

Erratum

Lower Bounds for Some Factorable Matrices

B. E. Rhoades and Pali Sen

Received 27 March 2007; Accepted 19 September 2007

The purpose of this erratum is to correct both the mathematical and typographical errors made in 2006.

Copyright © 2007 B. E. Rhoades and P. Sen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The typos are as follows.

- (i) Page 2, line 17, t_0 should read t_0^p .
- (ii) Page 3, line 5, $j = r + 2$ should read $j = r + 1$.
- (iii) Page 3, line 15, $\Delta y r^p$ should read Δy_r^p .
- (iv) Page 3, line 16 should read

$$g(r) - g(r + 1) = (r + 2)a_{r+1}^p \Delta y_r^p + (r + 2)\Delta y_r^p \sum_{j=r+2}^{\infty} a_j^p. \quad (1.1)$$

- (v) Page 4, line 7, $q < t < 1$ should read $r > 0$.
- (vi) Page 4, line 11, $\nu(r)$ should read $u(r)$.
- (vii) Page 6, line 17 $(t^{r+1}/(r+2))^p$ should read $(t^{r+1}/(r+2))^p \times$.
- (viii) Page 6, line 18, $=$ should read \times .
- (ix) Page 7, line 6, $-1p]$ should read $-1]$.
- (x) Page 7, line 21 $(n+1)^{s-1}$ should read $(n+1)^{1-s}$.
- (xi) Page 8, line 7, $q(p-1)$ should read $p(p-1)$.
- (xii) Page 8, line 14, $(r+1)^{s-1} - (r+2)^{s-1}$ should read $(r+1)^{p-1} - (r+2)^{p-1}$.
- (xiii) Page 8, line 16, $(j+1)^{(p-1)s}$ should read $(j+1)^{(s-1)p}$.
- (xiv) Page 10, line 12, $\geq P_r(r+1)$ should read $\geq 1/(r+1)$.
- (xv) Page 10, line 14, $(r+1)P_r^p$ should read $(r+1)$.

(xvi) Page 10, line 14, P_{r+1}^p [should read [.

(xvii) Page 10, lines 15, 16, P_{r+1}^p [should read P_r^p .

(xviii) Page 10, line 17, p_{r+1}/P_r) should read $p_{r+1}/P_r)^p$.

(xix) Page 12, line 7, $+(r+2)^\alpha$ should read $+(r+2)^{2\alpha}$.

The mathematical errors occur showing that $\lim_r h(r) = 0$ in Theorems 6 and 7.

In Theorem 6, from the formula on line 2 of page 4,

$$\begin{aligned}
 \lim_r h(r) &= \lim_r \frac{a_{r+1}^p \Delta y_r^p}{\Delta^2 y_r^p} \\
 &= \lim_r \frac{[(r+1)^p - (r+2)^p]}{(r+2)^s [(r+1)^p - 2(r+2)^p + (r+3)^p]} \\
 &= \lim_r \frac{(1/(r+2)^s) [1 - ((r+2)/(r+1))^p]}{(1 - 2((r+2)/(r+1))^p + ((r+3)/(r+2))^p)} \\
 &= ((-s/(r+2)^{s+1}) [1 - ((r+2)/(r+1))^p] \\
 &\quad - (-p/(r+2)^s) ((r+2)/(r+1))^{p-1} (-1/(r+1)^2)) \\
 &\quad /(-2p((r+2)/(r+1))^{p-1} (-1/(r+1)^2) \\
 &\quad + p((r+3)/(r+1))^{p-1} (-2/(r+1)^2)) \\
 &= \lim_r ((-s(r+1)^2/2p(r+2)^{s+1}) [1 - ((r+2)/(r+1))^p] \\
 &\quad + (1/(r+2)^s) ((r+2)/(r+1))^{p-1}) \\
 &\quad /(((r+2)/(r+1))^{p-1} - ((r+3)/(r+1))^{p-1}) \\
 &= \lim_r \frac{(-s(r+1)/2p(r+2)^{s+1}) [(r+1)^p - (r+2)^p] + ((r+2)^{p-1}/(r+2)^s)}{(r+2)^{p-1} - (r+3)^{p-1}} \\
 &= \lim_r \frac{(-s(r+1)/2p(r+2)^s) [(r+1)/(r+2)]^p - 1 + 1/(r+2)^s}{1 - ((r+3)/(r+2))^{p-1}} \\
 &= \lim_r (-s(r+2)^2/2p) ((r+2 - s(r+1))/(r+2)^{s+1}) ((r+1)/(r+2))^p - 1 \\
 &\quad - (s/2p(r+2)^{s-1}) ((r+1)/(r+2))^p - (s/(r+2)^{s-1}) \\
 &\quad /((p-1)((r+3)/(r+2))^{p-2} = \lim_r A,
 \end{aligned} \tag{1.2}$$

where

$$A = \frac{-s(r+2 - s(r+1))}{2p(p-1)(r+2)^{s-1}} \left(\left(\frac{r+1}{r+2} \right)^p - 1 \right). \tag{1.3}$$

If $s \geq 2$, then, clearly $\lim_r A = 0$. Suppose that $1 < s < 2$,

$$\begin{aligned} \lim_r A &= \lim_r \frac{(-s/2p(p-1))[(r+1)/(r+2)]^p - 1}{(r+2)^{s-1}/(r+2-s(r+1))} \\ &= \frac{(-s/2)[(r+1)/(r+2)]^{p-1}}{((r+2)^2(s-1)/(r+2-s(r+1))^2)[r+2-s(r+1)+r+2]} = 0. \end{aligned} \quad (1.4)$$

Thus g is monotone decreasing in r . The balance of the proof of [1, Theorem 6] is correct, and $L^p = f(\infty)$.

In Theorem 7,

$$h(r) = \frac{[(r+1)^p - (r+2)^p]}{(r+1)^p[(r+1)^p - 2(r+2)^p + (r+3)^p]}, \quad (1.5)$$

which is the same h as in Theorem 6, with s replaced by p . Therefore, $\lim_r h(r) = 0$. In the proof of Theorem 7, $g(0) \leq 0$, so $L^p = f(0)$.

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
Email address: rhoades@indiana.edu

Pali Sen: Department of Mathematics and Statistics, University of North Florida,
 Jacksonville, FL 32224, USA
Email address: psen@unf.edu

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk