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Viscosity approximation methods for nonexpansive nonself-mappings are studied. Let
C be a nonempty closed convex subset of Hilbert space H, P a metric projection of
H onto C and let T be a nonexpansive nonself-mapping from C into H. For a con-
traction f on C and {t,} < (0,1), let x,, be the unique fixed point of the contraction
Xty f(x)+(1— tn)(l/n)z;’zl(PT)jx. Consider also the iterative processes {y,} and
{z,} generated by y,11 = o f(yn) + (1 — ) (1/(n+ 1))Z?ZO(PT)Jyn,n >0, and z,41 =
(1/(n+ 1))2;’=0P(ocnf(zn) +(1 = ay)(TP) z,),n = 0, where ¥0,20 € C, {ary} is a real se-
quence in an interval [0, 1]. Strong convergence of the sequences {x,},{y.}, and {z,} to
a fixed point of T which solves some variational inequalities is obtained under certain
appropriate conditions on the real sequences {a,} and {¢,}.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Throughout this paper, we denote the set of all nonnegative integers by N. Let H be a real
Hilbert space with norm || - || and inner product (-, -). Let C be a closed convex subset of
H, and T a nonself-mapping from C into H. We denote the set of all fixed points of T by
F(T), thatis, F(T) = {x € C:x = Tx}. T is said to be nonexpansive mapping if

ITx =Tyl < llx— yll (1.1)
for all x, y € C. From condition on C, there is a mapping P from H onto C which satisfies

||x = Pcx|| = min [|lx — y|| (1.2)
yeC
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for all x € C. This mapping P is said to be the metric projection from H onto C. We know
that the metric projection is nonexpansive. Recall that a self-mapping f : C — C s a con-
traction on C if there exists a constant « € (0, 1) such that

[[fx)—fW| =allx—yll Vx,yeC (1.3)
We use Il to denote the collection of all contractions on C. That is,
II¢ ={f:f:C— Cacontraction}. (1.4)

Note that each f € II¢ has a unique fixed point in C.
Given a real sequence {#,} < (0,1) and a contraction f € Il¢, define another mapping
T,:C— Cby

=

1
Tox =ty f(x)+ (1 -ty —Z T)Yx Vn=1. (1.5)

3

It is not hard to see that T, is a contraction on C. Indeed, for x, y € C, we have

=Tl = 0 - 50+ (-0 & (S erye- S cemy )|
j=1 j=1
<tllf@ - FOl+ (1 -1) %Z (PTYx = (PTY| (16)

<tyallx — yll+ (1= t,) llx = yll
=(1-t,(1—a)llx—yll.

For each n, let x, € C be the unique fixed point of T,. Thus x, is the unique solution of
fixed point equation

n
xo =t f () + (1= £) 12 (PTYx, Vn> 1. (1.7)

:

One of the purposes of this paper is to study the convergence of {x,} when t, — 0 as
n — oo in Hilbert spaces. Fix u € C and define a contraction S, on C by

Spx = tqu+ (1 —1t,) Z PT)x Vn=x=1. (1.8)

3I>—‘

Let s, € C be the unique fixed point of S,,. Thus

1 < ,
$p=tau+ (1—1t,) —Z PT)s, Vn=1. (1.9)

3

Shimizu and Takahashi [1] studied the strong convergence of the sequence {s,} defined
by (1.9) for asymptotically nonexpansive mappings in Hilbert spaces.
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We also study the convergence of the following iteration schemes: for yy,z, € C, com-
pute the sequences {y,} and {z,} by the iterative schemes

1 n
Y1 = nf (yn) + (1 —ay —12 Yiyn, n=0, (1.10)
Znt1 =ﬁz (anf(zn) + (1 —ay)(TP)z,), n=0, (1.11)

where {a,} is a real sequence in [0,1], f : C — C is a contraction mapping on C, and P
is the metric projection of H onto C. The first special case of (1.10) was considered by
Shimizu and Takahashi [2] who introduced the following iterative process:

1 <.
Va1 =y + (1—ay)—— > Tly,, n=0, (1.12)
n+l:=

where y, y, are arbitrary (but fixed) and {«,} < [0,1] and then they proved the following
theorem.

TaEOREM 1.1 [2]. Let C be a nonempty closed convex subset of a Hilbert space H, let T
be a nonexpansive self-mapping of C such that F(T) is nonempty, and let Pr(r) be the met-
ric projection from C onto F(T). Let {a,} be a real sequence which satisfies 0 < a, < 1,
lim,—wa, =0,and >, &, = . Let y and yo be element of C and let {y,} be the sequence
defined by (1.12). Then { y,} converges strongly to Pr(r)y.

The second special case of (1.10) and (1.11) was considered by Matsushita and Kuroiwa
[3] who introduced the following iterative process:

n

st =y + (1= an) —— Z(PT)jym n=>0,

n (1.13)
1
Zp+l = ﬁg (nz+ (1 —a,)(TP)z,), n=0,

where y, z, yo, 2o are arbitrary (but fixed) in C and {a,} < [0,1]. More precisely, they
proved the following theorem.

TaeoreM 1.2 [3]. Let H be a Hilbert space, C a closed convex subset of H, P the met-
ric projection of H onto C, and let T be a nonexpansive nonself-mapping from C into H
such that F(T) is nonempty, and {a,} a sequence of real numbers such that 0 < a, < 1,
limy_way, =0, and X, g, = co. Suppose that {y,} and {z,} are defined by (1.13), re-
spectively. Then {y,} and {z,} converge strongly to Pg(ryy and Pr(ryz in F(T), respectively,
where Pg(ry is the metric projection from C onto F(T).

The purpose of this paper is twofold. First, we study the convergence of the sequence
{x,} defined by (1.7) in Hilbert spaces. Second, we prove the strong convergence of the
iteration schemes {y,} and {z,} defined by (1.10) and (1.11), respectively, in Hilbert
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spaces. Our results extend and improve the corresponding ones announced by Shimizu
and Takahashi [2], Matsushita and Kuroiwa [3], and others.

2. Preliminaries

For the sake of convenience, we restate the following concepts and results.

LEmMMA 2.1. Let H be a real Hilbert space, C a closed convex subset of H, and Pc : H — C
the metric (nearest point) projection. Given x € H and y € C, then y = Pcx if and only if
there holds the inequality

(x—y,y—2)=20 VzeC (2.1)

Definition 1. A mapping T : C — H is said to satisfy nowhere normal outward (NNO)
condition if and only if for each x € C, Tx € S¢, where S, = {y € H: y # x, Py = x} and
P is the metric projection from H onto C.

The following results were proved by Matsushita and Kuroiwa [4].

LEMMA 2.2 (see [4, Proposition 2, page 208]). Let H be a Hilbert space, C a nonempty
closed convex subset of H, P the metric projection of H onto C, and T : C — H a nonexpan-
sive nonself-mapping. If F(T) is nonempty, then T satisfies NN O condition.

LemMa 2.3 (see [4, Proposition 1, page 208]). Let H be a Hilbert space, C a nonempty
closed convex subset of H, P the metric projection of H onto C, and T : C — H a nonself-
mapping. Suppose that T satisfies NNO condition. Then F(PT) = F(T).

LeEMMA 2.4 (see [4]). Let H be a Hilbert space, C a closed convex subset of H, and T: C — C
a nonexpansive self-mapping with F(T) # O@. Let {x,} be a sequence in C such that {x,+1 —
(1/(n+1)) ,"jll Tix,} converges strongly to 0 as n — oo and let {xn; } be a subsequence of
{xu} such that {x,,} converges weakly to x. Then x is a fixed point of T.

Finally, the following two lemmas are useful for the proof of our main theorems.

LeEMMma 2.5 (see [5]). Let {a,} be a sequence in [0,1] that satisfies lim,_. a, = 0 and
S0y = . Let {a,} be a sequence of nonnegative real numbers such that for all € >0,
there exists an integer N > 1 such that for alln > N,

anr1 < (1= ap)an, + aye. (2.2)

Then lim,,—.« a, = 0.

LEmMA 2.6 (see [5]). Let H be a Hilbert space, C a nonempty closed convex subset of H,
and f : C — C a contraction with coefficient o« < 1. Then

(x=yp,U=x=U-fNy) =1 -)llx—ylI>, xyeC (2.3)

Remark 2.7. As in Lemma 2.6, if f is a nonexpansive mapping, then

(x—y3,I-flx—I-f)y)=0 Vx,yeC (2.4)
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3. Main results

TueoreM 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H, P the met-
ric projection of H onto C, and T : C — H a nonexpansive nonself-mapping with F(T) #+ &.
Let {t,} be sequence in (0,1) which satisfies lim, .. t, = 0. Then for a contraction mapping
f: C — C with coefficient a € (0,1), the sequence {x,} defined by (1.7) converges strongly
to z, where z is the unique solution in F(T') to the variational inequality

(I-f)z,x—2z) =0, xe€F(T), (3.1)

or equivalently z = Pg(r) f (z), where Pp(r) is a metric projection mapping from H onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies NNO condition by Lemma 2.2.
We first show that {x,} is bounded. Let ¢ € F(T). We note that

o=l = [ () + (1= 0 S PTYx,
j=1
<[t -+ - S @ -eryg)| B
j=1
<tlf () —all+ (1= )llva—qll ¥n=1
So we get
s = all < 11£ (o) = all <117 () = f@II+117@) ~ gl .
<allx,—qll+lIf (@) -qll Vn=1, |
Hence
bon—all < I f@ —qll ¥n=1 (3.4)

This shows that {x,} is bounded, so are { f(x,)}, {(1/n) 27:1 (PT)ix,}. Further, we note
that

n

$u— = S (PT)x,
n

n

b f (en) + (1— 1) %Z PTYx,— 1 3 (PT)x,
j=1 j=1

=to||f

1< :
Xn _;Z PT) x,

(3.5)

Z PT)x,

1
— )—»0 asn — oo,
n

stn(||f(xn>||+



6 International Journal of Mathematics and Mathematical Sciences

Thus {x, — (1/n) z] ((PT)ix,} converges strongly to 0. Since {x,} is a bounded se-
quence, there is a subsequence {x;, ; } of {x,,} which converges weakly to z € C. By Lemmas
2.3 and 2.4, we have z € F(T). For each n > 1, since

1 n
Xn—2z=t,(f (xn) — l—t,,zz (PT)/x, - z2), (3.6)
j=1
we get

||x,,—z||2=(1—tn <li (PT) x, —z), x,,—z>+tn(f(x,,)—z,xn—z)
o (3.7)

= (1 —tn Hxn_ZH +tn<f(xn) -2 Xn—Z>.

Hence
[l —2lI* < (f () = 2, %4 = 2)
= (f(x) = f(2), X0 —2) +{f(2) = 2, %0 — 2) (3.8)
< af|xy — 2| + (f(2) — 2, %4 — 2).
This implies that
=2l < —— (x,— 2, f(2)-2) (3.9)
n — 1 —a n > . .
In particular, we have
1
||xn].—z||25 1_Oc(xnj—z, f(z) - z). (3.10)
Since x,; — 2, it follows that
Xn; — Z as j — oo. (3.11)

Next we show that z € C solves the variational inequality (3.1). Indeed, we note that

ln
X = taf (%) + l—tn—z TYx, Vn=>1, (3.12)

3

we have

1-t, 1<
(I = flxn=— . (xn ;Z

(PT)/xn> (3.13)
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Thus for any g € F(T'), we infer by Remark 2.7 that

<(I_f)xn> xn_q> :_1;tn<(1_%Z(PT)j>xm xn_q>

j=1
Sk —li PT) |x,— (I- li(PT)/ Z, % —q
tVl n - pa n nJZI y i
<0 Vn=z=1
(3.14)
In particular
((I=f)xn Xn,—q) <0 Vj=1 (3.15)
Taking j — oo, we obtain
(I-f)z,z—q) <0 VqeF(T), (3.16)

or equivalent to z = Pr(y) f (z) as required. Finally, we will show that the whole sequence
{x,} converges strongly to z. Let another subsequence {x,,} of {x,} be such that x,, —
z' € Cask — co. Then z’ € F(T), it follows from the inequality (3.16) that

(I-f)z,z=2') <0. (3.17)
Interchange z and z’ to obtain
(U=, 2 -z) <o. (3.18)
Adding (3.17) and (3.18) and by Lemma 2.6, we get
A-a)llz=2IP<(z=2, I~ fz—I - f)Z') <0. (3.19)

This implies that z = z’. Hence {x,} converges strongly to z. This completes the proof.
O

TaEOREM 3.2. Let C be a nonempty closed convex subset of a Hilbert space H, P the metric
projection of H onto C, and T : C — H a nonexpansive nonself-mapping with F(T) + &.
Let {an} be a sequence in [0,1] which satisfies limy—c ay = 0 and >, | &, = oo. Then for
a contraction mapping f : C — C with coefficient « € (0,1), the sequence {y,} defined by
(1.10) converges strongly to z, where z is the unique solution in F(T) of the variational
inequality (3.1).
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Proof. Since F(T) is nonempty, it follows that T satisfies NN O condition by Lemma 2.2.
We first show that {y,} is bounded. Let g € F(T'). We note that

Iywe —qll = %fUn+U—au;$IZUWVm—QH

< ol f (yn) = qll+ (1= an)

32Tl

< aullf (yn) = f(@I + || f(q) - qll + (1= an)[yn —ql| (3.20)
< 0nt||yn — ql| + aal[ f(q) — gl + (1 = &) [[yn — 4l
= (1= an(1—a))||yn — qll + ol f(q) — gl|

<max{lly, - gl T lIf@-all} vn=1

So by induction, we get

= all = max |l = gl Il 7@ ~all |, n=o. (3.21)

This shows that {y,} is bounded, so are { f(y,)} and {(1/(n+1)) Z;‘:O(PT)fyn}. We ob-
serve that

anf (yn) + 1_0‘n

e

1 < ,
_ J
b jEZO(PT) In

Ay

1 < .
fyn) - Fray Z (PT) y,

IA

i, )

Hence {y,+1 — (1/(n+1)) Z;:O(PT)J' yn} converges strongly to 0. We next show that

ocn<||f(yn)||+ n+1j§,(PT

(3.22)

limsup (z — yu, z— f(2)) <0. (3.23)

n— oo

Let {yn,} be a subsequence of {y,} such that

lim (z - yu;, z— f(2)) —hmsup (z=yn z2— f(2)), (3.24)

j—oo
and y,, — q € C. It follows by Lemmas 2.3 and 2.4 that g € F(PT) = F(T). By the in-
equality (3.1), we get

limsup(z—yu, z— f(2)) =(z—q, z— f(2)) <0 (3.25)

n— 00
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as required. Finally, we will show that y, — z. For each n = 0, we have

yner =2l = llynn — 2+ aul(z = £(2) — au(z— F ()]’
<|ynr1 —z+an(z— f(2)) || +20,(yn+1 — 2, f(2) —2)

= “nf()’n) 1_“n Z PT)]}/n “nf(z)+(1_“n)z)
]=0

+20, (yni1 — 2, f(2) —2z)

n

Z (PT)/y

j=0

= [l (f (yn) = f(2)) + (1 — )

[—
[—

+ 20 (Yur1 — 2, f(2) —2) (3.26)

IA
=
o

llf () = f@I[+ (1 - )

1y, |
+20, (Yn1 — 2, f (2) — 2)
n 2
1
< | w2+ (1-a,) i3 |yn—z||]

+200 (Yni1 — 2, f (2) — )
= (1- (1= @)*|lyn = 2l|" + 200 (i1 — 2 f (2) — 2)
<(1-a,(l -« ||yn—z\| +20, (Yur1 — 2 f (2) — 2).

Now, let € > 0 be arbitrary. Then, by the fact (3.23), there exists a natural number N such
that

(z=yn, z2— f(2)) < Vn=N. (3.27)

From (3.26), we get
st =2l = (1= an(1 = @) ||yn — 2| + ane. (3.28)

By Lemma 2.5, the sequence {y,} converges strongly to a fixed point z of T. This com-
pletes the proof. O

By using the same arguments and techniques as those of Theorem 3.2, we have also
the following main theorem.

TaeoREM 3.3. Let C be a nonempty closed convex subset of a Hilbert space H, P the metric
projection of H onto C, and T : C — H a nonexpansive nonself-mapping with F(T) + &.
Let {a,} be sequence in [0,1] which satisfies limy—c ay = 0 and >, a, = . Then for
a contraction mapping f : C — C with coefficient o € (0,1), the sequence {z,} defined by
(1.11) converges strongly to z, where z is the unique solution in F(T) of the variational
inequality (3.1).
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