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In 1982 and 1970, Hdeib and Levine introduced the notions of w-closed set and gener-
alized closed set, respectively. The aim of this paper is to provide a relatively new notion
of generalized closed set, namely, regular generalized w-closed, regular generalized w-
continuous, a-w-continuous, and regular generalized w-irresolute maps and to study its
fundamental properties.
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1. Introduction

All through this paper (X, 1) and (Y,0) stand for topological spaces with no separation
axioms assumed, unless otherwise stated. Let A < X, the closure of A and the interior of A
will be denoted by CI(A) and Int(A), respectively. A is regular open if A = Int(CI(A)) and
A is regular closed if its complement is regular open; equivalently A is regular closed if A =
Cl(Int(A)), see [1]. Let (X, 7) be a space and let A be a subset of X. A point x € X is called
a condensation point of A if for each U € 7 with x € U, the set U N A is uncountable.
A is called w-closed [2] if it contains all its condensation points. The complement of an
w-closed set is called w-open. It is well known that a subset W of a space (X, 7) is w-
open if and only if for each x € W, there exists U € 7 such that x € U and U — W is
countable. The family of all w-open subsets of a space (X, 7), denoted by 7, or wO(X),
forms a topology on X finer than 7. The w-closure and w-interior, that can be defined
in a manner similar to CI(A) and Int(A), respectively, will be denoted by Cl,(A) and
Int, (A), respectively. Several characterizations of w-closed subsets were provided in [3,
2,4]. Levine [5] introduced the notion of generalized closed sets and a class of topological
spaces called T/,-spaces. He defined a subset A of a space (X, 7) to be generalized closed
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set (briefly g-closed) if CI(A) € U whenever U € 7 and A < U. Generalized semiclosed
[6] (resp., a-generalized closed [7], 8-generalized closed [8], generalized semi-preclosed
[9], §-generalized closed [10], w-generalized closed [3, 11]) sets are defined by replacing
the closure operator in Levine’s original definition by the semiclosure (resp., a-closure,
0-closure, semi-preclosure, §-closure, w-closure) operator.

2. Regular generalized w-closed sets

A subset A of (X,7) is called regular generalized closed (simply, rg-closed) (see [12]) if
Cl(A) c U whenever A C U and U is regular open. Analogously, we begin this section by
introducing the class of regular generalized w-closed sets.

Definition 2.1. A subset A of (X, 1) is called regular generalized w-closed (simply, rgw-
closed) if Cl,(A) € U whenever A C U and U is regular open. A subset B of (X, 1) is called
regular generalized w-open (simply, rgw-open) if the complement of B is rgw-closed sets.

We have the following relation for rgw-closed with the other known sets:

w-c-closed

H

closed =—=> g-closed =——=> rg-closed (2.1)

U ﬂ M

w-closed =——=> gw-closed =—=> rgw-closed

Example 2.2. Let R be the set of all real numbers, let Q be the set of all rational numbers,
with the topology 7 = {R,¢,R — Q}. Then A = R — Q is not gw-closed, since A is open,
thus w-open and A € A, Cl,(A) € A (because A is not w-closed). Also the only regular
open set containing A is X. Thus A is rgw-closed.

Example 2.3. Let X = {a,b,c,d}, with the topology 7 = {¢,X, {a},{b},{a,b},{a,b,c}}.
Then the set {a} is not rg-closed, see [13]. But {a} is rgw-closed set, since X is finite and
T, 1s discrete topology.

It is clear that if (X,7) is a countable space, then rgw(X,7) = P(X), where rgw(X, )
is the set of all rgw-closed subsets of X and % (X) is the power set of X.
Since every closed set is w-closed we have the following.

LEMMA 2.4. For every subset A of (X, 1), Cl,(A) C CI(A).

The proof of the following result follows from the fact that every regular open set is an
open set together with Lemma 2.4.

THEOREM 2.5. Every gw-closed set and rg-closed set are rgw-closed.
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THEOREM 2.6. Let A be an rgw-closed subset of (X, ). Then Cl,(A) — A does not contain
any nonempty regular closed set.

Proof. Let F be a regular closed subset of (X, 7) such that F < Cl,(A) —A. Then F € X —
A and hence A € X — F. Since A is rgw-closed set and X — F is a regular open subset of
(X,1), Cly(A) € X —Fand so F € X — Cl,(A). Therefore F < Cl,(A) n (X — Cl,(A)) =
é. O

THEOREM 2.7. A subset A of (X,7) is rgw-open if and only if F < Int,,(A) whenever F is a
regular closed subset such that F < A.

Proof. Let A be an rgw-open subset of X and let F be a regular closed subset of X such
that F € A. Then X — A is an rgw-closed set and X — A € X — F. Since X — A is rgw-
closed, X —Int,(A) = Cl,(X —A) € X — F. Thus F < Int,(A). Conversely, if F < Int,,(A)
where F is a regular closed subset of (X, 7) such that F € A, then for any regular open
subset U such that X — A < U, we have X — U € A and thus X — U < Int,(A). That is,
X —1Int,(A) = Cl,(X —A) € U. Therefore X-A is rgw-closed. O

LEmMa 2.8 [14]. For every open U in a topological space X and every A< X, C(UNA) =
CI(U N CI(A)).

Recall that two nonempty sets A and B of X are said to be separated if Cl(A) N B = ¢ =
AnCI(B).

TaEOREM 2.9. If A and B are open, rgw-open, and separated sets, then A U B is rgw-open.

Proof. Let F be a regular closed subset of A U B. Then F N CI(A) < A, since A is open and
by Lemma 2.8 we have F N CI(A) is regular closed hence by Theorem 2.7 F n CI(A) <
Int,(A). Similarly, F n CI(B) < Int,(B). Then we have F < Int,(A U B) and hence AU B
is rgw-open. g

The following example shows that the union of rgw-open sets need not be rgw-open.

Example 2.10. Let X be an uncountable set and let A, B, C, D be subsets of X, such that
each of them is uncountable set and the family {A,B,C,D} is a partition of X. We defined
the topology 7 = {¢,X,{A}, {B},{A,B},{A,B,C}}. Choosex,y ¢ Aand x # y. Then H =
AU {x} and G=A U {y} are rgw-closed, since only regular open set containing H,G is
X.But HN G = {A} and {A} is regular open in X and Cl,(A) € A, since {A} is not w-
closed. Thus H N G is not rgw-closed. Therefore the union of rgw-open sets need not be
rgw-open.

The proof of the following result is straightforward since 7, is a topology on X and
thus omitted.

TuEOREM 2.11. If A and B are rgw-closed sets, then A U B is rgw-closed.

THEOREM 2.12. Let A be a rgw-closed subset of (X, 7). If B < X such that A < B < Cl,(A),
then B is also rgw-closed. Let B be a subset of (X,7) and let A be an rgw-open subset such
that Int,(A) € B < A. Then B is also rgw-open.

The proof is obvious.
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THEOREM 2.13. If A be an rgw-closed subset of (X, 1), then Cl,(A) — A is rgw-open set.

Proof. Let A be an rgw-closed subset of (X,7) and let F be a regular closed subset such
that F < Cl,(A) — A. By Theorem 2.6, F = ¢ and thus F < Int,(Cl,(A) — A). By Theorem
2.7,Cl,(A) — A is rgw-open set. O

We first recall the following lemmas to obtain further results for rgw-closed sets.

LEMMA 2.14 [3]. If Y is an open subspace of a space X and A is a subset of Y, then
ClwIY(A) = Clw(A) N (Y)

LemMa 2.15. If A is a regular open and rgw-closed subset of a space X, then A is w-closed
in X.

The proof is obvious.

THEOREM 2.16. Let Y be an open subspace of a space X and A € Y. If A is rgw-closed in X,
then A is rgw-closed in Y.

Proof. Let U be a regular open set of Y such that A < U. Then U = V N Y for some regu-
lar open set V of X. Since A is rgw-closed in X, we have Cl,(A) € U and by Lemma 2.14,
Clyy(A) =Cly(A)N(Y) = VNY = U. Hence A is rgw-closed in X. O

COROLLARY 2.17. If A is an rgw-closed regular open set and B is an w-closed set of a space
X, then AN B is rgw-closed.

THEOREM 2.18. Let A be an rgw-closed set. Then A = Cl,(Int,(A)) if and only if Cl,(Int,
(A)) — A is regular closed.

Proof. 1t A = Cl,(Int,(A)), then Cl,(Int,(A)) — A = ¢ and hence Cl,(Int,(A)) — A is
regular closed. Conversely, let Cl,(Int,(A)) — A be regular closed, since Cl,(A) — A con-
tains the regular closed set Cl,(Int,(A)) — A. By Theorem 2.6 Cl, (Int,(A)) — A = ¢ and
hence A = Cl,(Int,(A)). O

LemMa 2.19 [3]. Let (A,74) be an antilocally countable subspace of a space (X,t). Then
Cl(A) = Cl,(A).

We call (X, 1) an antilocally countable space if each nonempty open set is an uncount-
able set.

CoroOLLARY 2.20. In an antilocally countable subspace of a space (X,7), the concepts of
rgw-closed set and rg-closed set coincide.

Lemma 2.21 [3]. Let (X, 1) and (Y,0) be two topological spaces. Then (T X 0)y S Ty X 0.

THEOREM 2.22. If A X B is rgw-open subset of (X X Y, 7 X 0), then A is rgw-open subset in
(X,1) and B is rgw-open subset in (Y, o).

Proof. Let F4 be a regular closed subset of (X,7) and let Fg be a regular closed subset
of (Y,0) such that F4 < A and Fg < B. Then F4 X Fy is regular closed in (X X Y,7 X 0)
such that F4 X Fg € A X B. By assumption A X B is rgw-open in (X X Y,7 X ¢) and so
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F4 X Fp < Int,(A X B) < Int,(A) X Int,(B) by Lemma 2.21. Therefore F4 < Int,, Fg <
Int, (B). Hence A, B are rgw-open. O

The converse of the above need not be true in general.

Example 2.23. Let X = Y = R with the usual topology 7. Let A = {{R — Q} U [+/2,5]}
and B = (1,7). Then A and B are rgw-open (w-open) subsets of (R,7), while A X B is
not rgw-open in (R X R, X 1), since the set F = [/2,3] X [3,5] is regular closed set con-
tained in A X B and F ¢ Int,(A X B). The point (+/2,4) € F and (+/2,4) ¢ Int,(A X B),
because if (1/2,4) € Int,(A X B), then there exist open set U containing +/2 and open
set V containing 4 such that (U X V) — (A X B) is countable but (U X V) — (A X B) is
uncountable for any open set U containing +/2 and open set V containing 4.

3. Regular generalized w-T},, space

Recall that a space (X,7) is called T/, [5] if every g-closed set is closed or equivalently
if every singleton is open or closed, Dunham [15]. We introduce the following relatively
new definition.

Definition 3.1. A space (X,7) is a regular generalized w-T)/, (simply, rgw-T),,) if every
rgw-closed set in (X, 1) is w-closed.

TueOREM 3.2. For a space (X, ), the following are equivalent.
(1) X isargw-T.
(2) Every singleton is either regular closed or w-open.

Proof. (1)=(2) Suppose {x} is not a regular closed subset for some x € X. Then X — {x}
is not regular open and hence X is the only regular open set containing X — {x}. Therefore
X — {x} is rgw-closed. Since (X, 1) is rgw-T)/, space, X — {x} is w-closed and thus {x} is
w-open.

(2)=(1) Let A be an rgw-closed subset of (X, 1) and x € Cl,(A). We show that x € A.
If {x} is regular closed and x ¢ A, then x € (Cl,(A) — A). Thus Cl,(A) — A contains a
nonempty regular closed set {x}, a contradiction to Theorem 2.6. So x € A. If {x} is w-
open, since x € Cl,(A), then for every w-open set U containing x, we have U N A # ¢. But
{x} is w-open then {x} N A # ¢. Hence x € A. So in both cases we have x € A. Therefore
A is w-closed. O

THEOREM 3.3. Let (X, 1) be an antilocally countable space. Then (X, ) is a T\ -space if every
rgw-closed set is w-closed.

Proof. Let x € X, and suppose that {x} is not closed. Then A = X — {x} is not open,
and thus A is rgw-closed (the only regular open set containing A is X). Therefore, by
assumption, A is w-closed, and thus {x} is w-open. So there exists U € 7 such thatx € U
and U — {x} is countable. It follows that U is a nonempty countable open subset of x € X,
a contradiction. O

Definition 3.4. Amap f:X — Y is said to be
(i) approximately closed [16] (a-closed) provided that f(F) < Int(A) whenever F is
a closed subset of X, A is a g-open subset of Y, and f(F) < A;
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(ii) approximately continuous [16] (a-continuous) provided that CI(A) = f~1(V)
whenever V' is an open subset of Y, A is a g-closed subset of X, and A f‘1 (V).

Definition 3.5. Amap f : X — Y is said to be approximately w-closed (simply, a-w-closed)
provided that f(F) < Int,(A) whenever F is a regular closed subset of X, A is an rgw-open
of Y,and f(F) c A.

Definition 3.6. Amap f:X — Y is said to be approximately w-continuous (simply, a-w-
continuous) provided that Cl,(A) = f~!1(V) whenever V is a regular open subset of Y, A
is an rgw-closed subset of X, and A = f~1(V).

The notions of a-closed (resp.; a-continuous) and a-w-closed (resp.; a-w-continuous)
are independent.

Example 3.7. Let X = {a,b,c,d} with the topology 7 = {$,X, {a},{b},{a,b},{a,b,c}}. Let
f:(X,7) = (X,7) be a function defined by f(a) =a, f(b) =d, f(c) =b, f(d) = c. Then
f is a-w-closed, since X is finite and thus 7, is a discrete topology, and f is not a-closed
function. Because the set A = {b,c} is g-open and F = {c,d} is closed, f(F) < A, but
f(F) € Int(A).

Example 3.8. Let X = R with the topology 7 = {¢,X,R —Q}. Let f: (X,7) - (X,7) be a
function defined by f(x) = 0, for all x € X. Then f is a-closed, since for any closed set F
of X, the only g-open set containing f(F) is X. And f is not a-w-closed function. Because
the set A = Q is rgw-open and F = R is regular closed, f(F) < A, but f(F) € Int,(A) = ¢.

THEOREM 3.9. A space X is rgw-T)2-space if and only if every space Y and every function
f:X =Y are a-w-continuous.

Proof. Let V be a regular open subset of Y and A is an rgw-closed subset of X such
that A = f~1(V), since X is rgw-T/,-space then A is w-closed thus A = Cl,(A), hence
Cly(A) = f~1(V) and f is a-w-continuous. Let A be a nonempty rgw-closed subset of X
and let Y be the set X with the topology {Y,A,¢}. Let f : X — Y be the identity mapping.
By assumption f is a-w-continuous. Since A is rgw-closed subset in X and open in Y
such that A = f~1(A), it follows that Cl,(A) = f~!(A) = A. Hence A is w-closed in X and
therefore X is rgw-T)/2-space. O

LemMMA 3.10. If the regular open and regular closed sets of X coincide, then all subsets of X
are rgw-closed (and hence all are rgw-open).

Proof. Let A be any subset of X such that A € U and U is regular open, then Cl,(A) =
Cly(U) € CI(U) = U. Therefore A is rgw-closed. ([l

THEOREM 3.11. If the regular open and regular closed sets of Y coincide, then a function
f:X = Y isa-w-closed if and only if f(F) is w-open for every regular closed subset F of X.

Proof. Assume f is a-w-closed by Lemma 3.10 all subsets of Y are rgw-closed. So for
any regular closed subset F of X, f(F) is rgw-closed in Y. Since f is a-w-closed, f(F) <
Int,(f(F)), therefore f(F) = Int,(f(F)) thus f(F) is w-open. Conversely if f(F) < A
where F is regular closed and A is rgw-open, then f(F) = Int,(f(F)) < Int,(A) hence f
is a-w-closed. O
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The proof of the following result for a-w-continuous function is analogous and is
omitted.

THEOREM 3.12. If the regular open and regular closed sets of X coincide, then a function
f:X — Y is a-w-continuous if and only if f~1(V) is w-closed for every regular open subset
VofY.

4. rgw-continuity

In this section, we will introduce some new classes of maps and study some of their char-
acterizations. In [11, 3] amap f : X — Y is called w-irresolute (resp., R-map [17]) if the
inverse image of every w-closed (resp., regular closed) subset of Y is w-closed (resp., reg-
ular closed) in X. In [3],amap f: X — Y is called gw-closed if the image of every closed
subset of X is gw-closed in Y. Relatively new definitions are given next.

Definition 4.1. Amap f :X — Y is called rgw-closed (resp., ro-preserving, pre-w-closed)
if (V) is rgw-closed (resp., regular open, w-closed) in Y for every closed (resp., regular
open, w-closed) subset V of X.

Example 4.2. Let X = {a,b,c,d} with the topology 7 = {¢, X, {a}, {b},{a,b},{a,b,c}}. Let
f:(X,7) = (X,7) be a function defined by f(a) =a, f(b) =b, f(c) =d, f(d) = c. Then
f is ro-preserving, since the family of all regular open sets of X is {¢,X, {a}, {b}}. But
if we defined g: (X,7) — (X,7) as g(a) =¢, g(b) =d, g(c) = a, g(d) = b, then g is not
ro-preserving function.

Definition 4.3. A map f:X — Y is called rgw-continuous (resp., rgw-irresolute) if the
inverse image of every w-closed (resp., rgw-closed) subset V of Y is rgw-closed subset of
X.

From the definition stated above we obtain the following diagram of implications:

continuous

U

w-continuous =——> gw-continuous ——> rgw-continuous (4.1)

ﬂ W ﬂ

w-irresolute =———=> gw-irresolute =——=> rgw-irresolute

THEOREM 4.4. Let f : X — Y be a surjective, rgw-irresolute, and pre-w-closed map if X is
rgw-Ti/,-space, then Y is also an rgw-T,-space.

Proof. Let A be rgw-closed subset of Y. Since f is an rgw-irresolute map, then f~!(A) is
an rgw-closed subset of X. Since X is rgw-Ti/,-space, then f~1(A) is an w-closed subset
of X. Since f is a pre-w-closed map, then f(f 1(A)) = A is an w-closed subset of Y.
Therefore Y is also rgw-T,,-space. O

Since every gw-closed set is rgw-closed, every gw-closed map is rgw-closed. Next we
give new characterization of gw-closed maps.
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THEOREM 4.5. Amap f : X — Y is gw-closed if and only if for each A < Y and each open set
U containing f~'(A), there exists a gw-open subset V of Y such that A<V and f~1(V)
U.

Proof. Let F be a gw-closed map, A € Y, and let U be an open set containing f’l(A).
Then V =Y — f(X — U) is gw-open subset of Y containing A and f~1(V) < U.
Conversely let F be closed subset of X and let H be an open subset of Y such that
f(F) < H. Then f~'(Y — f(F)) < X — F and X — F is open by hypothesis, there ex-
ists a gw-open subset V of Y such that Y — f(F) = V and f~!(V) < X — F. There-
fore, F< X — f~!(V) and hence f(F)cY—-V.SinceY-H<cY — f(F), f " (Y-H) <
f YWY - f(F)) = f~Y(V) = X — F, by taking complement, we get F < X — f}(V) =
X—fYY - f(F)) =X - f %Y — H). Therefore f(F)=Y -V cH. Since Y =V is
gw-closed set and Cl,(f(F)) € Clo(Y — V) € H, hence f(F) is gw-closed. Thus f is a
gw-closed map. O

Since every w-closed set is rgw-closed, we have the following.
THEOREM 4.6. Every rgw-irresolute map is rgw-continuous map.

Definition 4.7. A subset A < X is said to be w-c-closed provided that there is a proper
subset B for which A = Cl,(B). A map f:X — Y is said to be gw-c-closed if f(A) is
gw-closed in Y for every w-c-closed subset A < X.

Since closed sets are obviously w-c-closed, gw-closed maps are gw-c-closed. In a sim-
ilar manner, we say amap f : X — Y is rgw-c-closed if f(A) is rgw-closed in Y for every
w-c-closed subset A < X.

TaEOREM 4.8. Let f : X — Y be an R-map and rgw-c-closed. Then f(A) is rgw-closed in
Y for every rgw-closed subset A of X.

Proof. Let A be an rgw-closed subset of X and let U be a regular open subset of Y
such that f(A) < U. Since f is an R-map, f !(U) is a regular open subset of X and
Ac f7Y(U). As A is an rgw-closed subset, Cl,(A) = f~1(U). Hence f(Cl,(A)) = (U).
Because Cl, (A) is w-c-closed and F is rgw-c-closed map, f(Cl,(A)) is rgw-closed. There-
fore, Cl,(f(A)) < Cly(f(Cly(A))) € f(Cly(A)) = U.Hence f(A) is an rgw-closed subset
of Y. O

THEOREM 4.9. Let f : X — Y be ro-preserving and w-irresolute function, if B is rgw-closed
inY, then f~1(B) is rgw-closed in X.

Proof. Let G be a regular open subset of X such that f~!(B) = G. Then B = f(G) and
f(G) is regular open. Since B is rgw-closed, then Cl,(A) < f(G) and f~!(Cl,(B)) = G.
Since f is w-irresolute then f~!(Cl,(B)) is w-closed and Cl,(f1(Cly(B))) = f~1(Cl,
(B)), therefore Cl,(f'((B))) = Clo(f1(Cly(B))) = G thus f~(B) is rgw-closed in X.

O

THEOREM 4.10. Let f : X — Y be a-w-closed maps and w-irresolute maps, if A is rgw-closed
inY, then f~1(A) is rgw-closed in X.
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Proof. Assume that A is an rgw-closed in Y and f~1(A) = U, where U is a regular open
subset of X. Taking complements we obtain X — U = X — f}(A) = f (Y — A) and
f(X—-U)<cY—-A. Since f is a-w-closed, f(X —U) cInt,(Y —A) =Y - Cl,(A). It
follows that X — U = X — f~!1(Cl,(A)) and f~1(Cl,(A)) = U, since f is w-irresolute,
f1(Cly(A)) is w-closed thus we have f~1(A) < f~1(Cl,(A)) < U and Cl,(f!

Cly(f~1(Cly(A))) = f~1(Cly(A)) = U. Therefore Cl,(f'(A)) = U and f~'(A) is rgw-
closed in X. O

TaEoREM 4.11. If f : X — Y is R-map and rgw-closed and A is g-closed subset of X, then
f(A) is rgw-closed.

Proof. Let f(A) = U, where U is regular open subset of X then f~!(U) is regular open set
containing A. Since A is g-closed, we have then CI(A) = f~!(U) and f(ClI(A)) < U. Since
fisrgw-closed, f(CI(A)) is rgw-closed. Therefore Cl, (f(Cl(A))) € U which implies that
Cly(f(A)) c U, hence f(A) is rgw-closed. O

The proof of Theorem 4.8 can be easily modified to obtain the following result.

THEOREM 4.12. Let f : X — Y be a-w-map and rgw-c-closed. Then f(A) is rgw-closed
subset of Y for every rgw-closed subset A of X.

THEOREM 4.13. Let f : X — Y be R-map and pre-w-closed. Then f(A) is rgw-closed in Y
for every rgw-closed subset A of X.

Proof. Let A be any rgw-closed subset of X and let U be any regular open subset of Y
such that f(A) U Since f is R-map, f~! (U) is regular open and A < f~1(U). As A is
rgw-closed, Cl,(A) = f~1(U). Hence f(Cly(A)) € U. Therefore Cl,(f(A)) = Cl,(f(Cl,
(A))) = f(Cl, (A)) c U. Hence f(A) is rgw- closed inY. O

Definition 4.14. A map f : X — Y is said to be w-contra-R-map if for every regular open
subset V of Y, f~1(V) is w-closed.

Example 4.15. Let X = R with the usual topology 7 and let Y = {a, b, ¢,d}, with the topol-
ogy o = {¢,Y,{a},{b},{a,b},{a,b,c}}. Then the function f: (X,7) — (Y,0) defined by

a, ifxeQ,
= 4.2
f) {c, ifxeQ, (42)
is w-contra-R-map, since Q is w-closed. But the function f(x) defined by
a, ifxeQ,
= 4.3
f®) {b, ifx¢Q, (43)

is not w-contra-R-map, since the family of all regular open setin (Y,0) is {¢,Y, {a}, {b}}
and f~1({b}) is not w-closed.

THEOREM 4.16. Let f : X — Y be w-contra-R-map and rgw-c-closed. Then f(A) is rgw-
closed in Y for every subset A of X.
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Proof. Let A beany subset of X and let U be any regular open subset of Y such that f(A) =
U. Then A = f~1(U). Since f is w-contra-R-map, f~!(U) is w-closed and so Cl,(A) =
Clw(f(U)) = f(U). Hence f(Cly(A)) € U. As Cl,,(A) is w-c-closed subset of X and f
is rgw-c-closed map, f(Cl,(A)) is rgw-closed. Therefore Cl,(f(A)) = Cl,(f(Cl(A)))
f(Cly(A)) € U. Thus f(A) is rgw-closed in Y. O

THEOREM 4.17. If map f: X — Y is rgw-continuous (resp., rgw-irresolute) and X is rgw-
T\, then f is w-continuous (resp., rgw-irresolute).

Proof. Let A be any closed (resp., w-closed) subset of Y. Since f is an rgw-continuous
(resp., rgw-irresolute) map, f~'(A) is an rgw-closed subset of X. As (X, 7) is rgw-Ti,
space, f1(A) is an w-closed subset of X. Therefore, f is an w-continuous (resp., rgw-
irresolute). O

TaEOREM 4.18. Let f : X — Y be a bijective, ro-preserving, and rgw-continuous map. Then
[ is rgw-irresolute map.

Proof. Let V be any rgw-closed subset of X and let U be any regular open subset of Y such
that f (V) = U. Clearly V < f(U). Since f is a ro-preserving map, f (U) is regular open
and, by assumption, V is rgw-closed set. Hence Cl, (V) = f(U) and f~!(Cl,(V)) c U.
Since f is rgw-continuous and Cl, (V) is w-closed in Y, then f~!(Cl,(V)) is a rgw-closed
subset of U and so Cl,(f~!(Cl,(V))) = U. Since Cl,(f 1 (V)) = Clo(f1(Clo(V))) = U,
Cly(f~1(V)) = U. Therefore f (V) is an rgw-closed subset. Hence f is f rgw-irresolute
map. (]

THEOREM 4.19. Amap f:X — Y is f rgw-closed if and only if for each subset B of Y and
for each open set U containing f~1(B), there is an rgw-open set V of Y such that B < V and
fiv)ycsu.

Proof. Suppose f is rgw-closed, let B be a subset of Y, and U is an open set of X such
that f~1(B) = U. Then f(X — U) is rgw-closed in Y. Let V=Y — f(X — U), then V is
rgw-open set and f~1(V) = f"H(Y - f(X -U)) =X — (X — U) = U therefore V is an
rgw-open set containing B such that f~!(V) = U. Conversely suppose that F is a closed
set of X then f~1(Y — f(F)) = X — F, and X — F is open. By hypothesis, there is an rgw-
openset V of Y such that Y — f(F) < Vand f (V) = X — F therefore F = X — f1(V).
Hence Y -V < f(F) < f(X — f~%(V)) € Y — V implies that f(F) =Y -V, thus f is
rgw-closed. O
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