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1. Introduction

LetN:={1,2,...},form,p € N,m > p+1, let d(p, m) be the class of all p-valent analytic
functions f(z) =z + ., a,z" defined on the open unit disk U= {z € C: |z| < 1} and
let o := A(1,2).

Let I (p,m) be the subclass of A (p,m) consisting of functions of the form

fz)=2" - > a,z", a,=0forn=m, (1.1)
n=m

andlet J := J(1,2).
A function f € A(p,m) is f-Pascu convex function of order « if

1 e { (1-B)zf"(2) + (B/p)z(zf'(2))’
(1=P)f )+ (B/p)zf'(2)

We denote by TP€(p,m,a, ) the subclass of T (p,m) consisting of f-Pascu convex func-
tion of order a. Clearly, T¥* (a) := TP(1,2,a,0) is the class of starlike functions with
negative coefficients of order o and T€(«) := TPE(1,2,a, 1) is the class of convex func-
tions with negative coefficients of order « (studied by Silverman [1]).

For the class TP€(p,m, a, ), the following characterization was given by Ali et al. [2].

}>(x (=0,0=<a<1). (1.2)
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LemMA 1.1. Let the function f be defined by (1.1). Then f is in the class TPC€(p,m,a, ) if
and only if

[eY]

Z (n—pa)[(1=B)p+pnla, < p*(1 —a). (1.3)

The result is sharp.
LemMma 1.2. Let f(z) be given by (1.1). If f € TPC(p,m,qa,f3), then

p*(1—a)

= peol(1-p)p+ ] -
with equality only for functions of the form
fa(z) =2 — pr(1-a) n (1.5)

(n—pa)[(1-B)p+pn]”

Many interesting properties such as coefficient estimate and distortion theorems for
the class TPE(p, m,a, ) were given by Ali et al. [2]. In the present sequel to these earlier
works, we will derive several interesting properties and characteristic of the §-
neighborhood associated with the class TP€(p, m, a, ).

2. Integral properties of the class TP€(p,m,a, )

We recall the following definition of integral operator before we give integral properties
of the class TP€E(p,m,a, ).

Let $.: I (p,m) — T (p,m) be integral operator defined by g = $.(f), where ¢ €
(=p,o), f € T(p,m) and

)= L [N poar, 2.1

We note that if f € I (p,m) is a function of the form (1.1), then

ctp
ctn

g2)=9(f)z) =2 - >

n=m

anz". (2.2)

THEOREM 2.1. Let pm e N, m=p+1, a € [0,1), f € [0,0), and c € (—p,). If f €
TPC(p,m,a,B) and g = $.(f), then g € TPEC(p,m,\,[3), where

(I-a)(c+p)(m—p)

=Apmoe) =1 - (m—pa)(c+m)—(1—a)(c+p)p (2.3)
and a < A. The result is sharp.
Proof. From Lemma 1.1 and (2.2), we have g € TP€(p,m, A, ) if and only if
5 (n—pM)[(1-P)p+pn](c+p) ey (2.4)

= P21 =MA)(c+n)
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We find the largest A such that (2.4) holds. We note that the inequalities

(n= pD[(1=B)p+pn)(c+p) _ (n—pa)[(1-B)p+pn]
P21 =A)(c+n) - pA(l—a)

imply (2.4), because f € TPE€(p,m,a,f3) and satisfy (1.3). But inequalities (2.5) are
equivalent to

(2.5)

(n—pA)(c+p) - (n— pa)

1-Mc+n) = (1-a)° (2.6)
Since (n — pa) > p(1 — ) and ¢ +n > ¢+ p, we obtain A < A(p,n,a,c), where
_(n—pa)(ctn)—(1-a)(c+p)n
Mo mae) = v — (1= a)(ct p)p 2.7)
Now we show that A(p,n,«,¢) is an increasing function of n, n > m. Indeed,
Ap,n,a,¢) =1 — (1 —a)(c+ p)E(p,n,a,c), (2.8)
where
E(p,n,a,c) = (n=p) (2.9)

(n—pa)(c+n)—(1—a)(c+p)p’

and A(p,n,a,¢) increases when n increases if and only if E(p, n, a,¢) is a strictly decreasing
function of n.
Let h(x) = E(p,x,a,¢), x € [m, ) C [p+1,00), we have

(x—p)?

h(x)=- <0. (2.10)
* [(x— pa)(c+x)— (1 —a)(c+p)p]
We obtained
A=A(p,m,a,c) <A(p,n,a,c), n=m. (2.11)
The result is sharp because
Ie(fa) = fis (2.12)
where
e p(l-a) "
fa(Z)—Z (m—p(x)[(l—ﬂ)p+[3m]z s (2 13)
filz) =z2F - pa-A z" ‘
(m—pA)[(1=B)p+pm]

are extremal functions of TP€(p,m,a,3) and TPE(p,m,A,f3), respectively, and A =
A(p,m,a,c).
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Indeed, we have

pPHl—a)(c+p)
=zP _ m
Fe(fal2)) =2 (m—poc)[(l—ﬁ)p+/3m](c+m)z‘ (2.14)
We deduce
pP1-1)  p*(1-a)(c+p) (2.15)

(m—pL)  (m— pa)(c+m)’

and this implies (2.14).
FromA=1-(1-a)(c+p)(m—p)/((m— pa)(c+m)—(1—a)(c+p)p)weobtain A <
1 and also A > a. Indeed,

1 3 (c+p)(m—p)

A-a=( "‘){1 (mpa)(c+m)(1a)(c+p)p)§ 016
o (m — pa)(m - p) '
== o crm) — (=)t plp

O

3. Integral means inequalities for the class TP€(p,m,a, )

An analytic function g is said to be subordinate to an analytic function f (written g <
f)if g(z) = f(w(2)), z € U, for some analytic function w with |w(z)| < |z|. In 1925,
Littlewood [3] proved the following subordination result which will be required in our
present investigation.

LemMa 3.1. If f and g are analytic in U with g < f, then

Jzn g (re)|°d6 < Jzﬂ | £ (re®) | °d6, (3.1)
0 0

where $ >0,z =re®, and0<r < 1.
Applying Lemmas 1.1 and 3.1, we prove the following.

THEOREM 3.2. Let § >0. If f € TPC(p,m,a,3) and fou(2z) =2 — (p*(1—a)/(m— pa)[(1 —
B)p +pm))z", then for z=re' and 0 < r < 1,

f” | £ (re®)|°d0 < rﬂ | fn(re®) | 0. (3.2)
0 0

Proof. Let

e (3.3)

P2(1-a)
— P _ m
I = (L= Byp + ]
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then we must show that

JZTZ
0

By Lemma 3.1, it suffices to show that

) )

2
desj

0

(o]
1- Z a,z" P
n=m

(m— pa) [ (1= B)p+pm]

_ n—p _ p (1—(X) ZM=P
! ,Em“"z T p (L= p)p+pm]”

Set

- _ p
_ n—p _ 1 _
Em“"z Y [ Bprpm]”

From (3.6) and (1.3), we obtain

m— - 1-
|W(Z)| = ‘(m paz))gil_i)) "r
e S [ -Pprpul
<|z P|n:§ 20w a, < |Z"P| < Izl

This completes the proof of the theorem.

The proof for the first derivative is similar.

2(1 —
- ri-ao 2| de,

(3.4)

(3.5)

(3.6)

(3.7)

THEOREM 3.3. Let 8 > 0. If f € TPC(p,m,a, ) and f(z) =2F — (p*(1—a)/(m— pa)[(1 —

B)p+pm))z", then forz =re® and 0<r <1,

fﬂ | £ (re®) |0 < Jzn | £ (re®) | de.
0 0

Proof. It suffices to show that

_ < n-p _ mp(l - «) m-p
L= 2 e < =P+ fm]”

This follows because

|w(z

i i(n—pa)[(l—ﬁ))wﬂn] -

a, < |z|" P < |z|.

Izl”PZ (n— poc (1—ﬁ)p+ﬁn]

—a)

(3.8)

(3.9)

(3.10)
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4. Neighborhoods of the class T%€(p,m, a, f3)
For f € J(p,m) and y = 0, Frasin [4] defined

MI(f) = {ge T(pm):g(@) =P — > by, S 0" |ay—by| = y}, (4.1)

which was called g-y-neighborhood of f. So, for e(z) = z, we see that
M) = g e T g@) =2 = X b’y T a bl <y} 42)

where g is a fixed positive integer. Note that M)(f(f) =N,(f) and M;(f) =M,(f).N,(f)
is called a y-neighborhood of f by Ruscheweyh [5] and M, (f) was defined by Silverman
[6].

Now, we consider g-y-neighborhood for function in the class TPE(p,m,a, f3).

THEOREM 4.1. Let

mq+1p2(1 _ (X)

Y= = pa[(1=p)p+ ] (43
then TP (p,m,a,f3) C M}?(e).
Proof. If f € TP (p,m,a,f3), then
) " B mq+1p2(1 _ 0() _
2 = T Bop ] (4
This gives that TPEC(p, m,a, ) C Mg(e). O

Putting p = 1, m = 2 and § = 0 in Theorem 4.1, we have the following.
COROLLARY 4.2. TS*(a) C M;(e), wherey = 2971 (1 — a)/(2 — a).
Putting p = 1,m = 2, and = 1 in Theorem 4.1, we have the following.

COROLLARY 4.3. T%6(a) C M)q,(e), where y = 21(1 — a)/(2 — a).
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