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We consider Wada’s representation as a twisted version of the standard action of the braid
group, By, on the free group with » generators. Constructing a free group, Gy, of rank
nm, we compose Cohen’s map B, — B, and the embedding B,,,, = Aut(Gy,,) via Wada’s
map. We prove that the composition factors of the obtained representation are one copy
of Burau representation and m — 1 copies of the standard representation after changing
the parameter ¢ to t* in the definitions of the Burau and standard representations. This
is a generalization of our previous result concerning the standard Artin representation of
the braid group.
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1. Introduction

There are many kinds of representations of By, the braid group on 7 strings. The earliest
was the Artin representation, which is an embedding B, — Aut(F,), the automorphism
group of a free group on n generators [1, page 25]. A certain type of representation,
introduced by E R. Cohen and studied by him and others, is the map B, — By, which is
defined on geometric braids by replacing each string with m strings [2, page 208].

In Section 2 of this paper, we present an infinite series of representations generalizing
the standard Artin representation, which were discovered by M. Wada [3]. More pre-
cisely, for an arbitrary nonzero integer k, the automorphism corresponding to the braid
generator o; takes x; to X% xi1%7%; xi11 to x;, and fixes all other free generators. Utiliz-
ing Fox derivatives, we have a twisted version of the Burau representation. Shpilrain has
shown that these representations are indeed faithful [3, page 773]. In [4], it was shown
that Wada’s representations are unitary.
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In Section 3, we compose Cohen’s map with Wada’s representation and we get a lin-
ear representation of degree nm which has a subrepresentation isomorphic to the Burau
representation, and the quotient is isomorphic to the direct sum of m — 1 copies of the
standard representation, which was studied by Sysoeva [5]. This is done after we change
the indeterminate ¢ to t* in the definitions of the Burau and standard representations.
As a corollary, by letting k = 1, we get our previous result concerning the standard Artin
representation of the braid group. For more details, see [6].

2. Notation and preliminaries

The braid group on n strings, B, is an abstract group which has a presentation with
generators

O15...,01-1 (21)
and defining relations

0i0i+10; = 0i+10;0j+1 fori= 1,2,. Y (e 2,

e 2.2
0i0j = 0;0; 1f|l—]|22. ( )

The generators 0,...,0,-1 are called the standard generators of B,. Let ¢ be an indetermi-
nate and let C[¢t*!] represent the Laurent polynomial ring over complex numbers.

Definition 2.1. The Burau representation B,(t) : B, — GL,(C[#*1]) is defined by

I 0 0
1—t t .
Bu(t) (o) = 0 o 0 fori=1,...,n— 1. (2.3)
0 0 Iy-io

The standard representation y,(t) : B, — GL,(C[t*!]) is defined by
Ii 4 0 0

0 t
Yn(t) (gi) = 0 1 0
0 0 | Tn—iz1

0 fori=1,...,n—1. (2.4)

For more details about the standard representation, see [5].

There is a well-known standard representation (due to Artin) of group B, in group
Aut(F,) of automorphisms of the free group F, generated by x,...,x,. The automor-
phism @; corresponding to the braid generator o; takes x; — xixi+1x; "' xi41 — X;, and fixes
all other free generators.

A twisted version of the standard action of the braid group on the free group is Wada’s
representation; thus we have the following definition.

Definition 2.2. Wada’s representations are generalizations of the standard Artin represen-
tation, discovered by M. Wada, and assert that the automorphism corresponding to o;
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takes

k -k
Xi —Xi Xi+1Xi >
Xit1 —Xi» (2.5)

xj —x; forj#i, i+l

Definition 2.3 [7, page 104]. Let G be an arbitrary group and let ZG be the group ring of
G with respect to the ring of integers Z. A mapping D : ZG — ZG is said to be a derivative
if and only if
(1) D(f +h) = Df + Dh and
(2) D(fh) = (Df)(€h) + f(Dh) (product rule) for all f and h in ZG.
Here, € is the augmentation homomorphism: ZG — Z defined by €(>,cn.8) =
deG Hg.
Let F,, be a free group of rank n, with free basis xi,...,x,. We define for j = 1,2,...,n
the free derivatives on the group ZF, by

a—x](xlii .. .x;:) = Zlel(s i)j'x;i .. .x‘lg}/z)(eifl))
i=
(2.6)
i(Ea g) :Za a—g, g€F,,a,€17,
axj 8 gan 8

where €; = 1 and §; ; is the Kronecker symbol.
The following properties hold true.
(i) ax,‘/ax]‘ = 51‘,]'.
(ii) ax,-’l/axj = —8,-,jx,71.
(iii) (9/0x;)(uv) = (du/ox;)€(v) + u(dv/ox;j) u,v € ZF,.
Note that if v € F,,, then €(v) = 1. For simplicity, we denote 0/0x; by d;.

Using the Magnus representation, the automorphism o; under Wada’s representation
is mapped onto the n X n matrix [¢((d/0x,)0i(x;))] which differs from the identity only
by a 2 x 2 block with the top left corner in the (7,i)th place. More precisely,

Ii 0 0
11—tk ¢ ,
oi(t) = 0 0 fori=1,2,...,n—1. (2.7)
1 0
0 0 Ih-i

Given a positive integer k, we introduce indeterminates yi,..., ¥, defined as y; = xk,
Yy = PoL y Yn = x,* and let G, be the free group of rank n with free basis y,..., yn.
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If ¢ is an arbitrary homomorphism acting on F,, defined as ¢(x;) = t, then ¢(y;) = t
fori=1,...,n Let G,® denote the image of G, under ¢.

Under Wada’s representation, the action of the generators of B, on the free group F,
induces an action on the free subgroup G,. That is, we have a faithful representation of
B, as a subgroup of Aut(G,,).

LEmMa 2.4. Under Wada’s representation, the action of a; on the basis of G, namely, { y1,...,
Y}, is given by

yi— yiyi+1yf1,
Vir1 — Vis (2.8)
Ve — Yr» TFiit+1

Proof. 0i(yi) = 0i(xi*) = (0i(x:i))F = xiFoxir i F ok xi ™  -- xiFi T = xifxn F Tk =
yiyirryi 'l
The action of g; on the other generators follows easily. O
Using Lemma 2.4 and the Magnus representation of B, as a subgroup of Aut(G,), the
automorphism o; is mapped onto the n X n matrix [¢((9/9y,)oi(ys))]. Direct computa-
tions show that it is the same matrix as in (2.7). Therefore, we get the following corollary.

CoOROLLARY 2.5. Under Wada’s representation, the n X n matrices obtained by letting B, act
on F, or on G, are exactly the same.

Proof. This follows easily from Lemma 2.4 and the fact that we have defined ¢(y;) = t~.
O

3. Automorphisms of G,

Definition 3.1 [2, page 208]. The Cohen representation is the map B, — By, defined as
follows:

0 — I o = (Umiomi+l e 0mi+m—1) (Gmi—lgmi e 0mi+m—2) e (Umi—erlUmi—erZ " 'Umi)-
(3.1)

Here, 1 X 0; is the braid obtained by replacing each string of the geometric braid, o;,
with m parallel strings. Cohen called 1 X ¢; a tensor product.

Putting k = 1 in the definition of Wada’s map, we get the result in [6], which asserts
that by composing Cohen’s map with Artin’s representation of the braid group, we get a
linear representation: B, — By, — GLyyu(Z[t*']) which has a subrepresentation isomor-
phic to the Burau representation, and the quotient is isomorphic to the direct sum of
m — 1 copies of the standard representation, which was studied by Sysoeva [5].

In this paper, we generalize the result by taking any positive integer k and consider
Wada’s representation, which is a twisted version of the standard action of the braid group
on the free group.



M. N. Abdulrahim and N. H. Kassem 5

Given the free generators xi,..., Xum, we let y; = x* fori=1,...,nm. We take G, to be
the free group generated by y1,..., Yum.

Let 7; be the image of the braid generator o; of B, under the Cohen map. Using
Lemma 2.4, there is an induced action of 7; on the free subgroup G,,. As in Section 2,
we show that the (nm) X (nm) matrix obtained by letting 7; as act on F,,,, with generators
X15...,Xnm 1s exactly the same as that obtained by having 7; act on G, with generators
x1%,..., X" instead. Therefore, we get the following theorem.

TaeOREM 3.2. The action of the image of the generator of B, under Cohen’s map, namely, T;,
on Fyy gives an (nm) X (nm) matrix which is the same as the one obtained under the action
of 7; on the free subgroup Gpp.

Proof. Let
T = (UmiUmi+1 e 'Gmi+m71)(0mi710~mi' ' 'Umi+m72) e (Umifm+10mi7m+2' : 'Umi)- (3.2)

Let us see the action of 7; on F,,,, with generators xi,...,Xun.
It is clear that we need to see the action of 7; especially on the 2m elements, namely,

Xmi—m+1>Xmi—m+2>++«>Xmi> Xmi+ 1> Xmi+2>+ « « > Xmi+m- (3.3)

As for the other elements, the action of 7; is trivial. Direct computations show that
Ti(Xmiemis) = Cmicmar® = Xmi®) Xomivs Cmizpmir © - - -xm,-k)_1 fors=1,...,m. (3.4)
Also, we have that

T (Xmivs) = Xmivs—m fors=1,...,m. (3.5)

The action of 7; on the free subgroup G, with generators yi,..., ym, where y; = xjk

for j = 1,...,nm, is given by

Ti(ymi—m+s) = (ymi—mﬂ e ')’mi))’miﬂ()’mi—mﬂ et ymi)71 fors=1,...,m. (3.6)
Also, we have that
Ti(Ymivs) = Ymirs—m fors=1,...,m. (3.7)

Next, we apply Magnus representation to get the matrices corresponding to 7;, namely,
[¢((0/0x,)7i(xs))] and [¢((9/dy,)Ti(ys))]. Using Fox derivatives and having defined
¢(x;) =t and ¢(y;) = t* for j = 1,...,nm, we get that the matrices are the same. To see
this, we make some computations.

For fixed values of i and m, we denote ¢((0/0y,)Ti(Vmi-m+s)) or ¢((0/0x:)Ti(Ximi-m+s))
by d; (7;(Ymi-ma+s)) Or dr (Ti(Xmi—m+s)). Direct computations show that these derivatives are
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equal. More precisely, we have that

Amicm+1 (Ti(Ymiomes)) =1 — t*, Amims2 (Ti(Vmizmss)) = tk — 12k,
i (Ti(Pmiomrs)) = 25 = 25, i (1 (Ymicmas) ) = £ Dk — gk, B
For 2 < s < m, we have
Amist (Ti (Vmimmes)) = = =+ = Amirs—1 (Ti(Ymi—m+s)) = 0. (3.9)
Also, we have thatfor 1 <s<m
s (11 (Ymi-mes)) = 75, (3.10)
If s<m—1, then
Amivse1 (Ti(Ymi-mrs)) =+ * = Amiem (Ti(Yimi-m+s)) = 0. (3.11)
As for the elements y,,i., we have that
dp (i (Ymits)) = Spmits—m (3.12)
(6;,; is the Kronecker symbol). O

Notice that for m = 1, we get Corollary 2.5.

Throughout our work, we will then treat the generators of B, as automorphisms of the
free group Gy, with generators y,..., Yum, where y; = x;* rather than automorphisms of
) -

Next, we proceed as in [6] by choosing elements z; ; of G, each of which is a word in
these y;’s. More precisely, for 1 <i<mand 1 < j < n we define z;; as follows:

Zi,j = Yi+mj-mY2+mj—m--- Ymj—it1- (3.13)

It is then clear that for fixed choices of a positive integer, m, and an integeri: 1 < i < m,
the length of z; ; is m — i+ 1. In other words, the generators {z; ;} are defined as follows:

210 = Y1 Ym> 21 =Y1" " Ym-1> e Zml = Y1
212 = Y1+m* " " YVom> 222 = Y14m " " " YV2m-1> ey Zm2 = Y1tmo

(3.14)
Zin = Y1+(n-D)m " " " Ynm> 220 = Y1+(n-D)m " " " Yam—1> -5  Zmn = Y1+(n—1)m-

LEmMA 3.3. {z;;} is a basis of Gup.
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Let 7, be the automorphism on G, that corresponds to 7, which is the image of the
braid generator o, of B, under the Cohen map. When there is no danger of confusion, we
will still denote the automorphism 7, by 7.

Using Lemma 2.4 in Section 2 of our work and [6, Theorem 3.1, page 172], we easily
get the following theorem.

THEOREM 3.4. For1 <r <n—1and1 <i<m, the action of 7, on the basis {z; j} of Gup is
given by
(1) ziy = 214 Zirs121,, Y

(2) Zir+1 — Ziyrs
Bzij—zijpl<j<n(j+r,r+l)

Let ¢(z;j) = thforl <i<mand1<j<n.Let D;; = $(0/9z; ;). Now to find the linear
representation

B, — Bum — GL(nm,Z)[t*'], (3.15)

we determine the Jacobian matrix of the image of the braid generator o, under Cohen
map, namely the automorphism 7, on the group G,. But first, we give an order to the
generators of Gy, as follows:

Z1,1>Z1,2)- .. )Zl,n)ZZ,I)ZZ,Za- .. )ZZ,n)~ .. )Zm,lazm,zv .. ’Zm,n- (316)
Then we define the Jacobian matrix as follows:

Dl,l(Tr (Zl,l)) e Dm,n(Tr (Zl,l))
J (1) = : : . (3.17)
D1, (zr (zm,n)) “ Dy (7r (Zm,n))

We now prove our main theorem.

THEOREM 3.5. The linear representation obtained by composing the Cohen representation
with Wada’s representation has a subrepresentation isomorphic to the Burau representation
of By, and the quotient is isomorphic to the direct sum of m — 1 copies of the standard rep-
resentation of B, after changing the parameter t to t* in the definitions of the Burau and
standard representations. More precisely,

ﬁn(tk) (o) 0 T 0
- yu(t5) (07) 5 . (3.18)
. 0
ya(t5) (07)

Proof. Using Definition 2.3 for free derivatives and Theorem 3.4, we getfor 1 <i<m

Dl)i’(Tr (Zi,r)) =1- tk) Di,r+l (Tr (Zi,r)) = tk- (319)
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Also notice that
Di, (1 (zip1)) = 1 (3.20)

(here ¢(z; ;) = th).

We take this subrepresentation as the one specified by the basis {z1,...,21,,}. The
direct summands of the quotient are generated by the images of {z1,...,zi,} fori=2,
..., m. In other words, the Jacobian matrix of 7, is given by

1 0 0
0
1
11—tk
1 0
1
1
1-t5 0 0
0 0 1 0
1
: 1
1-t 0 0 ¢
0 0 1 0
1
o
0 0 1
(3.21)
Recalling Definition 2.1, we have then proved our theorem. O

Notice that, for k = 1, we get the result that was proved in [6].
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