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1. Introduction

Let �p denote the class of all analytic functions f (z) of the form

f (z)= zp +
∞∑

n=p+1

anz
n (1.1)

defined on the open unit disk

Δ= {z : z ∈ C : |z| < 1
}

, (1.2)

and let �1 :=�. For f (z) given by (1.1) and g(z) given by

g(z)= zp +
∞∑

n=p+1

bnz
n, (1.3)

their convolution (or Hadamard product), denoted by ( f ∗ g), is defined as

( f ∗ g)(z)= zp +
∞∑

n=p+1

anbnz
n. (1.4)

With a view to recalling the principle of subordination between analytic functions, let the
functions f and g be analytic in Δ. Then we say that the function f is subordinate to g if
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there exists a Schwarz function ω(z), analytic in Δ with

ω(0)= 0,
∣∣ω(z)

∣∣ < 1 (z ∈ Δ), (1.5)

such that

f (z)= g
(
ω(z)

)
(z ∈ Δ). (1.6)

We denote this subordination by

f ≺ g or f (z)≺ g(z) (z ∈ Δ). (1.7)

In particular, if the function g is univalent in Δ, the above subordination is equivalent to

f (0)= g(0), f (Δ)⊂ g(Δ). (1.8)

Let φ(z) be an analytic function with positive real part on Δ with φ(0) = 1, φ′(0) > 0
which maps the open unit disk Δ onto a region starlike with respect to 1 and is symmetric
with respect to the real axis. Ali et al. [1] defined and studied the class S∗b,p(φ) to be the
class of functions in f ∈�p for which

1 +
1
b

(
1
p

z f ′(z)
f (z)

− 1
)
≺ φ(z)

(
z ∈ Δ, b ∈ C \ {0}), (1.9)

and the class Cb,p(φ) of all functions in f ∈�p for which

1− 1
b

+
1
bp

(
1 +

z f ′′(z)
f ′(z)

)
≺ φ(z)

(
z ∈ Δ, b ∈ C \ {0}). (1.10)

Ali et al. [1] also defined and studied the class Rb,p(φ) to be the class of all functions
f ∈�p for which

1 +
1
b

(
f ′(z)
pzp−1 − 1

)
≺ φ(z)

(
z ∈ Δ, b ∈ C \ {0}). (1.11)

Note that S∗1,1(φ)= S∗(φ) and C1,1(φ)= C(φ), the classes introduced and studied by Ma
and Minda [2]. The familiar class S∗(γ) of starlike functions of order γ and the class C(γ)
of convex functions of order γ, 0≤ γ < 1 are the special case of S∗1,1(φ) and C1,1(φ), respec-
tively, when φ(z)= (1 + (1− 2γ)z)/(1− z).

Owa [3] introduced and studied the class Hp(A,B,α,β) of all functions f ∈�P satis-
fying

(1−β)
(
f (z)
zp

)α
+β

z f ′(z)
p f (z)

(
f (z)
zp

)α
≺ 1 +Az

1 +Bz
, (1.12)

where z ∈ Δ, −1≤ B < A≤ 1, 0≤ β ≤ 1, α≥ 0. We note that H1(A,B,α,β) is a subclass of
Bazilevič functions [4].

Motivated by the classes Hp(A,B,α,β) and Rb,p(φ) studied, respectively, by Owa [3]
and Ali et al. [1], we now define a class of functions which extends the classes S∗b,p(φ),
Hp(A,B,α,β), and Rb,p(φ) in the following.
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Definition 1.1. Let φ(z) be a univalent starlike function with respect to 1 which maps the
open unit disk Δ onto a region in the right half-plane and is symmetric with respect to
the real axis, φ(0)= 1 and φ′(0) > 0. A function f ∈�p is in the class Rp,b,α,β(φ) if

1 +
1
b

{
(1−β)

(
f (z)
zp

)α
+β

z f ′(z)
p f (z)

(
f (z)
zp

)α
− 1

}
≺ φ(z) (0≤ β ≤ 1, α≥ 0). (1.13)

Also, Rp,b,α,β,g(φ) is the class of all functions f ∈ �p for which f ∗ g ∈ Rp,b,α,β(φ),
where g is a fixed function with positive coefficients.

The class Rp,b,α,β(φ) reduces to the following earlier classes.
(1) Rp,b,0,1(φ)≡ S∗b,p(φ) introduced and studied by Ali et al. [1].
(2) Rp,b,1,1(φ)≡ Rb,p(φ) introduced and studied by Ali et al. [1].
(3) R1,1,α,1(φ)≡ Bα(φ) introduced and studied by Ravichandran et al. [5].
(4) For φ(z)= (1 +Az)/(1 +Bz), the class Rp,1,α,β(φ) reduces to Hp(A,B,α,β) intro-

duced and studied by Owa [3].
(5) For φ(z)= (1 + (1− 2γ)z)/(1− z), the class Rp,1,α,0(φ) reduces to

Hp(1− 2γ,−1,α,0)≡�p(γ,α)

=
{
f ∈�p : Re

(
f (z)
zp

)α
> γ, 0≤ γ < 1, z ∈ Δ

}
.

(1.14)

(6) For φ(z)= (1 + (1− 2γ)z)/(1− z), the class Rp,1,α,1(φ) reduces to

Hp(1− 2γ,−1,α,1)≡�p(γ,α)

=
{
f ∈�p : Re

(
f ′(z)

(
f (z)

)α−1

pzp−1

)
> γ, 0≤ γ < 1, z ∈ Δ

}
.

(1.15)

(7) R1,1,0,1(φ)≡ S∗(φ) [2].
Very recently, Ali et al. [1] obtained the sharp coefficient inequality for functions in the
class S∗b,p(φ) and many other subclasses �p.

In the present paper, we prove a sharp coefficient inequality in Theorem 2.1 for the
more general class Rp,1,α,β(φ). Also we give applications of our results to certain functions
defined through Hadamard product. The results obtained in this paper generalize the re-
sults obtained by Ali et al. [1], Ma and Minda [2], Ravichandran et al. [5], and Srivastava
and Mishra [6].

Let Ω be the class of analytic functions of the form

w(z)=w1z+w2z
2 + ··· (1.16)

in the open unit disk Δ satisfying |w(z)| < 1.
To prove our main result, we need the following.

Lemma 1.2 [1]. If w ∈Ω, then

∣∣w2− tw2
1

∣∣≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−t if t <−1,

1 if − 1≤ t ≤ 1,

t if t > 1.

(1.17)
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When t < −1 or t > 1, the equality holds if and only if w(z) = z or one of its rotations. If
−1 < t < 1, then equality holds if and only if w(z)= z2 or one of its rotations. Equality holds
for t =−1 if and only if

w(z)= z
λ+ z

1 + λz
(0≤ λ≤ 1) (1.18)

or one of its rotations, while for t = 1, the equality holds if and only if

w(z)=−z λ+ z

1 + λz
(0≤ λ≤ 1) (1.19)

or one of its rotations.
Although the above upper bound is sharp, it can be improved as follows when −1 < t < 1:

∣∣w2− tw2
1

∣∣+ (t+ 1)
∣∣w1

∣∣2 ≤ 1 (−1 < t ≤ 0),
∣∣w2− tw2

1

∣∣+ (1− t)
∣∣w1

∣∣2 ≤ 1 (0 < t < 1).
(1.20)

Lemma 1.3 [7]. If w ∈Ω, then for any complex number t,

∣∣w2− tw2
1

∣∣≤max
{

1;|t|}. (1.21)

The result is sharp for the functions w(z)= z or w(z)= z2.

Lemma 1.4 [8]. If w ∈Ω, then for any real numbers q1 and q2, the following sharp estimate
holds:

∣∣w3 + q1w1w2 + q2w
3
1

∣∣≤H
(
q1,q2

)
, (1.22)

where

H
(
q1,q2

)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for
(
q1,q2

)∈D1∪D2,

∣∣q2
∣∣ for

(
q1,q2

)∈
7⋃

k=3

Dk,

2
3

(∣∣q1
∣∣+ 1

)
( ∣∣q1

∣∣+ 1
3
(∣∣q1

∣∣+ 1 + q2
)
)1/2

for
(
q1,q2

)∈D8∪D9,

q2

3

(
q2

1− 4
q2

1− 4q2

)(
q2

1− 4
3
(
q2− 1

)
)1/2

for
(
q1,q2

)∈D10∪D11 \ {±2,1},

2
3

(∣∣q1
∣∣− 1

)
( ∣∣q1

∣∣− 1
3
(∣∣q1

∣∣− 1− q2
)
)1/2

for
(
q1,q2

)∈D12.

(1.23)
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The extremal functions, up to rotations, are of the form

w(z)= z3, w(z)= z, w(z)=w0(z)=
(
z[(1− λ)ε2 + λε1

]− ε1ε2z
)

1− [(1− λ)ε1 + λε2
]
z

,

w(z)=w1(z)= z
(
t1− z

)

1− t1z
, w(z)=w2(z)= z

(
t2 + z

)

1 + t2z
,

∣∣ε1
∣∣= ∣∣ε2

∣∣= 1, ε1 = t0− e−iθ0/2(a∓ b), ε2 =−e−iθ0/2(ia± b),

a= t0 cos
θ0

2
, b =

√

1− t2
0 sin2 θ0

2
, λ= b± a

2b
,

t0 =
[

2q2
(
q2

1 + 2
)− 3q2

1

3
(
q2− 1

)(
q2

1− 4q2
)
]1/2

, t1 =
( ∣∣q1

∣∣+ 1
3
(∣∣q1

∣∣+ 1 + q2
)
)1/2

,

t2 =
( ∣∣q1

∣∣− 1
3
(∣∣q1

∣∣− 1− q2
)
)1/2

, cos
θ0

2
= q1

2

[
q2
(
q2

1 + 8
)− 2

(
q2

1 + 2
)

2q2
(
q2

1 + 2
)− 3q2

1

]
.

(1.24)

The sets Dk, k = 1,2, . . . ,12, are defined as follows:

D1 =
{(

q1,q2
)

:
∣∣q1

∣∣≤ 1
2

,
∣∣q2

∣∣≤ 1
}

,

D2 =
{(

q1,q2
)

:
1
2
≤ ∣∣q1

∣∣≤ 2,
4

27

(∣∣q1
∣∣+ 1

)3− (∣∣q1
∣∣+ 1

)≤ q2 ≤ 1
}

,

D3 =
{(

q1,q2
)

:
∣∣q1

∣∣≤ 1
2

, q2 ≤−1
}

,

D4 =
{(

q1,q2
)

:
∣∣q1

∣∣≥ 1
2

, q2 ≤−2
3

(∣∣q1
∣∣+ 1

)}
,

D5 =
{(
q1,q2

)
:
∣∣q1

∣∣≤ 2, q2 ≥ 1
}

,

D6 =
{(

q1,q2
)

: 2≤ ∣∣q1
∣∣≤ 4, q2 ≥ 1

12

(
q2

1 + 8
)}

,

D7 =
{(

q1,q2
)

:
∣∣q1

∣∣≥ 4, q2 ≥ 2
3

(∣∣q1
∣∣− 1

)}
,

D8 =
{(

q1,q2
)

:
1
2
≤ ∣∣q1

∣∣≤ 2, −2
3

(∣∣q1
∣∣+ 1

)≤ q2 ≤ 4
27

(∣∣q1
∣∣+ 1

)3− (∣∣q1
∣∣+ 1

)}
,

D9 =
{(

q1,q2
)

:
∣∣q1

∣∣≥ 2, −2
3

(∣∣q1
∣∣+ 1

)≤ q2 ≤ 2
∣∣q1

∣∣(∣∣q1
∣∣+ 1

)

q2
1 + 2

∣∣q1
∣∣+ 4

}
,

D10 =
{(

q1,q2
)

: 2≤ ∣∣q1
∣∣≤ 4,

2
∣∣q1

∣∣(∣∣q1
∣∣+ 1

)

q2
1 + 2

∣∣q1
∣∣+ 4

≤ q2 ≤ 1
12

(
q2

1 + 8
)}

,

D11 =
{(

q1,q2
)

:
∣∣q1

∣∣≥ 4,
2
∣∣q1

∣∣(∣∣q1
∣∣+ 1

)

q2
1 + 2

∣∣q1
∣∣+ 4

≤ q2 ≤ 2
∣∣q1

∣∣(∣∣q1
∣∣− 1

)

q2
1− 2

∣∣q1
∣∣+ 4

}
,

D12 =
{(

q1,q2
)

:
∣∣q1

∣∣≥ 4,
2
∣∣q1

∣∣(∣∣q1
∣∣− 1

)

q2
1− 2

∣∣q1
∣∣+ 4

≤ q2 ≤ 2
3

(∣∣q1
∣∣− 1

)}
.

(1.25)
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2. Coefficient bounds

By making use of Lemmas 1.2–1.4, we prove the following.

Theorem 2.1. Let φ(z)= 1 +B1z+B2z2 +B3z3 + ··· , where Bn’s are real with B1 > 0 and
B2 ≥ 0. Let 0 < β ≤ 1, α≥ 0, 0≤ μ≤ 1, and

σ1 := (αp+β)2

2pB2
1(αp+ 2β)

{
2
(
B2−B1

)− pB2
1

(α− 1)(αp+ 2β)
(α+β)2

}
,

σ2 := (αp+β)2

2pB2
1(αp+ 2β)

{
2
(
B2 +B1

)− pB2
1

(α− 1)(αp+ 2β)
(α+β)2

}
,

σ3 := (αp+β)2

2pB2
1(αp+ 2β)

{
2B2− pB2

1
(α− 1)(αp+ 2β)

(α+β)2

}
,

Λ(p,α,β,μ) := (αp+ 2β)(2μ+α− 1)
2(αp+β)2

.

(2.1)

If f (z) given by (1.1) belongs to Rp,1,α,β(φ), then

∣∣ap+2−μa2
p+1

∣∣≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

αp+ 2β

{
B2− pB2

1Λ(p,α,β,μ)
}

if μ < σ1,

pB1

αp+ 2β
if σ1 ≤ μ≤ σ2,

− p

αp+ 2β

{
B2− pB2

1Λ(p,α,β,μ)
}

if μ > σ2.

(2.2)

Further, if σ1 ≤ μ≤ σ3, then

∣∣ap+2−μa2
p+1

∣∣+
1

2pB1

{
2
(

1− B2

B1

)
(αp+β)2

αp+ 2β
+ (2μ+α− 1)pB1

}∣∣ap+1
∣∣2 ≤ pB1

αp+ 2β
.

(2.3)

If σ3 ≤ μ≤ σ2, then

∣∣ap+2−μa2
p+1

∣∣+
1

2pB1

{
2
(

1 +
B2

B1

)
(αp+β)2

αp+ 2β
− (2μ+α− 1)pB1

}∣∣ap+1
∣∣2 ≤ pB1

αp+ 2β
.

(2.4)

For any complex number μ,

∣∣ap+2−μa2
p+1

∣∣≤ pB1

αp+ 2β
max

{
1,
∣∣∣∣
pB1

2
Λ(p,α,β,μ)− B2

B1

∣∣∣∣
}
. (2.5)

Further,

∣∣ap+3
∣∣≤ pB1

αp+ 3β
H
(
q1,q2

)
, (2.6)
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where H(q1,q2) is as defined in Lemma 1.4,

q1 := 2
B2

B1
+ pB1

(1−α)(αp+ 3β)
(αp+β)(αp+ 2β)

,

q2 := B3

B1
+ p2B2

1
(α− 1)(2α− 1)(αp+ 3β)

6(αp+β)3
+ pB2

(1−α)(αp+ 3β)
(αp+β)(αp+ 2β)

.

(2.7)

These results are sharp.

Proof. If f (z)∈ Rp,1,α,β(φ), then there is a Schwarz function

w(z)=w1z+w2z
2 + ··· ∈Ω (2.8)

such that

(1−β)
(
f (z)
zp

)α
+β

z f ′(z)
p f (z)

(
f (z)
zp

)α
= φ

(
w(z)

)
. (2.9)

Since

(1−β)
(
f (z)
zp

)α
+β

z f ′(z)
p f (z)

(
f (z)
zp

)α

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +
1
p

(αp+β)ap+1z+
1

2p
(αp+ 2β)

{
2ap+2 + (α− 1)a2

p+1

}
z2

+
αp+ 3β

p

{
ap+3 + (α− 1)ap+1ap+2 +

(α− 1)(α− 2)
6

a3
p+1

}
z3 + ··· ,

(2.10)

from (2.9), we have

ap+1 = pB1w1

αp+β
,

ap+2 = pB1

αp+ 2β

{
w2−w2

1

{
pB1

(
α− 1

2

)(
αp+ 2β

(αp+β)2

)
− B2

B1

}}
,

ap+3 = pB1

αp+ 3β

{
w3 + q1w1w2 + q3w

3
1

}
,

(2.11)

where q1 and q2 as defined in (2.7). Therefore, we have

ap+2−μa2
p+1 =

pB1

αp+ 2β

{
w2− vw2

1

}
, (2.12)

where

v := pB1Λ(p,α,β,μ)− B2

B1
. (2.13)

The results (2.2)–(2.5) are established by an application of Lemma 1.2, inequality (2.5)
by Lemma 1.3, and (2.6) follows from Lemma 1.4. To show that the bounds in (2.2)–(2.5)
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are sharp, we define the functions Kφn (n= 2,3, . . .) by

(1−β)
(
Kφn(z)

zp

)α
+β

zK ′φn(z)

p f (z)

(
Kφn(z)

zp

)α
= φ

(
zn−1), Kφn(0)= 0= [Kφn

]′
(0)− 1

(2.14)

and the functions Fλ and Gλ (0≤ λ≤ 1) by

(1−β)
(
Fλ(z)
zp

)α
+β

zFλ(z)
p f (z)

(
Fλ(z)
zp

)α
= φ

(
z(z+ λ)
1 + λz

)
, Fλ(0)= 0= F′λ(0)− 1,

(1−β)
(
Gλ(z)
zp

)α
+β

zGλ(z)
p f (z)

(
Gλ(z)
zp

)α
= φ

(
− z(z+ λ)

1 + λz

)
, Gλ(0)= 0=G′λ(0)− 1.

(2.15)

Clearly, the functions Kφn, Fλ, Gλ ∈ Rp,1,α,β(φ). Also we write Kφ := Kφ2. If μ < σ1 or μ > σ2,
then the equality holds if and only if f is Kφ or one of its rotations. When σ1 < μ < σ2, then
the equality holds if and only if f is Kφ3 or one of its rotations. If μ= σ1, then the equality
holds if and only if f is Fλ or one of its rotations. If μ= σ2, then the equality holds if and
only if f is Gλ or one of its rotations. �

Remark 2.2. For α = 0 and β = 1, results (2.2)–(2.6) coincide with the results obtained
for the class S∗p (φ) by Ali et al. [1].

Remark 2.3. For α= 0, p = 1 and β = 1, results (2.2)–(2.6) coincide with the results ob-
tained for the class S∗(φ) by Ma and Minda [2].

Remark 2.4. For p = 1 and β = 1, results (2.2)–(2.6) coincide with the results obtained
for the Bazilevic class Bα(φ) by Ravichandran et al. [5].

3. Applications to functions defined by convolution

We define Rp,b,α,β,g(φ) to be the class of all functions f ∈�p for which f ∗ g ∈ Rp,b,α,β(φ),
where g is a fixed function with positive coefficients and the class Rp,b,α,β(φ) is as de-
fined in Definition 1.1. In Theorem 2.1, we obtained the coefficient estimate for the class
Rp,1,α,β(φ). Now, we obtain the coefficient estimate for the class Rp,1,α,β,g(φ).

Theorem 3.1. Let φ(z)= 1 +B1z+B2z2 +B3z3 + ··· , where Bn’s are real with B1 > 0 and
B2 ≥ 0. Let 0 < β ≤ 1, α≥ 0, 0≤ μ≤ 1, and

σ1 := g2
p+1

gp+2

(αp+β)2

2pB2
1(αp+ 2β)

{
2
(
B2−B1

)− pB2
1

(α− 1)(αp+ 2β)
(α+β)2

}
,

σ2 := g2
p+1

gp+2

(αp+β)2

2pB2
1(αp+ 2β)

{
2
(
B2 +B1

)− pB2
1

(α− 1)(αp+ 2β)
(α+β)2

}
,

σ3 := g2
p+1

gp+2

(αp+β)2

2pB2
1(αp+ 2β)

{
2B2− pB2

1
(α− 1)(αp+ 2β)

(α+β)2

}
,

Λ1(p,α,β,g,μ) := (αp+ 2β)
(
2μ
((
gp+2

)
/
(
g2
p+1

))
+α− 1

)

2(αp+β)2
.

(3.1)
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If f (z) given by (1.1) belongs to Rp,1,α,β,g(φ), then

∣∣ap+2−μa2
p+1

∣∣≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

(αp+ 2β)gp+2

{
B2− pB2

1Λ1(p,α,β,g,μ)
}

if μ < σ1,

pB1

(αp+ 2β)gp+2
if σ1 ≤ μ≤ σ2,

− p

(αp+ 2β)gp+2

{
B2− pB2

1Λ1(p,α,β,g,μ)
}

if μ > σ2.

(3.2)

Further, if σ1 ≤ μ≤ σ3, then

∣∣ap+2−μa2
p+1

∣∣+
g2
p+1

gp+2

1
2pB1

{
2
(

1− B2

B1

)
(αp+β)2

αp+ 2β
+ (2μ+α− 1)pB1

}∣∣ap+1
∣∣2

≤ pB1

(αp+ 2β)gp+2
.

(3.3)

If σ3 ≤ μ≤ σ2, then

∣∣ap+2−μa2
p+1

∣∣+
g2
p+1

gp+2

1
2pB1

{
2
(

1 +
B2

B1

)
(αp+β)2

αp+ 2β
− (2μ+α− 1)pB1

}∣∣ap+1
∣∣2

≤ pB1

(αp+ 2β)gp+2
.

(3.4)

For any complex number μ,

∣∣ap+2−μa2
p+1

∣∣≤ pB1

(αp+ 2β)gp+2
max

{
1,
∣∣∣∣
pB1

2
Λ1(p,α,β,g,μ)− B2

B1

∣∣∣∣
}
. (3.5)

Further,

∣∣ap+3
∣∣≤ pB1

(αp+ 3β)gp+3
H
(
q1,q2

)
, (3.6)

where H(q1,q2) is as defined in Lemma 1.4,

q1 := 2
B2

B1
+ pB1

(1−α)(αp+ 3β)
(αp+β)(αp+ 2β)

,

q2 := B3

B1
+ p2B2

1
(α− 1)(2α− 1)(αp+ 3β)

6(αp+β)3
+ pB2

(1−α)(αp+ 3β)
(αp+β)(αp+ 2β)

.

(3.7)

These results are sharp.

Proof. If f (z)∈ Rp,1,α,β,g(φ), then there is a Schwarz function

w(z)=w1z+w2z
2 + ··· ∈Ω (3.8)
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such that

(1−β)
(

( f ∗ g)(z)
zp

)α
+β

z( f ∗ g)′(z)
p( f ∗ g)(z)

(
( f ∗ g)(z)

zp

)α
= φ

(
w(z)

)
. (3.9)

Hence

(1−β)
(

( f ∗ g)(z)
zp

)α
+β

z( f ∗ g)′(z)
p( f ∗ g)(z)

(
( f ∗ g)(z)

zp

)α

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +
1
p

(αp+β)ap+1gp+1z+
1

2p
(αp+ 2β)

{
2ap+2gp+2 + (α− 1)a2

p+1g
2
p+1

}
z2

+
αp+3β

p

{
ap+3gp+3 + (α−1)ap+1gp+1ap+2gp+2 +

(α−1)(α−2)
6

a3
p+1g

3
p+1

}
z3 +··· .

(3.10)

The remaining proof of the theorem is similar to the proof of Theorem 2.1 and hence
omitted. �

Remark 3.2. For α = 1 and β = 1, results (3.2)–(3.4) coincide with the results obtained
for the class Rb, p(φ) by Ali et al. [1].

Remark 3.3. For p = 1, α= 0, and β = 1, results (3.5) coincide with the result for the class
S∗b (φ) obtained by Ravichandran et al. [9].

Remark 3.4. For p = 1, α = 1, β = 1, and φ(z) = (1 +Az)/(1 +Bz), −1 ≤ B < A ≤ 1, in-
equality (3.5) coincides with the result obtained by Dixit and Pal [10].

Remark 3.5. For p = 1, α= 0, and β = 1,

g2 := Γ(3)Γ(2− λ)
Γ(3− λ)

= 2
2− λ

,

g3 := Γ(4)Γ(2− λ)
Γ(4− λ)

= 6
(2− λ)(3− λ)

,

B1 = 8
π2

, B2 = 16
3π2

,

(3.11)

in inequalities (3.2)–(3.4), we get the result obtained by Srivastava and Mishra [6].

Theorem 3.6. Let φ(z) be as in Theorem 2.1. If f (z) given by (1.1) belongs to Rp,b,α,β,g(φ),
then for any complex number μ, with B1 > 0, B2 ≥ 0, 0 < β ≤ 1, α≥ 0,

∣∣ap+2−μa2
p+1

∣∣≤ p|b|B1

(αp+ 2β)gp+2
max

{
1,
∣∣∣∣bpB1Λ2(p,b,α,μ,g) +

B2

B1

∣∣∣∣
}

, (3.12)

where

Λ2(p,b,α,β,μ,g) := (αp+ 2β)
(
2μ
((
gp+2

)
/
(
g2
p+1

))
+α− 1

)

2(αp+β)2
. (3.13)
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Proof. The proof is similar to the proof of Theorem 2.1 and hence omitted. �

Remark 3.7. For p = 1, β = 1, and α = 0, the result in (3.12) coincides with the results
obtained by Ravichandran et al. [9].
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