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1. Introduction

Let s, denote the class of all analytic functions f(z) of the form

flz) =2+ Z a,z" (1.1)
n=p+1
defined on the open unit disk
A={z:zeC:|z| <1}, (1.2)

and let 4, := 5. For f(z) given by (1.1) and g(z) given by
g2) =2+ D buz", (1.3)
n=p+1
their convolution (or Hadamard product), denoted by ( f * g), is defined as
(fxg)@) =2+ > aubuz". (1.4)
n=p+1

With a view to recalling the principle of subordination between analytic functions, let the
functions f and g be analytic in A. Then we say that the function f is subordinate to g if
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there exists a Schwarz function w(z), analytic in A with
w(0) =0, lw(z)| <1 (z€A), (1.5)
such that
f2)=g(w(z)) (z€A). (1.6)
We denote this subordination by
f<g or f(z2)<g@) (z€). (1.7)
In particular, if the function g is univalent in A, the above subordination is equivalent to
f(0)=g(0),  f(A)Cg(A). (1.8)

Let ¢(z) be an analytic function with positive real part on A with ¢(0) =1, ¢'(0) >0
which maps the open unit disk A onto a region starlike with respect to 1 and is symmetric
with respect to the real axis. Ali et al. [1] defined and studied the class S; p((/)) to be the
class of functions in f € 54, for which

L(lg@
b\p f(2)
and the class Cp, 5 (¢) of all functions in f € s, for which
1 1 ( zf"(z)
1——+—(1+
f'(2)

b bp
Ali et al. [1] also defined and studied the class Ry ,(¢) to be the class of all functions
f € s, for which

1+

1) <$(z) (zeA beC\(0}), (1.9)

)<</>(Z) (ze A, beC\{0}). (1.10)

1+

1<f'(2)

b er—q<¢@)(Z€Ab€C\mH- (1.11)

Note that Sf,(¢) = $*(¢) and Cy,1(¢) = C(¢), the classes introduced and studied by Ma
and Minda [2]. The familiar class $*(y) of starlike functions of order y and the class C(y)
of convex functions of order y, 0 < y < 1 are the special case of S{(¢) and C,;(¢), respec-
tively, when ¢(z) = (1+ (1 - 2y)z)/(1 - z).

Owa [3] introduced and studied the class H,(A, B,a, 3) of all functions f € sp satis-

fying

(1—ﬁ)(@)a+ﬁzf,(z)(f(z))“< L+Az (1.12)

zP pf(z) \ zP 1+Bz’

wherez€ A, -1 <B<A<1,0<f=<1,a=0. Wenote that H,(A, B,a,3) is a subclass of
Bazilevi¢ functions [4].

Motivated by the classes H,(A,B,a, ) and Ry ,(¢) studied, respectively, by Owa [3]
and Ali et al. [1], we now define a class of functions which extends the classes S;;p(gb),
H,(A,B,a,f), and Ry ,(¢) in the following.
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Definition 1.1. Let ¢(z) be a univalent starlike function with respect to 1 which maps the
open unit disk A onto a region in the right half-plane and is symmetric with respect to
the real axis, ¢(0) = 1 and ¢'(0) > 0. A function f € s, is in the class Ry p o,5(¢) if

Hé{(l _ﬁ)(fz(j))a+ﬁ;];((zz)) (fz(pz)y— 1} <¢(z) (0<p<1,a=0). (1.13)

Also, Ry papg(¢) is the class of all functions f € s, for which f * g € Ry p45(¢),
where g is a fixed function with positive coefficients.
The class Ry p.0,5(¢) reduces to the following earlier classes.
(1) Rppo,1(¢) = S;f)p(gb) introduced and studied by Ali et al. [1].
(2) Rpp,1,1(¢) = Ry, p(¢) introduced and studied by Ali et al. [1].
(3) Ri,1,4,1(¢) = B*(¢) introduced and studied by Ravichandran et al. [5].
(4) For ¢(z) = (1+Az)/(1+ Bz), the class Ry, 1,45(¢) reduces to H,(A, B,a, 3) intro-
duced and studied by Owa [3].
(5) For ¢(z) = (1+(1 = 2y)z)/(1 - z), the class R, 1 4,0(¢) reduces to

Hp(1-2y,~-1,0,0) = B, (y,a)

:{fesﬁp:Re<%>a>y,0§y<l,z€A}. (119
(6) For ¢(z) = (1+(1-2y)z)/(1 - 2), the class R 1 4,1(¢) reduces to
Hp(1-2y,~1,a,1) =6,(y,a)
f@(f@)"" (1.15)

:{fesﬁP:Re< >>y,0§y<1,zeA}.

(7) Ri10,1(¢) =S*(¢) [2].
Very recently, Ali et al. [1] obtained the sharp coefficient inequality for functions in the
class S ,(¢) and many other subclasses 5.

In the present paper, we prove a sharp coefficient inequality in Theorem 2.1 for the
more general class R 1 4,5(¢). Also we give applications of our results to certain functions
defined through Hadamard product. The results obtained in this paper generalize the re-
sults obtained by Ali et al. [1], Ma and Minda [2], Ravichandran et al. [5], and Srivastava
and Mishra [6].

Let Q be the class of analytic functions of the form

pzr!

w(z) = wiz+ w2+ - - - (1.16)
in the open unit disk A satisfying [w(z)| < 1.
To prove our main result, we need the following.
LemMa 1.2 [1]. Ifw € Q, then
-t ift<—1,
|wy—tw}| <41 if-1<t<]1, (1.17)
t o ift>1
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When t < —1 or t > 1, the equality holds if and only if w(z) = z or one of its rotations. If
—1 < t <1, then equality holds if and only if w(z) = z* or one of its rotations. Equality holds
fort = —1if and only if

A+z
w(z)=z1+AZ 0=<A<1) (1.18)

or one of its rotations, while for t = 1, the equality holds if and only if

(0<A=<1) (1.19)

or one of its rotations.
Although the above upper bound is sharp, it can be improved as follows when —1 <t < 1:

lwy —tw? | +(t+ 1) |w P <1 (~1<t=0),

(1.20)
lwy —tw? | + (1=t |wi|° <1 (0<t<1).
LemMA 1.3 [7]. If w € Q, then for any complex number t,
|wy — twl| < max {1;]¢}. (1.21)

The result is sharp for the functions w(z) = z or w(z) = z2.

LemMa 1.4 [8]. Ifw € Q, then for any real numbers q, and q,, the following sharp estimate
holds:

|ws +qiwiw, + qawi | < H(q1,92), (1.22)
where

(1 fOT (%»Qz) S D1 UD2,

g | for (q1,92) UDk>

ﬁmnm(ﬁ)m for (41,42) € Dy U Dy
H(qi,q2) =13 3([qr| +1+4q2) ’ ’

2 2 1/2
@ q1—4 )( qi —4 )
3 <q%_4q2 3(q2_1) for(quz)EDIOUDII\{iz)l},

1/2
2 B a1 -1
3(|q1| 1)<3(|q1|_1_q2)> for(ql’q2)€D12-

(1.23)
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The extremal functions, up to rotations, are of the form

(z[(1 = N)er + Aer ] — e1822)

_ .3 _ — =
wz) =2,  wi)=2z  w(z)=wlz) Tl =Me +de]z
_ _zh-2) _ _zt+z)
w(z) = wi(z) = I —he’ w(z) = wa(2) = 162
lei| = |ea| =1, er=to—e ™?(axb), & = —e N?(ia+b),
- % - _2.2@ _bia (1.24)
a—tocosz, b=./1-t;sin 5 A= T
; _[ 245 (q1 +2) - 347 ]”2 . (&yz
T (- 49 T B[ +1+q) )
t2=< lqi| -1 )”2 COS@:@[qz(qHS)—Z(q%H)]
(gl =1-q2)/) 2 2L 2qa(qi+2)-3q7 T
The sets Dy, k = 1,2,...,12, are defined as follows:
1
DF{(QI»‘D)Z |1 | <> |42 ﬁl}’
1
D= {(@a) i3 <ol <2 (al+0 = (ol +1) <q <1},
1
D; ={(q1’(12)1 r <5 qzﬁ—l}’
1 2
Dy ={(q1,qz):|q1| z 5 qzﬁ—g(|‘11|+1)})
={(qq) : g1 | <2, g2 =1},
Ds ={(q1,q2):2s a1 | <4, q2>—(q1+8)}
2
:{(thz)1|fi1|24,Q22—(|QI|—1)}’
1
D= {(ana) iy < lail <2 =S(al+D <@ <o (lal+1)’ = (ol +D},
_ . 2 2|q | (g ] +1) }
Dy= {(anar):lai| 22 ~S(lai| +1) = o= = LT
2qi | (|q1] +1) 1
Dw:{(qu)ﬁﬁ la1 | S4a%ﬁq S_(q1+8)}
2|lqi| (|q| +1) 2|f11| |Q1|—1}
1~ (s o =0, 20000100 2l 0
=) lal =4 me ~2lqi +4
2|lqi| ([ ] = 1) 2 }
D :{ N : 24, ————F——F——=¢q — —1
12 (91,92) : | q1 | ©—2|q| +4 3 (g1

(1.25)
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2. Coefficient bounds

By making use of Lemmas 1.2-1.4, we prove the following.

THEOREM 2.1. Let ¢(z) = 1+ Biz+ Byz> + B32> +

B, =20.Let0<f<1,a=20,0<u<1,and

- -, where B,;’s are real with B, > 0 and

n %{2(32‘31) —M%},
o yé?fa—%{”z—w%%“g)jm}, '

If f(2) given by (1.1) belongs to Ry,1,4,5(¢), then

p
ap+2f
- pBl

ap+2f

|ap+2 - Ha§7+l | =

ocp+2[3

Further, if 01 < u < 03, then

a4 L (o B2 lap+p)
|aps2 WP“|+2pB {2<1 Bl> ap+2p

If o3 < u < 0, then

1 B\ (ap+p)*
|apr2 = pap | " 2pB, {Z(HBl) ap+2p

For any complex number y,

lapsr — H“;zm | <

PBi j{
max
ap+2p
Further,

|ap+3| S

{B2 = pBIA(p, . B, 1)}

{B2 — pBiA(

pB:
ap+3p

ifu<o,

ifor <y <o, (2.2)

(P o)} ifp>0n

2 B
+(2[J+0€— l)pBl} |ap+1 |2 < ﬁ
(2.3)
B
(2‘u+oc—1pB1}|ap+1| oc;+12/3
(2.4)
A(p,oc/b’ e sz } (2.5)
H(lep)» (26)
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where H(q1,qz) is as defined in Lemma 1.4,

B, (I1-a)(ap+3p)

D= 2 P B apt2B)

By appla=DQa-D(ap+3p) . (1-a)ap+3p)
1

©=g

These results are sharp.

Proof. If f(z) € Rp,1,45(¢), then there is a Schwarz function

w(z) = wiz+ w2+ ---€Q

such that
() Y
Since
a-p(5) Fre ()

1 1
1+ E(ocp +B)apiz+ ﬁ(ocp +2B){2ap42 + (a — l)aéﬂ}zz

+(Xp;3/—’){ap+3+(‘x_ 1)ap+1ap+2+((x_1)6ﬁ“;+l}z3+' ey
from (2.9), we have
4 _ pBiw
p+l_0¢p+ﬁ)
= vl il () (o) -
W= g (T MIUPP U N aprpr) B ISP
B
Api3 = PoL b qrwiws + gswi},

ap+3p

where q; and g, as defined in (2.7). Therefore, we have

2 1
Ap+2 — Hapy = ocp+2,8{w2 —vwit,

where

B
V= PBIA(P)(X)ﬂ),u) - Ej

6(ap+pB)° *(ap+B)(ap+2p)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

The results (2.2)—(2.5) are established by an application of Lemma 1.2, inequality (2.5)
by Lemma 1.3, and (2.6) follows from Lemma 1.4. To show that the bounds in (2.2)—(2.5)
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are sharp, we define the functions Ky, (n = 2,3,...) by

Ken(2)\*  2K5,(2) (Kgu(2)\* o ,
R s R T

and the functions F) and G, (0 <A < 1) by

(l—ﬁ)(FA z)) zFAz (Fl(z ) (z(z+/\)>) F(0) = 0 = F(0) - 1,

f(z) 1+Az
Gr(2)\" ZG)L(Z) G2\ _ z(z+1) PSR
(1_ﬁ)( zP ) +ﬁPf(Z)< zP ) ¢( 1+Az )’ Gr(0) = 0= G,(0) (21"15)

Clearly, the functions Kg,,, Fx, Gy € Ry 1,0,5(¢). Also we write Ky := Kg,. If y < 01 or pt > 02,
then the equality holds if and only if f is K or one of its rotations. When 01 < yi < 03, then
the equality holds if and only if f is Ky3 or one of its rotations. If 4 = 1, then the equality
holds if and only if f is F) or one of its rotations. If 4 = 03, then the equality holds if and
only if f is G) or one of its rotations. O

Remark 2.2. For a =0 and f3 = 1, results (2.2)—(2.6) coincide with the results obtained
for the class S5 (¢) by Ali etal. [1].

Remark 2.3. For « =0, p =1 and f§ = 1, results (2.2)—(2.6) coincide with the results ob-
tained for the class $*(¢) by Ma and Minda [2].

Remark 2.4. For p =1 and 3 = 1, results (2.2)—(2.6) coincide with the results obtained
for the Bazilevic class B*(¢) by Ravichandran et al. [5].

3. Applications to functions defined by convolution

We define Ry, 4 0,54 (¢) to be the class of all functions f € 9, for which f * g € Ry p.45(¢),
where g is a fixed function with positive coefficients and the class Ry pq5(¢) is as de-
fined in Definition 1.1. In Theorem 2.1, we obtained the coefficient estimate for the class
Ry 1,0,(¢). Now, we obtain the coefficient estimate for the class Ry 1,4,54(¢).

THEOREM 3.1. Let ¢(z) = 1+ Byz+ Byz> + B3z® + - - -, where B,,’s are real with By >0 and
B, =0.Let0<f<1,a=00=<pu<1,and

=g§+1 (ap +B)? {Z(BZ_BI)_pB%(oc—l)(ocp+2[3)}’

gp+2 2pBi(ap +2p) (a+p)>
S (prpR g (@ Dp+2p)
= o 2B (ap+ 2B) {2(32 +B1) - pB; (a+p)> }’ o
_&n (ap+p)’ L (@=D(ap+2p) '
 gpe2 2B (ap +2P) {232 PBi (a+f)?2 }’

(ap +2B) (2p((gp+2)/ (gpn1)) +a — 1)
2(ap+f)? ’

AI(P,‘X,,B:ga#) =



C. Ramachandranetal. 9

If f(2) given by (1.1) belongs to Ry 1,4,5,¢(¢), then

(P 5 om .
(“p+2ﬁ)gp+2 {Bz pBlAl(P>(x>ﬁygaﬂ)} lf‘M<0'1,
pBi .
|ap+2—ya§+l|5<m ifor <y <oy,
D N T .
| (ap+2B)gpi2 B2 = pBiMi(papogow)} ifp>0n

Further, if 01 < y < 03, then

S 1 {2(1 &)((xp+[3)2

2
— +— —
|ap+2 Hap+1 | gp+2 zpB] B] ‘Xp +2/3

< 71)31
~ (ap+2P)gpia’

If o3 < u < 09, then

lap+a _[m?yﬂ | +

S 1 {2<1+@) (ap+p)?
gp+2 ZPB] B] “p+2ﬁ
. PB

(0€P+2[3)gp+2

For any complex number y,

pBi

2 __pBL pB _B
(a2 by | = G g max{l’ y Mlpapgu) =g }
Further,
pB1
|aP+3| = (“P+3ﬂ)gp+3H(qhq2)’
where H(q1,qz) is as defined in Lemma 1.4,
B, (1—a)(ap+3p)
=2—= B )
D=2 PP Gp 1 B)(ap +2B)
Bs oo (@—=1)2a—1)(ap+3p) (1—-a)(ap+3pP)
= 3 B .
g P T G apr pr P2 ap+B)ap+2p)

These results are sharp.

Proof. If f(z) € Rp1,ap,4(¢), then there is a Schwarz function

w(z) = wiz+ w2+ €Q

+Quta-— l)pBl}|ap+1 |2

—(2[4+(X— l)pBl} |ap+1 |2

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)



10  International Journal of Mathematics and Mathematical Sciences

such that

(1_/3)<(f *g)(Z)>“+ﬁZ(f xg) Z)( (f *x8)(z) ) ~ 6(w(2). (3.9)

zP (f xg)(z) zP
Hence
(f *8)(2) (f*g) (f *8)(2)
(1= ﬁ( zb )+ﬁ f*g(z)( zP )

14+ = (ocp+[3)ap+1gp+lz+ 2 (ap+2p){2api28p12 + (a 1)a§)+1g12)+1}z2

+ocp+3ﬁ
p

(a—1)(a=2) 5 ;4 }z3+---

4{a;wr3gp+3 +(a=1)apr1gp+1apr28p+rat Tapﬂgpﬂ
(3.10)

The remaining proof of the theorem is similar to the proof of Theorem 2.1 and hence
omitted. O

Remark 3.2. For a = 1 and f = 1, results (3.2)—(3.4) coincide with the results obtained
for the class Ry, ,(¢) by Ali et al. [1].

Remark 3.3. For p=1,a =0, and 3 = 1, results (3.5) coincide with the result for the class
S (¢) obtained by Ravichandran et al. [9].

Remark 3.4. For p=1,a=1,5=1,and ¢(z) = (1+Az)/(1+Bz), -1 <B<A <1, in-
equality (3.5) coincides with the result obtained by Dixit and Pal [10].

Remark 3.5. Forp=1,a=0,and f =1,

CIRI2-)) 2
£="T1G6-0  2-Xn

CT@re-A) 6
ST TTa-0) T 2-NG-A) (3-11)
8 16
B, = =y B, = 32

in inequalities (3.2)—(3.4), we get the result obtained by Srivastava and Mishra [6].

THEOREM 3.6. Let ¢(2) be as in Theorem 2.1. If f(z) given by (1.1) belongs to Ry pap¢(¢),
then for any complex number y, with B; >0, B, >20,0<f <1, a >0,

Ay (p, b, o, u,8)

B,
5 } (3.12)

Jap—pa | < LS max 1
P (ap+2B)gp+

where

(ap +2B) (2u((gp+2)/ (gp1)) +a—1)
2(ap + f)? '

AZ(p)byaaﬁ),“)g) = (313)
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Proof. The proof is similar to the proof of Theorem 2.1 and hence omitted. O

Remark 3.7. For p=1, =1, and a = 0, the result in (3.12) coincides with the results
obtained by Ravichandran et al. [9].
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