

Research Article
Regular Generalized ω -Closed Sets

Ahmad Al-Omari and Mohd Salmi Md Noorani

Received 12 September 2006; Revised 1 December 2006; Accepted 16 January 2007

Recommended by Lokenath Debnath

In 1982 and 1970, Hdeib and Levine introduced the notions of ω -closed set and generalized closed set, respectively. The aim of this paper is to provide a relatively new notion of generalized closed set, namely, regular generalized ω -closed, regular generalized ω -continuous, a - ω -continuous, and regular generalized ω -irresolute maps and to study its fundamental properties.

Copyright © 2007 A. Al-Omari and M. S. M. Noorani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

All through this paper (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. A is regular open if $A = \text{Int}(\text{Cl}(A))$ and A is regular closed if its complement is regular open; equivalently A is regular closed if $A = \text{Cl}(\text{Int}(A))$, see [1]. Let (X, τ) be a space and let A be a subset of X . A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is called ω -closed [2] if it contains all its condensation points. The complement of an ω -closed set is called ω -open. It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and $U - W$ is countable. The family of all ω -open subsets of a space (X, τ) , denoted by τ_ω or $\omega O(X)$, forms a topology on X finer than τ . The ω -closure and ω -interior, that can be defined in a manner similar to $\text{Cl}(A)$ and $\text{Int}(A)$, respectively, will be denoted by $\text{Cl}_\omega(A)$ and $\text{Int}_\omega(A)$, respectively. Several characterizations of ω -closed subsets were provided in [3, 2, 4]. Levine [5] introduced the notion of generalized closed sets and a class of topological spaces called $T_{1/2}$ -spaces. He defined a subset A of a space (X, τ) to be generalized closed

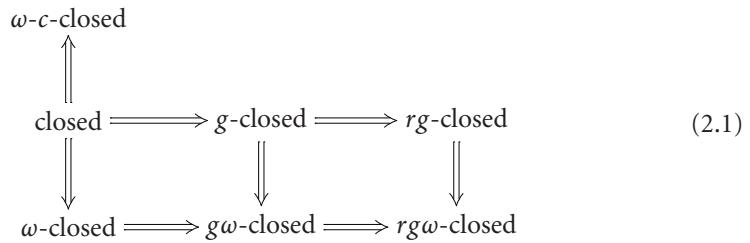
set (briefly g -closed) if $\text{Cl}(A) \subseteq U$ whenever $U \in \tau$ and $A \subseteq U$. Generalized semiclosed [6] (resp., α -generalized closed [7], θ -generalized closed [8], generalized semi-preclosed [9], δ -generalized closed [10], ω -generalized closed [3, 11]) sets are defined by replacing the closure operator in Levine's original definition by the semiclosure (resp., α -closure, θ -closure, semi-preclosure, δ -closure, ω -closure) operator.

2. Regular generalized ω -closed sets

A subset A of (X, τ) is called regular generalized closed (simply, rg -closed) (see [12]) if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open. Analogously, we begin this section by introducing the class of regular generalized ω -closed sets.

Definition 2.1. A subset A of (X, τ) is called regular generalized ω -closed (simply, $rg\omega$ -closed) if $\text{Cl}_\omega(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open. A subset B of (X, τ) is called regular generalized ω -open (simply, $rg\omega$ -open) if the complement of B is $rg\omega$ -closed sets.

We have the following relation for $rg\omega$ -closed with the other known sets:



Example 2.2. Let \mathbb{R} be the set of all real numbers, let \mathbb{Q} be the set of all rational numbers, with the topology $\tau = \{\mathbb{R}, \emptyset, \mathbb{R} - \mathbb{Q}\}$. Then $A = \mathbb{R} - \mathbb{Q}$ is not $g\omega$ -closed, since A is open, thus ω -open and $A \subseteq A$, $\text{Cl}_\omega(A) \not\subseteq A$ (because A is not ω -closed). Also the only regular open set containing A is X . Thus A is $rg\omega$ -closed.

Example 2.3. Let $X = \{a, b, c, d\}$, with the topology $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then the set $\{a\}$ is not rg -closed, see [13]. But $\{a\}$ is $rg\omega$ -closed set, since X is finite and τ_ω is discrete topology.

It is clear that if (X, τ) is a countable space, then $rg\omega(X, \tau) = \mathcal{P}(X)$, where $rg\omega(X, \tau)$ is the set of all $rg\omega$ -closed subsets of X and $\mathcal{P}(X)$ is the power set of X .

Since every closed set is ω -closed we have the following.

LEMMA 2.4. *For every subset A of (X, τ) , $\text{Cl}_\omega(A) \subseteq \text{Cl}(A)$.*

The proof of the following result follows from the fact that every regular open set is an open set together with Lemma 2.4.

THEOREM 2.5. *Every $g\omega$ -closed set and rg -closed set are $rg\omega$ -closed.*

THEOREM 2.6. *Let A be an $rg\omega$ -closed subset of (X, τ) . Then $\text{Cl}_\omega(A) - A$ does not contain any nonempty regular closed set.*

Proof. Let F be a regular closed subset of (X, τ) such that $F \subseteq \text{Cl}_\omega(A) - A$. Then $F \subseteq X - A$ and hence $A \subseteq X - F$. Since A is $rg\omega$ -closed set and $X - F$ is a regular open subset of (X, τ) , $\text{Cl}_\omega(A) \subseteq X - F$ and so $F \subseteq X - \text{Cl}_\omega(A)$. Therefore $F \subseteq \text{Cl}_\omega(A) \cap (X - \text{Cl}_\omega(A)) = \emptyset$. \square

THEOREM 2.7. *A subset A of (X, τ) is $rg\omega$ -open if and only if $F \subseteq \text{Int}_\omega(A)$ whenever F is a regular closed subset such that $F \subseteq A$.*

Proof. Let A be an $rg\omega$ -open subset of X and let F be a regular closed subset of X such that $F \subseteq A$. Then $X - A$ is an $rg\omega$ -closed set and $X - A \subseteq X - F$. Since $X - A$ is $rg\omega$ -closed, $X - \text{Int}_\omega(A) = \text{Cl}_\omega(X - A) \subseteq X - F$. Thus $F \subseteq \text{Int}_\omega(A)$. Conversely, if $F \subseteq \text{Int}_\omega(A)$ where F is a regular closed subset of (X, τ) such that $F \subseteq A$, then for any regular open subset U such that $X - A \subseteq U$, we have $X - U \subseteq A$ and thus $X - U \subseteq \text{Int}_\omega(A)$. That is, $X - \text{Int}_\omega(A) = \text{Cl}_\omega(X - A) \subseteq U$. Therefore $X - A$ is $rg\omega$ -closed. \square

LEMMA 2.8 [14]. *For every open U in a topological space X and every $A \subseteq X$, $\text{Cl}(U \cap A) = \text{Cl}(U \cap \text{Cl}(A))$.*

Recall that two nonempty sets A and B of X are said to be separated if $\text{Cl}(A) \cap B = \emptyset = A \cap \text{Cl}(B)$.

THEOREM 2.9. *If A and B are open, $rg\omega$ -open, and separated sets, then $A \cup B$ is $rg\omega$ -open.*

Proof. Let F be a regular closed subset of $A \cup B$. Then $F \cap \text{Cl}(A) \subseteq A$, since A is open and by Lemma 2.8 we have $F \cap \text{Cl}(A)$ is regular closed hence by Theorem 2.7 $F \cap \text{Cl}(A) \subseteq \text{Int}_\omega(A)$. Similarly, $F \cap \text{Cl}(B) \subseteq \text{Int}_\omega(B)$. Then we have $F \subseteq \text{Int}_\omega(A \cup B)$ and hence $A \cup B$ is $rg\omega$ -open. \square

The following example shows that the union of $rg\omega$ -open sets need not be $rg\omega$ -open.

Example 2.10. Let X be an uncountable set and let A, B, C, D be subsets of X , such that each of them is uncountable set and the family $\{A, B, C, D\}$ is a partition of X . We defined the topology $\tau = \{\emptyset, X, \{A\}, \{B\}, \{A, B\}, \{A, B, C\}\}$. Choose $x, y \notin A$ and $x \neq y$. Then $H = A \cup \{x\}$ and $G = A \cup \{y\}$ are $rg\omega$ -closed, since only regular open set containing H, G is X . But $H \cap G = \{A\}$ and $\{A\}$ is regular open in X and $\text{Cl}_\omega(A) \not\subseteq A$, since $\{A\}$ is not ω -closed. Thus $H \cap G$ is not $rg\omega$ -closed. Therefore the union of $rg\omega$ -open sets need not be $rg\omega$ -open.

The proof of the following result is straightforward since τ_ω is a topology on X and thus omitted.

THEOREM 2.11. *If A and B are $rg\omega$ -closed sets, then $A \cup B$ is $rg\omega$ -closed.*

THEOREM 2.12. *Let A be a $rg\omega$ -closed subset of (X, τ) . If $B \subseteq X$ such that $A \subseteq B \subseteq \text{Cl}_\omega(A)$, then B is also $rg\omega$ -closed. Let B be a subset of (X, τ) and let A be an $rg\omega$ -open subset such that $\text{Int}_\omega(A) \subseteq B \subseteq A$. Then B is also $rg\omega$ -open.*

The proof is obvious.

THEOREM 2.13. *If A be an $rg\omega$ -closed subset of (X, τ) , then $\text{Cl}_\omega(A) - A$ is $rg\omega$ -open set.*

Proof. Let A be an $rg\omega$ -closed subset of (X, τ) and let F be a regular closed subset such that $F \subseteq \text{Cl}_\omega(A) - A$. By Theorem 2.6, $F = \emptyset$ and thus $F \subseteq \text{Int}_\omega(\text{Cl}_\omega(A) - A)$. By Theorem 2.7, $\text{Cl}_\omega(A) - A$ is $rg\omega$ -open set. \square

We first recall the following lemmas to obtain further results for $rg\omega$ -closed sets.

LEMMA 2.14 [3]. *If Y is an open subspace of a space X and A is a subset of Y , then $\text{Cl}_{\omega|Y}(A) = \text{Cl}_\omega(A) \cap (Y)$.*

LEMMA 2.15. *If A is a regular open and $rg\omega$ -closed subset of a space X , then A is ω -closed in X .*

The proof is obvious.

THEOREM 2.16. *Let Y be an open subspace of a space X and $A \subseteq Y$. If A is $rg\omega$ -closed in X , then A is $rg\omega$ -closed in Y .*

Proof. Let U be a regular open set of Y such that $A \subseteq U$. Then $U = V \cap Y$ for some regular open set V of X . Since A is $rg\omega$ -closed in X , we have $\text{Cl}_\omega(A) \subseteq U$ and by Lemma 2.14, $\text{Cl}_{\omega|Y}(A) = \text{Cl}_\omega(A) \cap (Y) \subseteq V \cap Y = U$. Hence A is $rg\omega$ -closed in X . \square

COROLLARY 2.17. *If A is an $rg\omega$ -closed regular open set and B is an ω -closed set of a space X , then $A \cap B$ is $rg\omega$ -closed.*

THEOREM 2.18. *Let A be an $rg\omega$ -closed set. Then $A = \text{Cl}_\omega(\text{Int}_\omega(A))$ if and only if $\text{Cl}_\omega(\text{Int}_\omega(A)) - A$ is regular closed.*

Proof. If $A = \text{Cl}_\omega(\text{Int}_\omega(A))$, then $\text{Cl}_\omega(\text{Int}_\omega(A)) - A = \emptyset$ and hence $\text{Cl}_\omega(\text{Int}_\omega(A)) - A$ is regular closed. Conversely, let $\text{Cl}_\omega(\text{Int}_\omega(A)) - A$ be regular closed, since $\text{Cl}_\omega(A) - A$ contains the regular closed set $\text{Cl}_\omega(\text{Int}_\omega(A)) - A$. By Theorem 2.6 $\text{Cl}_\omega(\text{Int}_\omega(A)) - A = \emptyset$ and hence $A = \text{Cl}_\omega(\text{Int}_\omega(A))$. \square

LEMMA 2.19 [3]. *Let (A, τ_A) be an antilocally countable subspace of a space (X, τ) . Then $\text{Cl}(A) = \text{Cl}_\omega(A)$.*

We call (X, τ) an antilocally countable space if each nonempty open set is an uncountable set.

COROLLARY 2.20. *In an antilocally countable subspace of a space (X, τ) , the concepts of $rg\omega$ -closed set and rg -closed set coincide.*

LEMMA 2.21 [3]. *Let (X, τ) and (Y, σ) be two topological spaces. Then $(\tau \times \sigma)_\omega \subseteq \tau_\omega \times \sigma_\omega$.*

THEOREM 2.22. *If $A \times B$ is $rg\omega$ -open subset of $(X \times Y, \tau \times \sigma)$, then A is $rg\omega$ -open subset in (X, τ) and B is $rg\omega$ -open subset in (Y, σ) .*

Proof. Let F_A be a regular closed subset of (X, τ) and let F_B be a regular closed subset of (Y, σ) such that $F_A \subseteq A$ and $F_B \subseteq B$. Then $F_A \times F_B$ is regular closed in $(X \times Y, \tau \times \sigma)$ such that $F_A \times F_B \subseteq A \times B$. By assumption $A \times B$ is $rg\omega$ -open in $(X \times Y, \tau \times \sigma)$ and so

$F_A \times F_B \subseteq \text{Int}_\omega(A \times B) \subseteq \text{Int}_\omega(A) \times \text{Int}_\omega(B)$ by Lemma 2.21. Therefore $F_A \subseteq \text{Int}_\omega$, $F_B \subseteq \text{Int}_\omega(B)$. Hence A, B are $rg\omega$ -open. \square

The converse of the above need not be true in general.

Example 2.23. Let $X = Y = \mathbb{R}$ with the usual topology τ . Let $A = \{\{\mathbb{R} - \mathbb{Q}\} \cup [\sqrt{2}, 5]\}$ and $B = (1, 7)$. Then A and B are $rg\omega$ -open (ω -open) subsets of (\mathbb{R}, τ) , while $A \times B$ is not $rg\omega$ -open in $(\mathbb{R} \times \mathbb{R}, \tau \times \tau)$, since the set $F = [\sqrt{2}, 3] \times [3, 5]$ is regular closed set contained in $A \times B$ and $F \not\subseteq \text{Int}_\omega(A \times B)$. The point $(\sqrt{2}, 4) \in F$ and $(\sqrt{2}, 4) \notin \text{Int}_\omega(A \times B)$, because if $(\sqrt{2}, 4) \in \text{Int}_\omega(A \times B)$, then there exist open set U containing $\sqrt{2}$ and open set V containing 4 such that $(U \times V) - (A \times B)$ is countable but $(U \times V) - (A \times B)$ is uncountable for any open set U containing $\sqrt{2}$ and open set V containing 4.

3. Regular generalized ω - $T_{1/2}$ space

Recall that a space (X, τ) is called $T_{1/2}$ [5] if every g -closed set is closed or equivalently if every singleton is open or closed, Dunham [15]. We introduce the following relatively new definition.

Definition 3.1. A space (X, τ) is a regular generalized ω - $T_{1/2}$ (simply, $rg\omega$ - $T_{1/2}$) if every $rg\omega$ -closed set in (X, τ) is ω -closed.

THEOREM 3.2. *For a space (X, τ) , the following are equivalent.*

- (1) *X is a $rg\omega$ - $T_{1/2}$.*
- (2) *Every singleton is either regular closed or ω -open.*

Proof. (1) \Rightarrow (2) Suppose $\{x\}$ is not a regular closed subset for some $x \in X$. Then $X - \{x\}$ is not regular open and hence X is the only regular open set containing $X - \{x\}$. Therefore $X - \{x\}$ is $rg\omega$ -closed. Since (X, τ) is $rg\omega$ - $T_{1/2}$ space, $X - \{x\}$ is ω -closed and thus $\{x\}$ is ω -open.

(2) \Rightarrow (1) Let A be an $rg\omega$ -closed subset of (X, τ) and $x \in \text{Cl}_\omega(A)$. We show that $x \in A$. If $\{x\}$ is regular closed and $x \notin A$, then $x \in (\text{Cl}_\omega(A) - A)$. Thus $\text{Cl}_\omega(A) - A$ contains a nonempty regular closed set $\{x\}$, a contradiction to Theorem 2.6. So $x \in A$. If $\{x\}$ is ω -open, since $x \in \text{Cl}_\omega(A)$, then for every ω -open set U containing x , we have $U \cap A \neq \emptyset$. But $\{x\}$ is ω -open then $\{x\} \cap A \neq \emptyset$. Hence $x \in A$. So in both cases we have $x \in A$. Therefore A is ω -closed. \square

THEOREM 3.3. *Let (X, τ) be an antilocally countable space. Then (X, τ) is a T_1 -space if every $rg\omega$ -closed set is ω -closed.*

Proof. Let $x \in X$, and suppose that $\{x\}$ is not closed. Then $A = X - \{x\}$ is not open, and thus A is $rg\omega$ -closed (the only regular open set containing A is X). Therefore, by assumption, A is ω -closed, and thus $\{x\}$ is ω -open. So there exists $U \in \tau$ such that $x \in U$ and $U - \{x\}$ is countable. It follows that U is a nonempty countable open subset of $x \in X$, a contradiction. \square

Definition 3.4. A map $f : X \rightarrow Y$ is said to be

- (i) approximately closed [16] (a -closed) provided that $f(F) \subseteq \text{Int}(A)$ whenever F is a closed subset of X , A is a g -open subset of Y , and $f(F) \subseteq A$;

(ii) approximately continuous [16] (a -continuous) provided that $\text{Cl}(A) \subseteq f^{-1}(V)$ whenever V is an open subset of Y , A is a g -closed subset of X , and $A \subseteq f^{-1}(V)$.

Definition 3.5. A map $f : X \rightarrow Y$ is said to be approximately ω -closed (simply, a - ω -closed) provided that $f(F) \subseteq \text{Int}_\omega(A)$ whenever F is a regular closed subset of X , A is an $rg\omega$ -open of Y , and $f(F) \subseteq A$.

Definition 3.6. A map $f : X \rightarrow Y$ is said to be approximately ω -continuous (simply, a - ω -continuous) provided that $\text{Cl}_\omega(A) \subseteq f^{-1}(V)$ whenever V is a regular open subset of Y , A is an $rg\omega$ -closed subset of X , and $A \subseteq f^{-1}(V)$.

The notions of a -closed (resp.; a -continuous) and a - ω -closed (resp.; a - ω -continuous) are independent.

Example 3.7. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $f : (X, \tau) \rightarrow (X, \tau)$ be a function defined by $f(a) = a$, $f(b) = d$, $f(c) = b$, $f(d) = c$. Then f is a - ω -closed, since X is finite and thus τ_ω is a discrete topology, and f is not a -closed function. Because the set $A = \{b, c\}$ is g -open and $F = \{c, d\}$ is closed, $f(F) \subseteq A$, but $f(F) \not\subseteq \text{Int}(A)$.

Example 3.8. Let $X = \mathbb{R}$ with the topology $\tau = \{\phi, X, \mathbb{R} - \mathbb{Q}\}$. Let $f : (X, \tau) \rightarrow (X, \tau)$ be a function defined by $f(x) = 0$, for all $x \in X$. Then f is a -closed, since for any closed set F of X , the only g -open set containing $f(F)$ is X . And f is not a - ω -closed function. Because the set $A = \mathbb{Q}$ is $rg\omega$ -open and $F = \mathbb{R}$ is regular closed, $f(F) \subseteq A$, but $f(F) \not\subseteq \text{Int}_\omega(A) = \phi$.

THEOREM 3.9. A space X is $rg\omega$ - $T_{1/2}$ -space if and only if every space Y and every function $f : X \rightarrow Y$ are a - ω -continuous.

Proof. Let V be a regular open subset of Y and A is an $rg\omega$ -closed subset of X such that $A \subseteq f^{-1}(V)$, since X is $rg\omega$ - $T_{1/2}$ -space then A is ω -closed thus $A = \text{Cl}_\omega(A)$, hence $\text{Cl}_\omega(A) \subseteq f^{-1}(V)$ and f is a - ω -continuous. Let A be a nonempty $rg\omega$ -closed subset of X and let Y be the set X with the topology $\{Y, A, \phi\}$. Let $f : X \rightarrow Y$ be the identity mapping. By assumption f is a - ω -continuous. Since A is $rg\omega$ -closed subset in X and open in Y such that $A \subseteq f^{-1}(A)$, it follows that $\text{Cl}_\omega(A) \subseteq f^{-1}(A) = A$. Hence A is ω -closed in X and therefore X is $rg\omega$ - $T_{1/2}$ -space. \square

LEMMA 3.10. If the regular open and regular closed sets of X coincide, then all subsets of X are $rg\omega$ -closed (and hence all are $rg\omega$ -open).

Proof. Let A be any subset of X such that $A \subseteq U$ and U is regular open, then $\text{Cl}_\omega(A) \subseteq \text{Cl}_\omega(U) \subseteq \text{Cl}(U) = U$. Therefore A is $rg\omega$ -closed. \square

THEOREM 3.11. If the regular open and regular closed sets of Y coincide, then a function $f : X \rightarrow Y$ is a - ω -closed if and only if $f(F)$ is ω -open for every regular closed subset F of X .

Proof. Assume f is a - ω -closed by Lemma 3.10 all subsets of Y are $rg\omega$ -closed. So for any regular closed subset F of X , $f(F)$ is $rg\omega$ -closed in Y . Since f is a - ω -closed, $f(F) \subseteq \text{Int}_\omega(f(F))$, therefore $f(F) = \text{Int}_\omega(f(F))$ thus $f(F)$ is ω -open. Conversely if $f(F) \subseteq A$ where F is regular closed and A is $rg\omega$ -open, then $f(F) = \text{Int}_\omega(f(F)) \subseteq \text{Int}_\omega(A)$ hence f is a - ω -closed. \square

The proof of the following result for a - ω -continuous function is analogous and is omitted.

THEOREM 3.12. *If the regular open and regular closed sets of X coincide, then a function $f : X \rightarrow Y$ is a - ω -continuous if and only if $f^{-1}(V)$ is ω -closed for every regular open subset V of Y .*

4. $rg\omega$ -continuity

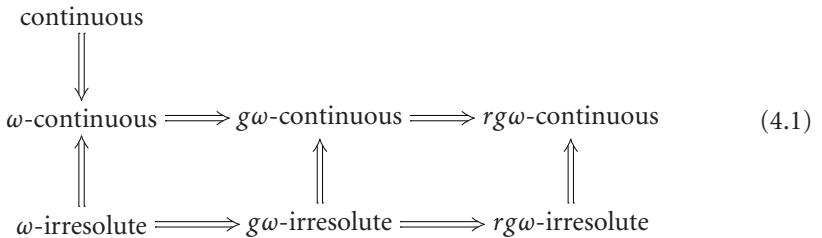
In this section, we will introduce some new classes of maps and study some of their characterizations. In [11, 3] a map $f : X \rightarrow Y$ is called ω -irresolute (resp., R -map [17]) if the inverse image of every ω -closed (resp., regular closed) subset of Y is ω -closed (resp., regular closed) in X . In [3], a map $f : X \rightarrow Y$ is called $g\omega$ -closed if the image of every closed subset of X is $g\omega$ -closed in Y . Relatively new definitions are given next.

Definition 4.1. A map $f : X \rightarrow Y$ is called $rg\omega$ -closed (resp., ro-preserving, pre- ω -closed) if $f(V)$ is $rg\omega$ -closed (resp., regular open, ω -closed) in Y for every closed (resp., regular open, ω -closed) subset V of X .

Example 4.2. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $f : (X, \tau) \rightarrow (X, \tau)$ be a function defined by $f(a) = a, f(b) = b, f(c) = d, f(d) = c$. Then f is ro-preserving, since the family of all regular open sets of X is $\{\emptyset, X, \{a\}, \{b\}\}$. But if we defined $g : (X, \tau) \rightarrow (X, \tau)$ as $g(a) = c, g(b) = d, g(c) = a, g(d) = b$, then g is not ro-preserving function.

Definition 4.3. A map $f : X \rightarrow Y$ is called $rg\omega$ -continuous (resp., $rg\omega$ -irresolute) if the inverse image of every ω -closed (resp., $rg\omega$ -closed) subset V of Y is $rg\omega$ -closed subset of X .

From the definition stated above we obtain the following diagram of implications:



THEOREM 4.4. *Let $f : X \rightarrow Y$ be a surjective, $rg\omega$ -irresolute, and pre- ω -closed map if X is $rg\omega$ - $T_{1/2}$ -space, then Y is also an $rg\omega$ - $T_{1/2}$ -space.*

Proof. Let A be $rg\omega$ -closed subset of Y . Since f is an $rg\omega$ -irresolute map, then $f^{-1}(A)$ is an $rg\omega$ -closed subset of X . Since X is $rg\omega$ - $T_{1/2}$ -space, then $f^{-1}(A)$ is an ω -closed subset of X . Since f is a pre- ω -closed map, then $f(f^{-1}(A)) = A$ is an ω -closed subset of Y . Therefore Y is also $rg\omega$ - $T_{1/2}$ -space. \square

Since every $g\omega$ -closed set is $rg\omega$ -closed, every $g\omega$ -closed map is $rg\omega$ -closed. Next we give new characterization of $g\omega$ -closed maps.

THEOREM 4.5. *A map $f : X \rightarrow Y$ is $g\omega$ -closed if and only if for each $A \subseteq Y$ and each open set U containing $f^{-1}(A)$, there exists a $g\omega$ -open subset V of Y such that $A \subseteq V$ and $f^{-1}(V) \subseteq U$.*

Proof. Let F be a $g\omega$ -closed map, $A \subseteq Y$, and let U be an open set containing $f^{-1}(A)$. Then $V = Y - f(X - U)$ is $g\omega$ -open subset of Y containing A and $f^{-1}(V) \subseteq U$. Conversely let F be closed subset of X and let H be an open subset of Y such that $f(F) \subseteq H$. Then $f^{-1}(Y - f(F)) \subseteq X - F$ and $X - F$ is open by hypothesis, there exists a $g\omega$ -open subset V of Y such that $Y - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore, $F \subseteq X - f^{-1}(V)$ and hence $f(F) \subseteq Y - V$. Since $Y - H \subseteq Y - f(F)$, $f^{-1}(Y - H) \subseteq f^{-1}(Y - f(F)) \subseteq f^{-1}(V) \subseteq X - F$, by taking complement, we get $F \subseteq X - f^{-1}(V) \subseteq X - f^{-1}(Y - f(F)) \subseteq X - f^{-1}(Y - H)$. Therefore $f(F) \subseteq Y - V \subseteq H$. Since $Y - V$ is $g\omega$ -closed set and $\text{Cl}_\omega(f(F)) \subseteq \text{Cl}_\omega(Y - V) \subseteq H$, hence $f(F)$ is $g\omega$ -closed. Thus f is a $g\omega$ -closed map. \square

Since every ω -closed set is $rg\omega$ -closed, we have the following.

THEOREM 4.6. *Every $rg\omega$ -irresolute map is $rg\omega$ -continuous map.*

Definition 4.7. A subset $A \subseteq X$ is said to be ω -c-closed provided that there is a proper subset B for which $A = \text{Cl}_\omega(B)$. A map $f : X \rightarrow Y$ is said to be $g\omega$ -c-closed if $f(A)$ is $g\omega$ -closed in Y for every ω -c-closed subset $A \subseteq X$.

Since closed sets are obviously ω -c-closed, $g\omega$ -closed maps are $g\omega$ -c-closed. In a similar manner, we say a map $f : X \rightarrow Y$ is $rg\omega$ -c-closed if $f(A)$ is $rg\omega$ -closed in Y for every ω -c-closed subset $A \subseteq X$.

THEOREM 4.8. *Let $f : X \rightarrow Y$ be an R-map and $rg\omega$ -c-closed. Then $f(A)$ is $rg\omega$ -closed in Y for every $rg\omega$ -closed subset A of X .*

Proof. Let A be an $rg\omega$ -closed subset of X and let U be a regular open subset of Y such that $f(A) \subseteq U$. Since f is an R-map, $f^{-1}(U)$ is a regular open subset of X and $A \subseteq f^{-1}(U)$. As A is an $rg\omega$ -closed subset, $\text{Cl}_\omega(A) \subseteq f^{-1}(U)$. Hence $f(\text{Cl}_\omega(A)) \subseteq (U)$. Because $\text{Cl}_\omega(A)$ is ω -c-closed and f is $rg\omega$ -c-closed map, $f(\text{Cl}_\omega(A))$ is $rg\omega$ -closed. Therefore, $\text{Cl}_\omega(f(A)) \subseteq \text{Cl}_\omega(f(\text{Cl}_\omega(A))) \subseteq f(\text{Cl}_\omega(A)) \subseteq U$. Hence $f(A)$ is an $rg\omega$ -closed subset of Y . \square

THEOREM 4.9. *Let $f : X \rightarrow Y$ be ro-preserving and ω -irresolute function, if B is $rg\omega$ -closed in Y , then $f^{-1}(B)$ is $rg\omega$ -closed in X .*

Proof. Let G be a regular open subset of X such that $f^{-1}(B) \subseteq G$. Then $B \subseteq f(G)$ and $f(G)$ is regular open. Since B is $rg\omega$ -closed, then $\text{Cl}_\omega(A) \subseteq f(G)$ and $f^{-1}(\text{Cl}_\omega(B)) \subseteq G$. Since f is ω -irresolute then $f^{-1}(\text{Cl}_\omega(B))$ is ω -closed and $\text{Cl}_\omega(f^{-1}(\text{Cl}_\omega(B))) = f^{-1}(\text{Cl}_\omega(B))$, therefore $\text{Cl}_\omega(f^{-1}(B)) \subseteq \text{Cl}_\omega(f^{-1}(\text{Cl}_\omega(B))) \subseteq G$ thus $f^{-1}(B)$ is $rg\omega$ -closed in X . \square

THEOREM 4.10. *Let $f : X \rightarrow Y$ be a- ω -closed maps and ω -irresolute maps, if A is $rg\omega$ -closed in Y , then $f^{-1}(A)$ is $rg\omega$ -closed in X .*

Proof. Assume that A is an $rg\omega$ -closed in Y and $f^{-1}(A) \subseteq U$, where U is a regular open subset of X . Taking complements we obtain $X - U \subseteq X - f^{-1}(A) \subseteq f^{-1}(Y - A)$ and $f(X - U) \subseteq Y - A$. Since f is $a\text{-}\omega$ -closed, $f(X - U) \subseteq \text{Int}_\omega(Y - A) = Y - \text{Cl}_\omega(A)$. It follows that $X - U \subseteq X - f^{-1}(\text{Cl}_\omega(A))$ and $f^{-1}(\text{Cl}_\omega(A)) \subseteq U$, since f is ω -irresolute, $f^{-1}(\text{Cl}_\omega(A))$ is ω -closed thus we have $f^{-1}(A) \subseteq f^{-1}(\text{Cl}_\omega(A)) \subseteq U$ and $\text{Cl}_\omega(f^{-1}(A)) \subseteq \text{Cl}_\omega(f^{-1}(\text{Cl}_\omega(A))) = f^{-1}(\text{Cl}_\omega(A)) \subseteq U$. Therefore $\text{Cl}_\omega(f^{-1}(A)) \subseteq U$ and $f^{-1}(A)$ is $rg\omega$ -closed in X . \square

THEOREM 4.11. *If $f : X \rightarrow Y$ is R-map and $rg\omega$ -closed and A is g -closed subset of X , then $f(A)$ is $rg\omega$ -closed.*

Proof. Let $f(A) \subseteq U$, where U is regular open subset of X then $f^{-1}(U)$ is regular open set containing A . Since A is g -closed, we have then $\text{Cl}(A) \subseteq f^{-1}(U)$ and $f(\text{Cl}(A)) \subseteq U$. Since f is $rg\omega$ -closed, $f(\text{Cl}(A))$ is $rg\omega$ -closed. Therefore $\text{Cl}_\omega(f(\text{Cl}(A))) \subseteq U$ which implies that $\text{Cl}_\omega(f(A)) \subseteq U$, hence $f(A)$ is $rg\omega$ -closed. \square

The proof of Theorem 4.8 can be easily modified to obtain the following result.

THEOREM 4.12. *Let $f : X \rightarrow Y$ be $a\text{-}\omega$ -map and $rg\omega$ -c-closed. Then $f(A)$ is $rg\omega$ -closed subset of Y for every $rg\omega$ -closed subset A of X .*

THEOREM 4.13. *Let $f : X \rightarrow Y$ be R-map and pre- ω -closed. Then $f(A)$ is $rg\omega$ -closed in Y for every $rg\omega$ -closed subset A of X .*

Proof. Let A be any $rg\omega$ -closed subset of X and let U be any regular open subset of Y such that $f(A) \subseteq U$. Since f is R-map, $f^{-1}(U)$ is regular open and $A \subseteq f^{-1}(U)$. As A is $rg\omega$ -closed, $\text{Cl}_\omega(A) \subseteq f^{-1}(U)$. Hence $f(\text{Cl}_\omega(A)) \subseteq U$. Therefore $\text{Cl}_\omega(f(A)) \subseteq \text{Cl}_\omega(f(\text{Cl}_\omega(A))) = f(\text{Cl}_\omega(A)) \subseteq U$. Hence $f(A)$ is $rg\omega$ -closed in Y . \square

Definition 4.14. A map $f : X \rightarrow Y$ is said to be ω -contra-R-map if for every regular open subset V of Y , $f^{-1}(V)$ is ω -closed.

Example 4.15. Let $X = \mathbb{R}$ with the usual topology τ and let $Y = \{a, b, c, d\}$, with the topology $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then the function $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by

$$f(x) = \begin{cases} a, & \text{if } x \in \mathbb{Q}, \\ c, & \text{if } x \notin \mathbb{Q}, \end{cases} \quad (4.2)$$

is ω -contra-R-map, since \mathbb{Q} is ω -closed. But the function $f(x)$ defined by

$$f(x) = \begin{cases} a, & \text{if } x \in \mathbb{Q}, \\ b, & \text{if } x \notin \mathbb{Q}, \end{cases} \quad (4.3)$$

is not ω -contra-R-map, since the family of all regular open set in (Y, σ) is $\{\emptyset, Y, \{a\}, \{b\}\}$ and $f^{-1}(\{b\})$ is not ω -closed.

THEOREM 4.16. *Let $f : X \rightarrow Y$ be ω -contra-R-map and $rg\omega$ -c-closed. Then $f(A)$ is $rg\omega$ -closed in Y for every subset A of X .*

Proof. Let A be any subset of X and let U be any regular open subset of Y such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$. Since f is ω -contra- R -map, $f^{-1}(U)$ is ω -closed and so $\text{Cl}_\omega(A) \subseteq \text{Cl}_\omega(f^{-1}(U)) = f^{-1}(U)$. Hence $f(\text{Cl}_\omega(A)) \subseteq U$. As $\text{Cl}_\omega(A)$ is ω - c -closed subset of X and f is $rg\omega$ - c -closed map, $f(\text{Cl}_\omega(A))$ is $rg\omega$ -closed. Therefore $\text{Cl}_\omega(f(A)) \subseteq \text{Cl}_\omega(f(\text{Cl}_\omega(A))) \subseteq f(\text{Cl}_\omega(A)) \subseteq U$. Thus $f(A)$ is $rg\omega$ -closed in Y . \square

THEOREM 4.17. *If map $f : X \rightarrow Y$ is $rg\omega$ -continuous (resp., $rg\omega$ -irresolute) and X is $rg\omega$ - $T_{1/2}$, then f is ω -continuous (resp., $rg\omega$ -irresolute).*

Proof. Let A be any closed (resp., ω -closed) subset of Y . Since f is an $rg\omega$ -continuous (resp., $rg\omega$ -irresolute) map, $f^{-1}(A)$ is an $rg\omega$ -closed subset of X . As (X, τ) is $rg\omega$ - $T_{1/2}$ space, $f^{-1}(A)$ is an ω -closed subset of X . Therefore, f is an ω -continuous (resp., $rg\omega$ -irresolute). \square

THEOREM 4.18. *Let $f : X \rightarrow Y$ be a bijective, ro-preserving, and $rg\omega$ -continuous map. Then f is $rg\omega$ -irresolute map.*

Proof. Let V be any $rg\omega$ -closed subset of X and let U be any regular open subset of Y such that $f^{-1}(V) \subseteq U$. Clearly $V \subseteq f(U)$. Since f is a ro-preserving map, $f(U)$ is regular open and, by assumption, V is $rg\omega$ -closed set. Hence $\text{Cl}_\omega(V) \subseteq f(U)$ and $f^{-1}(\text{Cl}_\omega(V)) \subseteq U$. Since f is $rg\omega$ -continuous and $\text{Cl}_\omega(V)$ is ω -closed in Y , then $f^{-1}(\text{Cl}_\omega(V))$ is a $rg\omega$ -closed subset of U and so $\text{Cl}_\omega(f^{-1}(\text{Cl}_\omega(V))) \subseteq U$. Since $\text{Cl}_\omega(f^{-1}(V)) \subseteq \text{Cl}_\omega(f^{-1}(\text{Cl}_\omega(V))) \subseteq U$, $\text{Cl}_\omega(f^{-1}(V)) \subseteq U$. Therefore $f^{-1}(V)$ is an $rg\omega$ -closed subset. Hence f is $rg\omega$ -irresolute map. \square

THEOREM 4.19. *A map $f : X \rightarrow Y$ is $rg\omega$ -closed if and only if for each subset B of Y and for each open set U containing $f^{-1}(B)$, there is an $rg\omega$ -open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$.*

Proof. Suppose f is $rg\omega$ -closed, let B be a subset of Y , and U is an open set of X such that $f^{-1}(B) \subseteq U$. Then $f(X - U)$ is $rg\omega$ -closed in Y . Let $V = Y - f(X - U)$, then V is $rg\omega$ -open set and $f^{-1}(V) = f^{-1}(Y - f(X - U)) = X - (X - U) \subseteq U$ therefore V is an $rg\omega$ -open set containing B such that $f^{-1}(V) \subseteq U$. Conversely suppose that F is a closed set of X then $f^{-1}(Y - f(F)) \subseteq X - F$, and $X - F$ is open. By hypothesis, there is an $rg\omega$ -open set V of Y such that $Y - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$ therefore $F \subseteq X - f^{-1}(V)$. Hence $Y - V \subseteq f(F) \subseteq f(X - f^{-1}(V)) \subseteq Y - V$ implies that $f(F) = Y - V$, thus f is $rg\omega$ -closed. \square

Acknowledgment

The authors would like to thank the referees for useful comments and suggestions.

References

- [1] S. Willard, *General Topology*, Addison-Wesley, Reading, Mass, USA, 1970.
- [2] H. Z. Hdeib, “ ω -closed mappings,” *Revista Colombiana de Matemáticas*, vol. 16, no. 1-2, pp. 65–78, 1982.
- [3] K. Y. Al-Zoubi, “On generalized ω -closed sets,” *International Journal of Mathematics and Mathematical Sciences*, vol. 2005, no. 13, pp. 2011–2021, 2005.

- [4] H. Z. Hdeib, “ ω -continuous functions,” *Dirasat Journal*, vol. 16, no. 2, pp. 136–153, 1989.
- [5] N. Levine, “Generalized closed sets in topology,” *Rendiconti del Circolo Matematico di Palermo. Serie II*, vol. 19, pp. 89–96, 1970.
- [6] S. P. Arya and T. M. Nour, “Characterizations of s -normal spaces,” *Indian Journal of Pure and Applied Mathematics*, vol. 21, no. 8, pp. 717–719, 1990.
- [7] H. Maki, R. Devi, and K. Balachandran, “Associated topologies of generalized α -closed sets and α -generalized closed sets,” *Memoirs of the Faculty of Science Kochi University. Series A. Mathematics*, vol. 15, pp. 51–63, 1994.
- [8] J. Dontchev and H. Maki, “On θ -generalized closed sets,” *International Journal of Mathematics and Mathematical Sciences*, vol. 22, no. 2, pp. 239–249, 1999.
- [9] J. Dontchev, “On generalizing semi-preopen sets,” *Memoirs of the Faculty of Science Kochi University. Series A. Mathematics*, vol. 16, pp. 35–48, 1995.
- [10] J. Dontchev and M. Ganster, “On δ -generalized closed sets and $T_{3/4}$ -spaces,” *Memoirs of the Faculty of Science Kochi University. Series A. Mathematics*, vol. 17, pp. 15–31, 1996.
- [11] T. A. Al-Hawary, “ ω -generalized closed sets,” *International Journal of Applied Mathematics*, vol. 16, no. 3, pp. 341–353, 2004.
- [12] N. Palaniappan and K. C. Rao, “Regular generalized closed sets,” *Kyungpook Mathematical Journal*, vol. 33, no. 2, pp. 211–219, 1993.
- [13] I. A. Rani and K. Balachandran, “On regular generalised continuous maps in topological spaces,” *Kyungpook Mathematical Journal*, vol. 37, no. 2, pp. 305–314, 1997.
- [14] R. Engelking, *General Topology*, vol. 6 of *Sigma Series in Pure Mathematics*, Heldermann, Berlin, Germany, 2nd edition, 1989.
- [15] W. Dunham, “ $T_{1/2}$ -spaces,” *Kyungpook Mathematical Journal*, vol. 17, no. 2, pp. 161–169, 1977.
- [16] C. W. Baker, “On preserving g -closed sets,” *Kyungpook Mathematical Journal*, vol. 36, no. 1, pp. 195–199, 1996.
- [17] F. H. Khedr and T. Noiri, “On θ -irresolute functions,” *Indian Journal of Mathematics*, vol. 28, no. 3, pp. 211–217, 1986.

Ahmad Al-Omari: School of Mathematical Sciences, Faculty of Science and Technology, National University of Malaysia (UKM), Selangor 43600, Malaysia

Email address: omarimutah1@yahoo.com

Mohd Salmi Md Noorani: School of Mathematical Sciences, Faculty of Science and Technology, National University of Malaysia (UKM), Selangor 43600, Malaysia

Email address: msn@pkrisc.cc.ukm.my

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru