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1. Introduction

For a real-valued, measurable function f defined on [0, o), its nth moment is defined as
su(f) = [y x"f(x)dx, n € N = {0,1,... }. Let (s)n=0 be a sequence of real numbers. If f
is a real-valued, measurable function defined on [0, o) with moment sequence (s,),>0,
we say that f is a solution to the Stieltjes moment problem (related to (s,),=0). If the so-
lution is unique, the moment problem is called M-determinate. Otherwise, the moment
problem is said to be M-indeterminate. When we replace N with Z we can formulate the
same problem (the so-called strong Stieltjes moment problem).

In [1-3], Stieltjes was the first to give examples of M-indeterminate moment problems.
He showed that the log-normal distribution with density on (0, o) given as

2
dy(x) = (27102)_1/2xlexp<— “;if) ), >0, (1.1)

together with the densities (a € [-1,1])

ds(x)(1+asin (2ro *logx)) = 0, (1.2)
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have all the moment sequence (e"°7”/2),-. So, the log-normal moment problem is M-
indeterminate.
In fact, for 5 € R, we have

sn(xPdy) =q~"P2, nez, (1.3)

where g = ™.
The Stieltjes’ example and the work in [4] gave rise to the present paper. By looking
for real-valued, measurable functions s such that

Zop(x) = xPd,(x){1+h(02log (xqP))} (1.4)

satisfies s,(gs5) = sn(xPd,) for all n € Z, we are faced (Proposition 2.1) with the problem
of characterizing the real-valued, measurable functions & satisfying

_ox2
Jexp( 5 )h(x+n)dx:0, Vnel. (1.5)
R

In particular, if & is a 1-periodic, real-valued, measurable function, then the last equality
is equivalent to

1
| 8ts2 oz -0, (16)
0
where 0 is the so-called theta function given by
0(x,t) = (4mt) "> > e WA (see [5, page 59]). (1.7)
nez

The 1-periodic, positive function 6 satisfies the heat equation on R2:

ou o*u
E(X, t) = ﬁ(x, t). (1.8)

Notice that if & satisfies (1.5) or (1.6), then so does ah, a € R. Moreover, when h is
bounded below (above), there is a € R such that 1 +ah > 0. Hence, in this case a proba-
bility density function can be obtained by a standard normalizing procedure.

It only remains for us to find some interesting 1-periodic functions h satisfying (1.6).
By setting h.(x) = g°/202M. '0(x +¢,2 '02)~" — 1, ¢ € [0,1), we obtain the well-known
classical solution (see, e.g., [4])

xc—l
Mc(q,=q"> ", —q'**/x3q) .,

we(x) = dy(x)(1+h. (0" *logx)) = (1.9)
to the log-normal moment problem, where M, is the constant that makes [, w.(x)dx = 1.
Information about theta functions and orthogonal polynomials can be found in [6].

To get more examples, for a > —1, we define the following function:

Ou(,t) = > (27rn) >0 gt sdmnix (1.10)

nez
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Clearly, 6, is a 1-periodic function in the variable x and satisfies the heat equation on R2.
In addition, for « > —1 and t;,t, > 0, we show that

Jolﬂ(y,tl)ﬂa(x—y,tz)dyzGa(x,t1+t2). (1.11)

Therefore, the following 1-periodic, continuous function satisfies the condition (1.6):
hyia(x) = 0u(y —x,1) = O (3,27 072 +1), y€[0,1), t>0. (1.12)
Furthermore, for o > —1, we have fol 04 (x,t)dx = 0 for all ¢ >0, thus the following 1-

periodic, continuous function satisfies the condition (1.6):

hea(x) = 0u(x,)0(x,27072) ", >0, a>—1. (1.13)

In [7, 8], Christiansen also generates new measures from old ones. The similarity of his
work with the one developed here comes from the quasiperiodicity of the theta function.

The paper is organized as follows. Preliminaries are given in Section 2. We define the
family {0} =1 of heat functions in Section 3, where more functions / satisfying (1.6) are
shown. The last two sections refer to the generalized Stieltjes-Wigert and the g-Laguerre
moment problems, respectively. Finally, we show a nonperiodic, continuous function h
fulfilling the condition (1.5).

2. Notation and preliminaries
For (x,t) € R, let (see [5, pages 33, 59])

K(x,t) = (4ﬂt)71/ze—x2/4t’
0(x,t) = Z K(x+n,t) = Z ef4n2n2t+27mix‘ (2.1)

nez nez

The positive functions K, 6 satisfy the heat equation on R2. Clearly, 0 is a 1-periodic
function in the variable x. Moreover,

1
JK(x,t)dle, Je(x,t)dle, V0. (2.2)
R 0

For ¢ € [0,1), we set

0(x270?)

A J O(x+c,21072) x 23)

Throughout this paper we will write ¢ = e™", ¢ > 0 fixed. The density of the log-
normal distribution with parameter ¢ can be written as

dy(x) = iK(logx,zflaz). (2.4)
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For € R, we have
xPd,(x) = P F"d, (xqP). (2.5)

Therefore,

55(dy) = L B, (x)dx = g P L d, (x)dx

(2.6)
_ q_ﬁ2/2 I K(x)z—lo_Z)dx _ q_[;Z/Z.
R
In particular, the strong Stieltjes moment sequence of x#d,, is given by
sp(xPdy) = q“”*ﬁ)z/z, nel’. (2.7)

For 0 < g < 1, n € N, we introduce some notation from g-calculus (see [9, page 233]):

n—1 0
(ps@o:=1, (p@n:=[](1-pg"), n=1, (1-pg"). (2.8)
k=0 k=0
For € R, we set
(p;@)w
(Ps@)pi= %~ (2.9)
PR = (oafsq)
The following easily verified identities will be used:
(P;@)
39) = T (25D nip = (Pq"59) (P59 n- (2.10)
(p3q) (pa™d)- P @nsp = (Pg"39) (P39
We use the following notation:
(P12 P659) , = (P139) , (P239) - - - (Pr39) 5
(2.11)
(P1P2 - P o = (P130) o (P239) o+ (P3G) -
For z € C, we consider the two g-exponential functions
= =——, lzI<1,
g (@ (z; )oo 2
. (2.12)
_ ‘1 _
Ey(z) = @ =(-%q) .
k=0
For x € R, we define
Ly(x) = > qV2myn, (2.13)

nez
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The value of the sum L,(x) is known by Jacobi’s triple product identity

Ly(x) = (q, —/9% —/q/%3q) 0. (2.14)

It is easy to check the identity

2
\/ %q"z/qu(q”‘) =0(x,27'07?), VxeR. (2.15)

For ¢ € [0,1), we introduce the following constant (see [4]):

o0 c—1 c(c—1/2) c ,l—c.
M, ::J X (a9 ,Zq)w
0 Lq(xq=) sin(me)  (g:9)%

(2.16)

for ¢ >0, and M, = log(q™!). By the monotone convergence theorem and equality
(2.15) we have

'K(x+n,271072) g~ —en
M, = Z L —6(x+c,2*10*2) dx = JR PRI PREE) dx=gq 0 M. (2.17)

ProposITION 2.1. Let h € L'(R,e " ®~"*2dx) for all n € N (Z). The function Zop(x) =
xPd,(x){1 +h(o~*log(xqP))} has the same (strong) Stieltjes moment sequence as xPd, if
and only if

J K(x,27'07?)h(x+n)dx =0 forevery n € N(Z). (2.18)
R
Proof. By using (2.5) and changing variables y = —n+ ¢~ 2log(xqf) we obtain

Sn(ga,ﬁ) =Sn (xﬁdo) +q7(ﬁ+”)2/2'[ K(y,Z’la’z)h(wan)dy, (2.19)

and the result follows. O

In particular, if 4 is a 1-periodic function in L'((0,1)), then s,(gs,8) = sn (xPd,) for all
n € Z if and only if

Jl 0(x,2- 02 h(x)dx = 0. (2.20)

0

Remark 2.2. If h satisfies (2.18) or (2.20), then so does ah, a € R. Moreover, when h is
bounded below (above), there is a € R such that 1+ ah > 0.

Definition 2.3. For 8 € R, let XN/[; denote the set of real-valued, measurable functions f
defined on [0, o) solving the strong moment problem

so(f)=q P2 =5, nel (2.21)

Example 2.4. For B € R, xPd, € \N//g.
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Now we want to find some interesting 1-periodic functions h satisfying (2.20).

Example 2.5. By setting hc(x)=M-10(x+¢,27'672)"1 =1, with c€ [0, 1) and using (2.15),
(2.17), and (2.20), we obtain the classical solution

xc—l ~

we(x) = dg(x){l +I’lc( zlogx)} W e V. (2.22)

Example 2.6. If f € Vo, then an easy calculation shows that
PFf(gPx) eV, BER (2.23)

Example 2.7. Let f be a 1-periodic function integrable on (0,1). Then the function

h(x) = (f(x) J F®) dx) (x,21072) " (2.24)

satisfies (2.20). In particular, we can put f;(x) = 6(x,t) with t > 0.

To get more examples, in the next section we introduce a family of functions satisfying
the heat equation for which functions fulfilling the condition (2.20) can be defined.

3. The families of heat functions {K,}4, {04}«

We follow the notation in [10, Chapter 9]. For f € L'(R), we define its Fourier transform
as

de.

(@1)(&) = j e 3.1)

For a > —1 and t > 0 fixed, the function £207®¢=5 is in L(R), so we define

Ka(,1) = (g0 () = \/%_n ji P Proos(e) B (32)

1
2n 2n

Then K, is a real-valued function that satisfies the heat equation on R2. We can rewrite

1 ® o
Ka(x,1) = —t*”‘K(x,t)J A1) o= (E=ix/2V0° g

N

1 . 2(1+a) X (33)
=ﬁt’1’“K(x,t)L (5+ J) e EdE.
Therefore,
“l-a ® 2(1+a) K21+ & —l-a x4
| Ko(x,t) | < Cot %K (x,t) N & e )e df < Cut VK (x,t) | 1+ |
(3.4)

Since x'e™* < Cye=2 for x,A > 0, we have

2(1+a)

x _ D Ca st _
@i K(x,t) = \/—— @’ < Tam = CoK(x,2¢). (3.5)
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Whence,

| Ky (x,t) | < Cot 17(K(x,8) + K(x,21)), (3.6)
and K, (-,t) € L'(R) for all t > 0.
The convolution of f,g € L'(R) is given by
(F*9)0 = [ FOgte- - (37)
8 = s Vg y Nera .
Using the fact that (f * g) = O(f)D(g), the definition of K,, and the inversion formula,

we get

JR Ko(y,11)Kp(x = y,t2)dy = Keypr1 (X, 11 + 1), (3.8)

whenever o, 3 = —1, 1,1, > 0.
Next, for « > —1, we introduce the function

0u(x,t) = > Kalx+n,t). (3.9)

nez

From (3.6) we have the estimate
|0a(x,1) | < Cot 7% (6(x, 1) + 0(x,21)). (3.10)
Remark 3.1. From (3.2) we havethat K_; = K, 0_; = 0. If « € N, then

olteK (xalﬂxe
ofite O = (-1 ofite

Ky = (-1 (3.11)

For a > —1, the inversion formula implies

1 ©
J Oy (x,t)dx = J d-! (52(1+a)e*52t)(x)£ — &'2(1+tx)e*fzt | fo = 0, Vt>0.
0 — 0

V2r
(3.12)
Example 3.2. For a > —1, t >0, the function
hoa(x) = Oa(x,0)0(x,2 ' 02) ! (3.13)
satisfies (2.20).
For o, 8 = —1, 1,1, >0, the equality (3.8) implies
1
L B (3,11) 0 (x — y,12)dy = Oueper (.11 + 12). (3.14)

In particular, for a > —1, § = — 1, we obtain

1 1
L 0(y,1) 0 (x — y,11)dy = JO 0c(7,11)0(x = y,6)dy = O (x,11 + 1r). (3.15)
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Example 3.3. For y € [0,1), t >0, the following function fulfills (2.20):
hyia(x) = 0u(y = x,8) = O (3,27 "0 72 +1). (3.16)

The following proposition gives an explicit formula for 0.

ProrosiTioN 3.4. Fora > —1,

ea(x) t) _ z (27_[”)2(1+a)ef4n2n2t+27mix. (3‘17)

nez

Proof. From (3.6) we have

Ca

tl+(x

Z Ky(x+m,t)

meZ

<

(0(x,1) +0(x,21)). (3.18)

Hence, the series converges uniformly on compact subsets of R2 and therefore it is con-
tinuous. Since the series is 1-periodic in x, it admits a representation as a Fourier series,

Ky(x+mt) = > ap(t)e?™= (3.19)
2. 2.

meZ meZ

where convergence is in L?([0, 1]). Moreover,

Ca

t1+a

f (K, £) + K (,26)) dx = <2 (3.20)

t1+(x

Ll > |Kalx+m,t)|dx <

meZ

By the dominated convergence theorem we have

(t) B J‘l Z K ( + t) —anixd _ Jm \/Z_K ( t) —anixﬂ
a,(t) = 0| & alx+mn, e X = . nKy(x,t)e oL e
= (O[V27K4(-,D)]) (2mm) = 2mm)> 1T 4mms, -

The last result implies that 6, satisfies the heat equation on R2.

Example 3.5. If h(x) = >,z c,e?™* € L*([0,1]), then h satisfies (2.20) if and only if

> cpe” 2 =, (3.22)

nez
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4. Generalized Stieltjes-Wigert

For 0 < p < 1, the generalized Stieltjes-Wigert moment problem has the following weight
function on (0, %):

stp.)i= (- 2ig) dot (41)

When p = 0, the function g is the log-normal density. The next result is based on ideas in
[4].

ProrosITION 4.1. For every positive function f € \N/ﬁ, B =0, the function (p,—p./q/x;
q) o f (x) has the Stieltjes moment sequence

supp = (D3@)nepq P2, meN. (4.2)

Proof. Since all the functions below are positive, using (2.12) and (2.9) we have

[ gt pa) e = (i) iqk/zpj o f (x)dx
o g(x;p.q P;q) (@9

miprr 5 (P9 )" (4.3)
= (p3@)ed” kZO @

= (psQmipq "P72, meN,

In fact, the last inequality holds for n € Z, B € R as long as pq"*f < 1. In particular, for
p = q"? we obtain

L X(q",~a/%:9) o f(X)dx = (4"%5q) 59 F (4.4)

for n € Z, B € R whenever q"F+1/2 < 1. O
Example 4.2. For =0, 3 F/>Pw.(gPx)(p,— p./G/x;q)~ has the moment sequence (s,,,p)-

More examples can be obtained if we combine (2.20) and the results in Section 3.

5. g-Laguerre

The normalized g-Laguerre polynomials LY (x;q) (see [11]) belong to an M-indetermi-
nate moment problem with moments:

Suai=q " (2)(¢*5q),, neN, (5.1)

with0<g<1,a>—1.

ProrosiTioN 5.1. Let a > —1. For every positive function f € Varisr the function
gtV 2 (el —a/x;q)w f (x) has the Stieltjes moment sequence Sy 4.
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Proof. Let f € \N/aﬂ/z. It follows from (4.4) with f = a+1/2, (2.9), and (2.10) that the
function q@*2*/2(q"2;q) L1 1 (qV%, —q/x;q) f (x) has the moment sequence

(a+1/2)2/2( 1/2. ntatl/2)Y2 _ g

-1 B
q q )‘I)a+1/2(q1/2;‘I)n+a+1/zq ( o (5.2)

The result follows since (§Y%9)5112(4"%q) e = (§°59) - O

Example 5.2. Example 2.6 with § = a+1/2 > —1/2 implies that the function

qc(a+l/2) (qa+1 , _q/x; q) ooxc—l
Mc(g, =g, =4 /x3q)

a+1/2( at+l at+1/2

q*" —a/x;q) we(q

q x) = (5.3)

with ¢ € (0,1] has moment sequence S, 4. In particular, when a = ¢ — 1 and using (2.16),
we obtain the function

_sin(na) S x*
7 (7%, (—x59)s

(5.4)

More examples can be obtained if we combine (2.20) and the results in Section 3.
Finally, we show a nonperiodic, continuous function h fulfilling condition (2.18).

Example 5.3. For y € R\27Q, consider h(x) = (1 + kcos(27mx)) cosyx, where

_ —02x2/2
ko —lee T Poospmdx (5.5)

g e77***/2 cos(yx) cos(2mx)dx

So, h is not periodic at all and satisfies (2.18).
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