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1. Introduction

The idea of statistical convergence was given by Zygmund [1] in the first edition of his
monograph published in Warsaw in 1935. The concept of statistical convergence was for-
mally introduced by Steinhaus [2] and Fast [3] and later was reintroduced by Schoenberg
[4]. Although statistical convergence was introduced over nearly the last fifty years, it has
become an active area of research in recent years. This concept has been applied in various
areas such as number theory [5], measure theory [6], trigonometric series [1], summa-
bility theory [7], locally convex spaces [8], in the study of strong integral summability
[9], turnpike theory [10–12], and Banach spaces [13].

If K is a subset of the positive integers N, then Kn denotes the set {k ∈ K : k ≤ n} and
|Kn| denotes the number of elements in Kn. The natural density of K (see [14, chapter
11]) is given by δ(K)= limn→∞n−1|Kn|. K is said to be statistically dense [15] if δ(K)= 1.
The set {k ∈N : k �=m2,m = 1,2, . . .} is statistically dense, while the set {3k : k = 1,2, . . .}
is not. A subsequence of a sequence is called statistically dense [15] if the set of all indices
of its elements is statistically dense. A sequence (xk) of (real or complex) numbers is said
to be statistically convergent to some number L, if for every ε > 0, the set Kε = {k ∈N :
|xk −L| ≥ ε} has natural density zero; in this case, we write st-limkxk = L.
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For real-valued sequences, statistically convergent sequences often satisfy statistical
analogs of the usual attributes of convergent sequences. For instance, statistically con-
vergent sequences are statistically bounded; a sequence is statistically convergent if and
only if it is statistically Cauchy, and there are statistical analogs of the lim sup, lim inf ,
and so forth, see [3, 16–19].

We recall (see [16]) that if x = (xk) is a sequence such that xk satisfies property P for
all k except a set of natural density zero, then we say that x = (xk) satisfies P for “almost
all k,” and we abbreviate this by “a.a. k.”

The following concept is due to Fridy [16]. A sequence (xk) is said to be statistically
Cauchy if for each ε > 0 there exists a number N(=N(ε)) such that |xk − xN | < ε, for a.a.
k, that is, δ({k ∈N : |xk − xN | ≥ ε})= 0.

Fridy [16] proved that a number sequence is statistically convergent if and only if it
is statistically Cauchy. It was shown by Kolk [20] that this result remains true in case the
entries of the sequences come from a Banach space instead of being scalars.

A number sequence x = (xk) is statistically bounded [18] if there is a number B such
that δ{k : |xk| > B} = 0, that is, |xk| ≤ B, for a.a. k.

The concept of statistical limit superior and inferior was introduced by Fridy and
Orhan [18] as follows. For a real number sequence x, the statistical limit superior of x
is given by

st- lim supx =
⎧
⎨

⎩

supBx, if Bx �=∅,

−∞, if Bx =∅.
(1.1)

Also, the statistical limit inferior of x is given by

st- lim inf x =
⎧
⎨

⎩

inf Ax, if Ax �=∅,

+∞, if Ax =∅,
(1.2)

where

Bx =
{
b ∈R : δ

{
k : xk > b

} �=0
}

,

Ax =
{
a∈R : δ

{
k : xk < a

} �=0
}
.

(1.3)

Maddox [8] extended the concept of statistical convergence to sequences with values in
arbitrary locally convex Hausdorff topological vector spaces. The statistical convergence
in Banach spaces was studied by Kolk [20].

Quite recently, Connor et al. [13] have introduced a new concept of weak statistical
convergence and have characterized Banach spaces with separable duals via weak statis-
tical convergence. Pehlivan and Karaev [21] have also used the idea of weak statistical
convergence in strengthening a result of Gokhberg and Krein on compact operators. Fol-
lowing Connor et al. [13], we define norm and weak statistical convergence as follows.

Definition 1.1. Let X be a normed linear space, let (xk) be an X-valued sequence, and
x ∈ X .

(i) The sequence (xk) is norm statistically convergent to x provided that δ({k : ‖xk −
x‖ > ε})= 0 for all ε > 0. In this case, we write st-limxk = x.
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(ii) The sequence (xk) is weak statistically convergent to x provided that, for any f in
the continuous dual X∗ of X , the sequence ( f (xk − x)) is statistically convergent
to 0. In this case, we write w-st-limxk = x and x is called the weak statistical limit
of (xk).

By an application of Hahn-Banach theorem, it is easy to see that the weak statistical
limit of a weakly statistically convergent sequence is unique.

In this paper, we show that weak statistical convergence is a generalization of the usual
notion of weak convergence and that in finite dimensional normed spaces the concepts
of norm and weak statistical convergence coincide. After introducing a new concept of
weak statistically Cauchy sequence, it is established that every weak statistically Cauchy
sequence in a normed space is statistically bounded and this fact has been used to show
that in a reflexive space weak statistically Cauchy sequences and weak statistically con-
vergent sequences are the same. As a final result, we see how weak statistical convergence
looks like in lp spaces.

The following well-known lemmas are required for establishing the results of this pa-
per.

Lemma 1.2 [4]. If st-limxk = l and g(x), defined for all real x, is continuous at x = l, then
st-limg(xk)= g(l).

Lemma 1.3 [19]. A number sequence (xk) is statistically convergent to l if and only if there
exists such a set K = {k1 < k2 < ···} ⊂N that δ(K)= 1 and limn→∞xkn = l.

Lemma 1.4 [19]. If st-limxk = l and st-lim yk =m and α is a real number, then
(i) st-lim(xk + yk)= l+m,

(ii) st-lim(αxk)= αl.

Lemma 1.5 [22]. A number sequence (xk) is statistically bounded if and only if there exists
such a set K = {k1 < k2 < ···} ⊂N that δ(K)= 1 and (xkn) is bounded.

Lemma 1.6 [23]. Let xk ≤ yk, for a.a. k. If st-limxk and st-lim yk exist, then st-limxk ≤ st-
lim yk.

Lemma 1.7 [15]. A statistically dense subsequence of a statistically convergent sequence is
statistically convergent.

By lp(1≤ p <∞), we denote the space of absolutely p-summable scalar sequences and it

is a normed linear space with the norm defined by ‖x‖p = (
∑∞

k=1|xk|p)
1/p

, where x = (xk)∈
lp. By c00, we denote the space of scalar sequences x = (xk), each of which has only finitely
many nonzero terms. Clearly, c00 ⊂ lp (1≤ p <∞).

2. Main results

Our first result shows that weak statistical convergence is a generalization of the usual
notion of weak convergence.

Theorem 2.1. Let (xk) be a weakly convergent sequence in a normed space X , and w-
limxk = x. Then (xk) is weakly statistically convergent to x. The converse is not generally
true.
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Proof. If w-limxk = x, then ( f (xk)) is convergent to f (x), for all f ∈ X∗ which implies
that w-st-limxk = x. �

To show that the converse is not true, we give the following example.

Example 2.2. Let (xk)∈ lp (1 < p <∞) be defined by

x(k)
j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m, if j ≤ k, k =m2,

1
k

, if j ≤ k, k �=m2,

0, otherwise.

(2.1)

For k �=m2 and arbitrary f ∈ l∗p , there is unique y ∈ lq such that

| f (xk)| =
∣
∣
∣
∣
∣

∞∑

j=1

x(k)
j y j

∣
∣
∣
∣
∣

≤
( ∞∑

j=1

∣
∣
∣x(k)

j

∣
∣
∣
p
)1/p( ∞∑

j=1

∣
∣yj

∣
∣q

)1/q

, by Hölder’s inequality

≤
( k∑

j=1

1
kp

)1/p

M1/q for some positive constant M

=
(
M

k

)1/q

−→ 0, as k −→∞.

(2.2)

Hence, st-lim f (xk)= 0, by Lemma 1.3, which in turn implies that w-st-limxk = 0.
For k =m2, consider the functional f1 defined on lp by f1(x)= x1, where x = (xk)∈ lp.

Clearly, f1(xk)= x(k)
1 =√k→∞, as k→∞. Hence, (xk) is not weakly convergent.

Our next result shows that in finite dimensional normed spaces the norm statistical
convergence and weak statistical convergence coincide.

Theorem 2.3. In a normed space X ,
(i) norm statistical convergence implies weak statistical convergence with the same

limit,
(ii) the converse of (i) is not generally true,

(iii) if dim X <∞, the weak statistical convergence implies norm statistical convergence.

Proof. The proof of (i) is straightforward.
To prove (ii), let (ek) be an orthonormal sequence in a Hilbert space H . Every f ∈H∗

has a Riesz representation f (x) = 〈x,z〉. Hence, f (ek) = 〈ek,z〉. By Bessel’s inequality
∑∞

k=1|〈ek,z〉|2 ≤ ‖z‖2. This implies that f (ek) = 〈ek,z〉 is convergent, and hence statis-
tically convergent, to zero. Since f ∈ H∗ was arbitrary, w-st-limek = 0. Let, if possible,
(ek) be norm statistically convergent. Then (ek) is statistically Cauchy and so for each
ε > 0 there exists a positive integer N = (N(ε)) such that ‖ek − eN‖ < ε, for a.a. k, that is,
δ({k : ‖ek − eN‖ ≥ ε})= 0, which is absurd because ‖ek − eN‖ =

√
2 (k �=N).
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As another example, let (xk) in lp (1 < p <∞) be defined by

x(k)
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m, if j ≤ k, k =m2,

0, if j > k, k =m2,

1, if j = k, k �=m2,

0, if j �=k, k �=m2.

(2.3)

It is easy to see that (xk) is weakly statistically null sequence but it is not norm statistically
null sequence.

(iii) Suppose {e1,e2, . . . ,em} is any basis for X and that w-st-limxk = x. Then xk =
∑m

i=1α
(k)
i ei (k = 1,2, . . .) and x =∑m

i=1αiei for scalars α(k)
i and αi. Consider the linear func-

tionals f j ∈ X∗ (1≤ j ≤m) defined by f j(ej)= 1, f j(ek)= 0 ( j �=k). Since w-st-limxk = x,
it follows that, for j = 1,2, . . . ,m, st-lim f j(xk)= f j(x), which, by the definition of f j , im-

plies that st-limα(k)
j = αj , and so for a given ε > 0, |α(k)

j − αj| < ε/Km, for a.a. k, where
K =max j‖ej‖. Hence,

∥
∥xk − x

∥
∥=

∥
∥
∥
∥
∥

m∑

j=1

(

α(k)
j −αj

)

ej

∥
∥
∥
∥
∥
≤ K

m∑

j=1

∣
∣α(k)

j −αj

∣
∣ < ε, for a.a. k, (2.4)

which implies that st-limxk = x. �

Remark 2.4. Does there exist an infinite dimensional space in which the concepts of weak
and norm statistical convergence coincide? This is an open problem.

We now introduce a new concept of weak statistically Cauchy sequence in a normed
space.

Definition 2.5. A sequence (xk) in a normed space X is said to be weak statistically Cauchy
if ( f (xk)) is statistically Cauchy for every f ∈ X∗.

Obviously, every weakly statistically convergent sequence in a normed space is weak
statistically Cauchy, but the converse need not be true.

Example 2.6. Consider the normed linear space c00 with ‖ · ‖p, 1 < p <∞. Let (xk)∈ c00

be defined by

x(k)
j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j, if j ≤ k, k =m2,

1
j

, if j ≤ k, k �=m2,

0, otherwise.

(2.5)

Using standard techniques, it is easy to see that this sequence is weak statistically Cauchy
but not weakly statistically convergent.

The next result shows that if the space is reflexive, then every weak statistically Cauchy
sequence is weakly statistically convergent.

Theorem 2.7. If the normed space is reflexive, then every weak statistically Cauchy sequence
is weakly statistically convergent.
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To prove this result, we need the following Lemma.

Lemma 2.8. Every weak statistically Cauchy sequence in a normed space is statistically
bounded.

Proof. Let (xk) be a weak statistically Cauchy sequence in a normed space X . Then ( f (xk))
is a statistically Cauchy sequence for all f ∈ X∗ and hence is statistically bounded. So
by Lemma 1.5, for any f ∈ X∗, there exists a set K = {k1 < k2 < ···} ⊂ N such that
δ(K)= 1 and ( f (xkn)) is bounded. Consider the canonical mapping C : X→X∗∗ defined
by C(x) = gx for all x ∈ X , where gx ∈ X∗∗ is defined by gx( f ) = f (x) for all f ∈ X∗.
Also ‖gx‖ = ‖x‖. Now for any f ∈ X∗, supn|gxkn ( f )| = supn| f (xkn)| <∞. Since X∗ is a
Banach space, by Banach Steinhaus theorem supn‖gxkn‖ <∞ and hence supn‖xkn‖ <∞.
Again, by Lemma 1.5, it follows that (xk) is statistically bounded. �

Corollary 2.9. Every weakly statistically convergent sequence in a normed space is statis-
tically bounded.

The following example shows that the converse of Lemma 2.8 is not true in general.

Example 2.10. Let (xk) in R be defined by

xk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k, if k is a square,

0, if k is an even nonsquare,

1, if k is an odd nonsquare.

(2.6)

Then (xk) is statistically bounded, but not statistically convergent and hence not weakly
statistically convergent.

Proof of Theorem 2.7. Suppose (xk) is a weak statistically Cauchy sequence in X , that
is, ( f (xk)) is statistically Cauchy for all f ∈ X∗. Consider the canonical mapping C :
X→X∗∗ as defined in Lemma 2.8. (Cxk( f )) is statistically Cauchy and hence statisti-
cally convergent sequence of scalars for every f ∈ X∗. Define y( f ) = st-lim k→∞Cxk( f ).
The linearity of y follows by Lemma 1.4. Moreover, by Lemma 2.8, (xk) is statistically
bounded, so there exists some positive number M such that ‖xk‖ ≤M, for a.a. k. Hence
for any f ∈ X∗, |Cxk( f )| = | f (xk)| ≤M‖ f ‖, for a.a. k, and hence by Lemma 1.6, st-
lim|Cxk( f )| ≤M‖ f ‖. This implies |y( f )| ≤M‖ f ‖, and hence y ∈ X∗∗. Since X is re-
flexive, there exists x ∈ X such that y = Cx. Hence for any f ∈ X∗, st-lim f (xk)= y( f )=
Cx( f )= f (x) which shows that w-st-limxk = x. �

Proposition 2.11. If w-st-limxk = x in a normed space X , then ‖x‖ ≤ st-liminf ‖xk‖.

Proof. For each f ∈ X∗,
∣
∣ f (x)

∣
∣= st- lim

∣
∣ f (xk)

∣
∣, using Lemma 1.2

= st- liminf
∣
∣ f (xk)

∣
∣≤ ‖ f ‖st- liminf

∥
∥xk

∥
∥.

(2.7)

Taking supremum over all f ∈ X∗ with ‖ f ‖ = 1, we get ‖x‖ ≤ st- liminf ‖xk‖. �

We know that every subsequence of a weakly convergent sequence is again weakly con-
vergent, but this is not true in case of weak statistical convergence.
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Example 2.12. Let (xk) in R be defined by

xk =
⎧
⎪⎨

⎪⎩

k, if k =m2,
1
k

, otherwise.
(2.8)

Then (xk) is statistically convergent and hence weakly statistically convergent, but its sub-
sequence {k2 : k = 1,2, . . .} being statistically divergent is not weakly statistically conver-
gent.

The next result tells which subsequences of a weakly statistically convergent sequence
are weakly statistically convergent.

Theorem 2.13. (i) Every statistically dense subsequence of a weakly statistically convergent
sequence is weakly statistically convergent.

(ii) The converse of (i) is not true, in general.

Proof. (i) follows from Lemma 1.7.
The converse of (i) is not true and follows from the following example. �

Example 2.14. Let (xk) in R be defined by

xk =
⎧
⎨

⎩

1, if k =m2,

0, otherwise,
(2.9)

then (xk) is statistically convergent, and hence weakly statistically convergent, to 0. Its
subsequence {1,1, . . .} is weakly statistically convergent but not statistically dense.

3. Weak statistical convergence in lp (1 < p <∞)

In this section, we see that how weak statistical convergence “looks like” in lp space.

Theorem 3.1. In the space lp (1 < p <∞), we have w-st-limxk = x if and only if
(i) the sequence (‖xk‖) is statistically bounded;

(ii) for every fixed j, we have st-limx(k)
j = xj ; here xk = (x(k)

j ) and x = (xj).

The proof is completely analogous to the classical theorem (see [24, page 236]) once
we establish the following lemma.

Lemma 3.2. In a normed space X , we have w-st-limxk = x if and only if
(i) the sequence (‖xk‖) is statistically bounded;

(ii) for every element f of a total subset M ⊂ X∗, we have st-lim f (xk)= f (x).

Proof. In the case of weak statistical convergence, (i) follows from Corollary 2.9 and (ii)
is trivial.

Conversely, suppose that (i) and (ii) hold. Consider any h∈ X∗ and we will show that
st-limh(xk)= h(x). This will be done in two steps. First, it will be shown that this is true
for all h∈ span M and then for h∈ span M.

To prove the first conclusion, let g ∈ spanM. Then g =∑n
i=1αi fi for f1, f2, . . . , fn ∈M

and scalars α1,α2, . . . ,αn. By hypothesis (ii), st-lim fi(xk) = fi(x) for all i, 1 ≤ i ≤ n and
hence st-limg(xk)= g(x), by Lemma 1.4. Thus the first conclusion is established.
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For the second conclusion, suppose h∈ spanM. By hypothesis (i), there exists a con-
stant c > 0 such that ‖xk‖ < c, for a.a. k, and therefore, for any f ∈M ⊂ X∗, we have
| f (xk)| < c‖ f ‖, for a.a. k, which by Lemma 1.6 gives that st-lim| f (xk)| < c‖ f ‖. Again
using Lemma 1.2, we have | f (x)| < c‖ f ‖ which implies ‖x‖ < c. Since h∈ span M, for a
given ε > 0, there exists gj ∈ span M ( j = 1,2, . . .) such that ‖h− gj‖ < ε/3c for all j > n0.
Consider

|h(xk)−h(x)| ≤ ∥∥h− gj
∥
∥
∥
∥xk

∥
∥+

∣
∣gj
(
xk
)− gj(x)

∣
∣+

∥
∥gj −h

∥
∥‖x‖

<
ε
3c
c+

∣
∣gj
(
xk
)− gj(x)

∣
∣+

ε
3c
c, for a.a. k, provided j > n0.

(3.1)

Since gj ∈ span M, so by the first part of the proof, st-limgj(xk) = gj(x), and hence
|gj(xk)− gj(x)| < ε/3, for a.a. k. Hence |h(xk)−h(x)| < ε, for a.a. k, and so w-st-limxk =
x. �

Proposition 3.3. In a Hilbert spaceH , w-st-limxk = x if and only if st-lim〈xk, y〉 = 〈x, y〉,
for all y ∈H .
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