug,ro) €V % per([0 To]). Define (qo,r9) € & =W x H;er([O, To]) by qo =
Oxtp. Then from Theorem 5.2, there exists a unique global mild solution for (1.10),

(g7) € C(Rs W' x Hp, ([0, To])), (6.13)

such that (¢(0),7(0)) = (go,70) and

t
(2) (1) = 1 (t) (23) + L St - y)% (f) (y)dy. (6.14)

Next, define ®(¢) € V, ¢ € R, in such a way that O(t) = d;!g(t) or 9, D(¢) = g(t). As a
consequence of this, we conclude that

q\ _ () _ 0
& (r) =% (r) B (—B‘l(rCDxx+2CDxrx)>' (6.15)

Again, applying the operator (aél ?) to (6.14) and using (6.9), one can see that

(?)() Folt ( ) J%(t— <r>(y)dy. (6.16)

Therefore, we conclude that (®,r) is a mild solution of the Benney-Luke equation (1.1).
So, from Theorem 5.2 we obtain existence and uniqueness of mild solutions for (1.1) in
the space V" x per([0, Tol).

Finally, due to the equivalence between the Cauchy problems associated with the
Benney-Luke equation (1.1) and the Boussinesq system (1.10), we easily derived from
Theorem 5.1 the following stability result.

THEOREM 6.1. Consider ¢ with 0 < ¢ < min{1,a/b} and let {¢c} be such that ¢ = vy,
where . is the cnoidal wave of period T given in Theorem 3.1. Then, for c satisfying the con-
ditions in Theorem 4.3, the orbit {(¢(- +5), —cd (- +5))}ser is stable in V" X Hper( [0, To])
with regard to Ty-periodic perturbations and the flow generated by the Benney-Luke equa-
tion (1.1). More precisely, given any € >0, there is a § = 6(€) such that if (ug,r9) € V' X

Hye ([0, To]) and || (o, 70) — (e, —cp) llvxmy, < 6, then

§2£||(®(t)>r(t)) - (¢c( +S))_C¢2(' +5))||“¢/><ngr <€ (6‘17)

for all t, where (O(t),r(t)) is the mild solution (1.1) with initial value (uo, o).
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