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1. Introduction

In [1] Agnew presented the following theorem: if x is a bounded sequence and A is a reg-
ular summability matrix, then there exists a subsequence y of x such that each limit point
of x is a limit point of Ay. Fridy [2] extended this result by replacing subsequence with
rearrangement. Keagy [3] presented two theorems that strengthened the results of both
Agnew and Fridy. This was accomplished by weakening the regularity conditions and re-
placing finite limit point for bounded sequence. The goal of the paper is to present two
multidimensional theorems analogou to Keagy’s theorems with λ-rearrangement replac-
ing rearrangement, RH-regularity replacing regularity, and convergent in the Pringsheim
sense replacing convergent. Other implications will also be presented.

2. Definitions, notations, and preliminary results

Definition 2.1. Let A denote a four-dimensional summability method that maps the com-
plex double sequences x into the double sequence Ax, where the mnth term to Ax is as
follows:

(Ax)m,n =
∞,∞∑

k,l=1,1

am,n,k,lxk,l . (2.1)
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Definition 2.2 (see Pringsheim [4]). A double sequence x = [xk,l] has a Pringsheim limit
L (denoted by P-limx = L) provided that given ε > 0 there exists N ∈N such that |xk,l −
L| < ε whenever k, l > N . Such an x will be more briefly described as “P-convergent.”

In addition to P-convergent, Pringsheim also presented the following notion of diver-
gent.

Definition 2.3. A double sequence x is called definite divergent if for every (arbitrar-
ily large) G > 0 there exist two natural numbers n1 and n2 such that |xn,k| > G for n ≥
n1, k ≥ n2.

In [5], Robison presented a four-dimensional notion of regularity for double sequences
with an additional assumption of boundedness. This assumption was made because a
double sequence which is P-convergent is not necessarily bounded. In addition to this
notion, Robison and Hamilton both presented a Silverman-Toeplitz-type multidimen-
sional characterization of regularity in [5, 6]. The definition of the regularity for four-
dimensional matrices will be stated next, followed by the Robison-Hamilton characteri-
zation of the regularity of four-dimensional matrices.

Definition 2.4. The four-dimensional matrix A is said to be RH-regular if it maps every
bounded P-convergent sequence into a P-convergent sequence with the same P-limit.

Theorem 2.5. The four-dimensional matrix A is RH-regular if and only if
RH1: P-limm,n am,n,k,l = 0 for each k and l;
RH2: P-limm,n

∑∞,∞
k,l=1,1 am,n,k,l = 1;

RH2: P-limm,n
∑∞

k=1 |am,n,k,l| = 0 for each l;
RH4: P-limm,n

∑∞
l=1 |am,n,k,l| = 0 for each k;

RH5:
∑∞,∞

k,l=1,1 |am,n,k,l| is P-convergent; and
RH6: there exist positive numbers A and B such that

∑
k,l>B |am,n,k,l| < A.

The following definition of the subsequence of a double sequence was presented in
[7].

Definition 2.6. The double sequence [y] is a double subsequence of the sequence [x] pro-
vided that there exist two increasing double-index sequences {nj} and {kj} such that if
zj = xnj ,kj , then y is formed by

z1 z2 z5 z10

z4 z3 z6 —

z9 z8 z7 —

— — — —

(2.2)

Using this concept of subsequence, the following definitions for Pringsheim limit
points and divergence of double sequences were presented in [7].

Definition 2.7. A number β is called a Pringsheim limit point of the double sequence
x = [xn,k] provided that there exists a subsequence y = [yn,k] of [xn,k] that has Pringsheim
limit β : P-lim yn,k = β.
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Definition 2.8. A double sequence x is divergent in the Pringsheim sense (P-divergent)
provided that x does not converge in the Pringsheim sense (P-convergent).

In addition to these definitions, the author also presented the following theorem in [8].

Theorem 2.9. If each ofT andA is an RH-regular matrix, x is any bounded double-complex
sequence, and ε is any bounded positive term double sequence with P-limk,l εk,l = 0, then
there exists a subsequence y of x such that T(Ay) exists and each P-limit of x is a P-limit of
T(Ay).

In [9], Patterson and Rhoades presented the following definition for rearrangement of
double sequences.

Definition 2.10. Fix λ > 1. The double sequence y(π,λ) is called a “λ-rearrangement” of
the double sequence x provided that there is a one-to-one function π from the positive
integers into themselves such that

(1) {zi(m,n)} is a one-dimensional sequence constructed from the double sequence
{xm,n} as follows:

z1
(1,1) = x1,1, z2

(1,2) = x1,2, z3
(2,2) = x2,2, z4

(2,1) = x2,1, z5
(1,3) = x1,3,

z6
(2,3) = x2,3, z7

(3,3) = x3,3, z8
(3,2) = x3,2, z9

(3,1) = x3,1, z10
(1,4) = x1,4 ··· ;

(2.3)

(2) let z
ij
(m,n) be a subsequence of zi(m,n) consisting of all elements zi(m,n) such that

1/λ≤m/n≤ λ;

(3) let z
iπj
(m′,n′) be a rearrangement of z

ij
(m,n);

(4)

y(π,λ) = y(π,λ)
p,q =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

z
iπj
(m′,n′), if

1
λ
≤ m′

n′
≤ λ, m′ = p, n′ = q,

zi(m,n), if
1
λ
>
m

n
,
m

n
> λ, m= p, n= q.

(2.4)

The word λ-permutation will be reserved to indicate the reordering of a finite double
sequence. In addition, we will say that the ordered pair (k, l) is in the λ-wedge [10] of x if
1/λ≤ k/l ≤ λ.

3. Main results

The theorems presented in this section are multidimensional analogs of Keagy theorems
in [3]. Throughout the proofs of the main results, we will use the ordering presented in
Definition 2.6.

Theorem 3.1. Let A be a four-dimensional matrix transformation with P-null pairwise
rows and pairwise columns. Also let x be a bounded double-complex sequence. If y is a double
Pringsheim subsequence of x such that Ay exists and has a finite P-limit point, then there
exists a λ-rearrangement z of x such that Az exists and each P-limit point of Ay is a P-limit
point of Az.
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Proof. In [8], Theorem 2.9 grants us a double sequence v constructed from u such that
each term of u is a P-limit point of T(Ay) and each P-limit point is a term of v. In ad-
dition, v has the property that each term of u is not only a P-limit point and/or a term
of T(Ay) but also a term in the λ-wedge of v. Let us choose the order pairs (m1,n1) and
(α1,β1). Also let us denote the λ-permutation of {xk,l}’s with 1≤ k ≤ α1 and 1≤ l ≤ β1 as
Bα1,β1 (i.e., α1β1-block). In addition, let (k, l) be the first (β2 + α2− β1− α1− 1)-terms of
{xi, j} with the following properties:

(1) (k, l) is in the λ-wedge of {xi, j},
(2) (k, l) is not in the α1β1-block of {xi, j},
(3) (k, l) is not in {yi, j : α1 < i <∞∪β1 < j <∞},

where the first (β2 +α2− β1−α1 + 1)-terms has an ordering as in Definition 2.6. Also let
us choose (m2,n2) and (α2,β2) such that m2 > m1, n2 > n1, α2 > α1, and β2 > β1, where
(α1,β2) and (α2,β1) are in the λ-wedge of v such that

α1,β1∑

k,l=1,1

∣∣am2,n2,k,lzk,l
∣∣ <

1
24

,
∑

k>α1&1≤l<β1

∣∣am2,n2,k,lxk,l
∣∣ <

1
24

,

∑

1<k<α1&l>β1

∣∣am2,n2,k,lxk,l
∣∣ <

1
24

,
∑

k>α1&l>β1

∣∣am2,n2,k,l yk,l − v1,1
∣∣ <

1
24

,

∣∣∣∣∣∣

α2−1,β2−1∑

k,l=α1+1,β1+1

am2,n2,k,l yk,l − v2,2

∣∣∣∣∣∣
<

1
24

,

∣∣∣∣∣∣

∑

k,l≥α2,β2

am2,n2,k,l yk,l

∣∣∣∣∣∣
<

1
24

,

∑

k≥α2&β1≤l≤β2

∣∣am2,n2,k,lxk,l
∣∣ <

1
24

,
∑

l≥β2&α1≤l≤α2

∣∣am2,n2,k,lxk,l
∣∣ <

1
24

,

sup
m,n

∑

β1≤ j<β2

∣∣am,n,α1, j
∣∣∣∣zα1, j − yα1, j

∣∣ <
1
24

, sup
m,n

∑

α1<i<α2

∣∣am,n,i,β1

∣∣∣∣zi,β1 − yi,β1

∣∣ <
1
24
.

(3.1)

Let us define z as follows: zk,l = yk,l if α1 < k < α2 and β1 < l < β2, zα1, j = xk,l if β1 ≤ j ≤ β2,
zi,β1 = xk,l if α1 ≤ j < α2, and zk,l = xk,l otherwise. Suppose in general that the double-
index sequences (αs−1,βt−1) and (ms−1,nt−1) have been chosen with αs−1 > αs−2, βt−1 >
βt−2, ms−1 > ms−2, and nt−1 > nt−2. Also let us denote the λ-permutation of Bαs−1βt−1 of x

by {zi, j}αs−1,βt−1

i, j=1,1 . In addition, let (k, l) be the first (βt +αs−βt −αs− 1)-terms of {xi, j} with
the following properties:

(1) (k, l) is in the λ-wedge of {xi, j},
(2) (k, l) is not in the αsβt-block of {xi, j},
(3) (k, l) is not in {yi, j : αs < i <∞∪βt < j <∞},

where the first (βt + αs − βt−1 − αs−1 − 1)-terms have an ordering as in Definition 2.6.
Now let us choose (ms,nt) and (αs,βt) such that ms > ms−1, nt > nt−1, αs > αs−1, and βt >
βt−1, where (αs−1,βt) and (αs,βt−1) are in the λ-wedge of v with the following properties:

αs−1,βt−1∑

k,l=1,1

∣∣ams,nt ,k,lzk,l
∣∣ <

1
2s+t

,
∑

k>αs−1&1≤l<βt−1

∣∣ams,nt ,k,lxk,l
∣∣ <

1
2s+t

,
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∑

1≤k≤αs−1&l>βt−1

∣∣ams,nt ,k,lxk,l
∣∣ <

1
2s+t

,
∑

k>αs−1&l>βt−1

∣∣ams,nt ,k,l yk,l − vs,t
∣∣ <

1
2s+t

,

∣∣∣∣∣∣

αs−1,βt−1∑

k,l=αs−1+1,βt−1+1

ams,nt ,k,l yk,l − vs,t

∣∣∣∣∣∣
<

1
2s+t

,

∣∣∣∣∣∣

∑

k,l≥αs,βt
ams,nt ,k,l yk,l

∣∣∣∣∣∣
<

1
2s+t

,

∑

k≥αs&βt−1<l≤βt

∣∣ams,nt ,k,lxk,l
∣∣ <

1
2s+t

,
∑

αs−1<k≤αs&l≥βs

∣∣ams,nt ,k,lxk,l
∣∣ <

1
2s+t

,

sup
m,n

∑

βt−≤ j<βt

∣∣am,n,αs−1, j
∣∣∣∣zαs−1, j − yαs−1, j

∣∣ <
1

2s+1
,

sup
m,n

∑

αs−1<i<αs

∣∣am,n,i,βt−1

∣∣∣∣zi,βt−1 − yi,βt−1

∣∣ <
1

2t+1
.

(3.2)

Let us define z as follows: zk,l = yk,l, if αs−1 < k < αs and βt−1 < l < βt, zαs,i = xk,l if βt−1 ≤
i≤ βt, zj,βt = xk,l if αs−1 ≤ j < αs, and zk,l = xk,l otherwise. Let us consider the following:

∣∣(Az)ms,nt − vs,t
∣∣=

∣∣∣∣∣

αs−1,βt−1∑

k,l=1,1

ams,nt ,k,lzk,l +
∑

αs−1<k<αs&βt−1<l<βt

ams,nt ,k,l yk,l − vs,t

+
∑

αs−1<k<∞&1≤l≤βt−1

ams,nt ,k,lxk,l +
∑

1≤k≤αs−1&βt−1<l<∞
ams,nt ,k,lxk,l

+
∑

αs≤k<∞&βt−1<l≤βt
ams,nt ,k,lxk,l +

∑

αs−1<k≤αs&βt≤l<∞
ams,nt ,k,lxk,l

+
∑

k>αs&l>βt

ams,nt ,k,lzk,l

∣∣∣∣∣

≤
αt−1,βs−1∑

k,l=1,1

∣∣ams,nt ,k,lzk,l
∣∣+

∣∣∣∣∣
∑

αs−1<k<αs&βt−1<l<βt

ams,nt ,k,l yk,l − vs,t

∣∣∣∣∣

+
∑

αs−1<k<∞&1≤l≤βt−1

∣∣ams,nt ,k,lxk,l
∣∣+

∑

1≤k≤αs−1&βt−1<l<∞

∣∣ams,nt ,k,lxk,l
∣∣

+
∑

αs<k<∞&βt−1<l≤βt

∣∣ams,nt ,k,lxk,l
∣∣+

∑

αs−1<k≤αs&βt≤l<∞

∣∣ams,nt ,k,lxk,l
∣∣

+
∑

k>αs&l>βt

∣∣ams,nt ,k,lzk,l
∣∣.

(3.3)
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Thus

∣∣(Az)ms,nt − vs,t
∣∣≤

αt−1,βs−1∑

k,l=1,1

∣∣ams,nt ,k,lzk,l
∣∣+

∣∣∣∣∣
∑

αs−1<k<αs&βt−1<l<βt

ams,nt ,k,l yk,l − vs,t

∣∣∣∣∣

+
∑

αs−1<k<∞&1≤l≤βt−1

∣∣ams,nt ,k,lxk,l
∣∣+

∑

1≤k≤αs−1&βt−1<l<∞

∣∣ams,nt ,k,lxk,l
∣∣

+
∑

αs<k<∞&βt−1<l≤βt

∣∣ams,nt ,k,lxk,l
∣∣+

∑

αs−1<k≤αs&βt≤l<∞

∣∣ams,nt ,k,lxk,l
∣∣

+
∞,∞∑

k,l=αs,βt

∣∣ams,nt ,k,l
∣∣∣∣yk,l

∣∣+
∞∑

p=s

βp∑

j=1

∣∣ams,nt ,αp , j
∣∣∣∣zαp , j − yαp , j

∣∣

+
∞∑

q=t

αq−1∑

i=1

∣∣ams,nt ,i,βq

∣∣∣∣zi,βq − yi,βq
∣∣ <

7
2s+t

.

(3.4)

Therefore, each P-limit point of Ay is a P-limit of Az. This completes the proof of this
theorem. �

Theorem 3.2. If x is a double-complex sequence and A is a row pairwise-finite four-dimen-
sional matrix satisfying conditions RH1 through RH5 of RH-regularity, then there exists a
λ-rearrangement y of x such that every limit point of x (finite or infinite) is a limit point of
(Ay).

Proof. We will assume without loss of generality that x has a definite divergent subse-
quence and at least one finite P-limit point. Let us consider the double sequence v de-
fined in the proof of Theorem 3.1. Let (α1,β1), (m1,n1), and (m1,n1) be selected index

pairs and let {zi, j}α1,β1

i, j=1,1 be the λ-permutation of the terms in the α1β1-block of x. Let us
select (m2,n2) such that m2 >m1 and n2 > n1 such that

α1,β1∑

k,l=1,1

∣∣am2,n2,k,lzk,l
∣∣ <

1
24
. (3.5)

Since A is pairwise finite and we have RH3 and RH4, we are granted the following:

∑

(k>α1∪1≤l≤β1)∩(1/λ<k/l<λ)

∣∣am2,n2,k,lzk,l
∣∣ <

1
24

,

∑

(k>α1∪1≤l≤β1)∩(k/l≤1/λ∪k/l≥λ)

∣∣am2,n2,k,lxk,l
∣∣ <

1
24

,

∑

(1≤k≤α1∩l>β1)∩(1/λ<k/l<λ)

∣∣am2,n2,k,lzk,l
∣∣ <

1
24

,

∑

(1≤k≤α1∩l>β1)∩(k/l≤1/λ∪k/l≥λ)

∣∣am2,n2,k,lxk,l
∣∣ <

1
24
.

(3.6)
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The RH-regularity conditions RH1 through RH5 imply that

∣∣∣∣∣
∑

k>α1, l>β1

am2,n2,k,l − 1

∣∣∣∣∣ <
1

24
(∣∣v2,2

∣∣+ 1
) . (3.7)

Let k2= sup{k : |am2,n2,k,l| > 0} and l2= sup{l : |am2,n2,k,l| > 0} and choose {zi, j}k2,l2
i, j=α1+1,β1+1

in a Pringsheim subsequence sense from x\{zi, j}α1,β1

i, j=1,1 with elements in the λ-wedge of x
such that

∣∣∣∣∣

k2,l2∑

k,l=(α1+1,β1+1)∩(1/λ<k/l<λ)

am2,n2,k,lzk,l − v2,2

∣∣∣∣∣ <
1
24

,

k2,l2∑

k,l=(α1+1,β1+1)∩(k/l≤1/λ∪k/l≥λ)

∣∣am2,n2,k,lxk,l
∣∣ <

1
24
.

(3.8)

Also let us select the following z’s: ({zi,k2+1 : 1 ≤ i ≤ l2 + 1} ∩ {1/λ < i/(k2 + 1) < λ})∪
({zl2+1,i : 1 ≤ i < k2} ∩ {1/λ < (l2 + 1)/i < λ}) and denote these z’s by {zζ ,η}. In addition,

{zζ ,η} are selected such that {ζ ,η} corresponds to the first index of x in x\{zi, j}α2−1,β2−1
i, j=1,1 .

By the RH-regularity conditions, there exist m2 > m2, n2 > n2, α2 > k2 + 1, and β2> l2 + 1

such that |am2,n2,α2,β2| > 0 and |am2,n2,k,l|=0, where k > α2 or l > β2. Choose {zi, j}α2−1,β2−1
i, j=k2+2, l2+2

in a Pringsheim subsequence sense from x\{zi, j}k2+1, l2+1
i, j=1,1 in the λ-wedge of x. Let us de-

note ({zi,β2 : 1 ≤ i ≤ α2} ∩ {1/λ < i/β2 < λ})∪ ({zα2,i : 1 ≤ i < β2} ∩ {1/λ < α2/i < λ}) by
{zζ ,η}, where {zζ ,η} are selected such that {ζ ,η} corresponds to the first index of x in

x\{zi, j}α2−1,β2−1
i, j=1,1 such that

∣∣∣∣∣

α2,β2∑

k,l=1,1

am2,n2,k,lzk,l

∣∣∣∣∣ > 24. (3.9)

Thus, in general we select two double sequences (mr ,ns) and (mr ,ns) as follows: let

(αr−1, βs−1), (mr−1,ns−1), and (mr−1,ns−1) be selected index pairs and let {zi, j}αr−1,βs−1

i, j=1,1 be
the λ-permutation of the terms in the αr−1βs−1-block of x. Let us select (mr ,ns) such that
mr >mr−1 and ns > ns−1 such that

αr−1,βs−1∑

k,l=1,1

∣∣amr ,ns,k,lzk,l
∣∣ <

1
2r+s

. (3.10)

Since A is pairwise finite and we have RH3 and RH4, we are granted the following:

∑

(k>αr−1∪1≤l≤βs−1)∩(1/λ<k/l<λ)

∣∣amr ,ns,k,lzk,l
∣∣ <

1
2r+s

,

∑

(k>αr−1∪1≤l≤βs−1)∩(k/l≤1/λ∪k/l≥λ)

∣∣amr ,ns,k,lxk,l
∣∣ <

1
2r+s

,
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∑

(1≤k≤αr−1∩l>βs−1)∩(1/λ<k/l<λ)

∣∣amr ,ns,k,lzk,l
∣∣ <

1
2r+s

,

∑

(1≤k≤αr−1∩l>βs−1)∩(k/l≤1/λ∪k/l≥λ)

∣∣amr ,ns,k,lxk,l
∣∣ <

1
2r+s

.

(3.11)

The RH-regularity conditions RH1 through RH5 imply that
∣∣∣∣∣

∑

k>αr−1, l>βs−1

amr ,ns,k,l − 1

∣∣∣∣∣ <
1

2r+s
(∣∣vr,s

∣∣+ 1
) . (3.12)

Let kr=sup{k : |amr ,ns,k,l|>0} and ls=sup{l : |amr ,ns,k,l|> 0} and choose {zi, j}kr ,lsi, j=αr−1+1,βs−1+1

in a Pringsheim subsequence sense from x\{zi, j}αr−1,βs−1

i, j=1,1 with elements in the λ-wedge of
x such that

∣∣∣∣∣

kr ,ls∑

k,l=(αr−1+1,βs−1+1)∩(1/λ<k/l<λ)

amr ,ns,k,lzk,l − vr,s

∣∣∣∣∣ <
1

2r+s
,

kr ,ls∑

k,l=(αr−1+1,βs−1+1)∩(k/l≤1/λ∪k/l≥λ)

∣∣amr ,ns,k,lxk,l
∣∣ <

1
2r+s

.

(3.13)

Also let us select the following z’s : ({zi,kr+1 : 1 ≤ i ≤ ls + 1} ∩ {1/λ < i/(kr + 1) < λ})∪
({zls+1,i : 1≤ i < kr + 1}∩{1/λ < (ls + 1)/i < λ}) and denote these z’s by {zζ ,η}. In addition,

{zζ ,η} are selected such that {ζ ,η} corresponds to the first index of x in x\{zi, j}αr−1,βs−1
i, j=1,1 .

By the RH-regularity conditions, there exist mr > mr , ns > ns, αr > kr + 1, and βs > ls + 1

such that |amr ,ns,αr ,βs| > 0 and |amr ,ns,k,l| = 0, where k > αr or l > βs. Choose {zi, j}αr−1,βs−1
i, j=kr+2, ls+2

in a Pringsheim subsequence sense from x\{zi, j}k2r+1, ls+1
i, j=1,1 in the λ-wedge of x. Let us de-

note ({zi,βs : 1 ≤ i ≤ αr} ∩ {1/λ < i/βs < λ})∪ ({zαr ,i : 1 ≤ i < βs} ∩ {1/λ < αr/i < λ}) by
{zζ ,η}, where {zζ ,η} are selected such that {ζ ,η} corresponds to the first index of x in

x\{zi, j}αr−1,βs−1
i, j=1,1 such that

∣∣∣∣∣

αr ,βs∑

k,l=1,1

amr ,ns,k,lzk,l

∣∣∣∣∣ > 2r+s. (3.14)

This process grants us two positive integer double sequences and a λ-rearrangement z
of x having the following properties: |(Az)mr ,ns − vr,s| = o(1) and {|(Az)mr ,ns|} which is
definite divergent. This completes the proof. �

Corollary 3.3. If there exists a four-dimensional matrix A satisfying RH1 through RH5

such thatAz is definite divergent for every λ-rearrangement z of x, then x is definite divergent.

Corollary 3.4. If there exists a four-dimensional matrix A satisfying RH1 through RH5

such that Az is bounded for every λ-rearrangement z of x, then x has only bounded subse-
quence.
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