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The concept of statistical convergence was presented by Steinhaus in 1951. This concept
was extended to the double sequences by Mursaleen and Edely in 2003. Karakus has re-
cently introduced the concept of statistical convergence of ordinary (single) sequence on
probabilistic normed spaces. In this paper, we define statistical analogues of convergence
and Cauchy for double sequences on probabilistic normed spaces. Then we display an ex-
ample such that our method of convergence is stronger than usual convergence on prob-
abilistic normed spaces. Also we give a useful characterization for statistically convergent
double sequences.
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1. Introduction

An interesting and important generalization of the notion of metric space was introduced
by Menger [1] under the name of statistical metric, which is now called probabilistic met-
ric space. The notion of a probabilistic metric space corresponds to the situations when
we do not know exactly the distance between two points, we know only probabilities of
possible values of this distance. The theory of probabilistic metric space was developed
by numerous authors, as it can be realized upon consulting the list of references in [2], as
well as those in [3, 4]. An important family of probabilistic metric spaces are probabilistic
normed spaces. The theory of probabilistic normed spaces is important as a generaliza-
tion of deterministic results of linear normed spaces. The concept of statistical conver-
gence of ordinary (single) sequence on probabilistic normed spaces was introduced by
Karakus in [5]. In this paper, we extended in [5] the concept of statistical convergence
from single to multiple sequences and proved some basic results.
Now we recall some notations and definitions which we use in the paper.
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Definition 1.1. A function f : R — Ry is called a distribution function if it is nondecreas-
ing and left continuous with infeg f () = 0 and sup,cg f(f) = L.

We will denote the set of all distribution functions by D.

Definition 1.2. A triangular norm, briefly t-norm, is a binary operation on [0, 1] which is
continuous, commutative, associative, nondecreasing and has 1 as neutral element, that
is, it is the continuous mapping * : [0,1] X [0,1] — [0, 1] such that for all a,b,c € [0,1]:

(Daxl=a,

(2)axb=">bxa,

(3)ckxd=axbifc>aandd=> b,

(4) (axb)*xc=ax(bx*xc).

Example 1.3. The x operations a * b=max{a+b — 1,0}, a * b=ab, and a * b=min{a, b}
on [0,1] are t-norms.

Definition 1.4. A triple (X,N,*) is called a probabilistic normed space (briefly, a
PN-space) if X is a real vector space, N is a mapping from X into D (for x € X, the
distribution function N(x) is denoted by Ny, and N, (t) is the value of N, at t € R) and *
is a f-norm satisfying the following conditions:

(PN-1) N,(0) =0,

(PN-2) N,(t) =1 forall t >0ifand only if x = 0,

(PN-3) Ny (t) = Ni(t/|a]) for all « € R\ {0},

(PN-4) Nyyy(s+1) = Ne(s) * N, (t) forall x, y € X, and 5,t € Ry.

Example 1.5. Suppose that (X, - ||) is @ normed space y € D with u(0) = 0 and u # h,
where

0, <0,
h(t)z{l :0 (1.1)
Define
h(t), x =0,
N, (t) = ¢ (1.2)
#(m>> X 7é 0:

where x € X, t € R. Then (X, N, %) is a PN-space. For example if we define the functions
pand i’ on R by

0, xSO, 0) XSO,

px)=q «x #ix)= 9 (1.3)
—) x>0, exp(—), x>0,
1+x X

then we obtain the following well-known s-norms:

h(t), x=0, h(t), x=0,

Nety={ Ni(t) = ~lx (1.4)
+lxl x#0, exp( ), x# 0.
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We recall the concepts of convergence and Cauchy for single sequences in a probabilis-
tic normed space.

Definition 1.6. Let (X,N, *) be a PN-space. Then, a sequence x = (x,) is said to be con-
vergent to L € X with respect to the probabilistic norm N if, for every e >0 and A € (0,1),
there exists a positive integer ko such that Ny, (¢) > 1 — A whenever n > k. It is denoted

byN—limx:LorxniLasnﬁoo.

Definition 1.7. Let (X,N, *) be a PN-space. Then, a sequence x = (x,) is called a Cauchy
sequence with respect to the probabilistic norm N if, for every ¢ >0 and A € (0, 1), there
exists a positive integer ko such that Ny, (¢) > 1 — A for all n,m > k.

Remark 1.8 [6]. Let (X, || - ||) be a real normed space, and N,(t) = /(¢ + l|x||), where

x € X and ¢ > 0 (standard *-norm induced by || - ||). Then it is not hard to see that
Xy I,y ifand only if x,, Ny

Definitions 1.6 and 1.7 for double sequences on probabilistic normed space are as
follows.

Definition 1.9 [5]. Let (X,N, %) be a PN-space. Then, a double sequence x = (xjx) is said
to be convergent to L € X with respect to the probabilistic norm N if, for every ¢ > 0 and
A € (0,1), there exists a positive integer ko such that Ny, -(e) > 1 —A whenever j,k > k.

It is denoted by N, —limx = L or xjx Nlas j k — oo.

Definition 1.10 [5]. Let (X,N,*) be a PN-space. Then, a double sequence x = (x;i) is
said to be a Cauchy sequence with respect to the probabilistic norm N if, for every ¢ >0
and A € (0,1), there exist M" = M'(e) and M = M(e) such that Ny, (€) >1— A for all
jp=M,k,q=M.

2. Statistical convergence of double sequence on PN-spaces

Steinhaus [7] introduced the idea of statistical convergence (see also Fast [8]). If K is a
subset of N, the set of natural numbers, then the asymptotic density of K denoted by
0(K) is given by

5(1<);=1i}1n%|{kswke1<}| 2.1)

whenever the limit exists, where |A| denotes the cardinality of the set A. A sequence x =
(xx) of numbers is statistically convergent to L if

d({fkeN:|xx—L|=¢})=0 (2.2)

for every € > 0. In this case we write st —limx = L.

Statistical convergence has been investigated in a number of papers [9-11].

Now we recall the concept of statistical convergence of double sequences.

Let K = N X N be a two-dimensional set of positive integers and let K(#,m) be the
numbers of (4,7) in K such that i < n and j < m. Then the two-dimensional analog of
natural density can be defined as follows.
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The lower asymptotic density of a set K < N X N is defined as

8,(K) = liminf X2 (2.3)
— n,m nm

In case the sequence (K (#,m)/nm) has a limit in Pringsheim’s sense [12], then we say
that K has a double natural density and is defined as

. K(n,m)
lim——=

n,m nm

= 0,(K). (2.4)

If we consider the set of K = {(3, j) : i, j € N}, then

. K(n,m)
m M

& (K) =1 <lim V//m =

n,m nm nm 1M

0. (2.5)

Also, if we consider the set of {(7,2) : 4, j € N} has double natural density 1/2.

If we set n = m, we have a two-dimensional natural density considered by Christopher
[13].

Now we recall the concepts of statistical convergence and statistical Cauchy for double
sequences as follows.

Definition 2.1 [14]. A real double sequence x = (xjx) is said to be statistically convergent
to a number ¢ provided that, for each ¢ > 0, the set

{Gok), j<n k<m:|xjx—€] =€} (2.6)

has double natural density zero. In this case, one writes st; —lim; x xjx = £.

Definition 2.2 [14]. A real double sequence x = (xjx) is said to be statistically Cauchy
provided that, for every € > 0 there exist N = N(¢) and M = M(e) such that for all j,p >
N, k,q = M, the set

{Gok), j<n k<m:|xjk—xpq| =€} (2.7)

has double natural density zero.

The statistical convergence for double sequences is also studied by Méricz [15].
Now we give the analogues of these definitions with respect to the probabilistic
norm N.

Definition 2.3. Let (X,N,*) be a PN-space. A double sequence x = (x;x) is statistically
convergent to L € X with respect to the probabilistic norm N provided that, for every
e>0and A €(0,1),

K=1{(,k), j<n k< m:Ny,-1(e) <1 -1} (2.8)
has double natural density zero, that is, if K(#n,m) become the numbers of (j,k) in K:

lim K™ _ (2.9)
n,m nm
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In this case, one writes sty, —lim; s xjx = L, where L is said to be sty, — limit. Also, one
denotes the set of all statistically convergent double sequences with respect to the proba-
bilistic norm N by sty,.

Now we give a useful lemma as follows.

LemMA 2.4. Let (X,N, %) be a PN-space. Then, for every € >0 and A € (0,1) the following
statements are equivalent:
(1) stn, —limj,kak =1L,

(i) 821(j,k), j<nmandk <m: Ny, 1(e) <1-A} =0,

(iii) 02{(j,k), j<mandk <m:Ny,1(e) >1-A} =1,

(iv) sta —=lim Ny, -1(e) = 1.
Proof. The first three parts are equivalent is trivial from Definition 2.3. It follows from
Definition 2.1 that

{Gok), j<n k<m:|Ng, () —1| =2}
=1{(j,k), j<n, k<m:Ny, () = 14+ A} U{(j,k), j<n, k <m:Ny, () < 1-A}.
(2.10)
Also, Definition 1.4 implies that (ii) and (iv) are equivalent. O

TuEOREM 2.5. Let (X,N,*) be a PN-space. If a double sequence x = (xji) is statistically
convergent with respect to the probabilistic norm N, then the sty, —limit is unique.

Proof. Let x = (xjx) be a double sequence. Suppose that sty, —limx =L, and sty, —limx=
L,. Let ¢ >0 and A > 0. Choose y € (0,1) such that (1 —y) * (1 —y) = 1 — A. Then, we
define the following sets:

Ky (p,e):= {(j,k) ENXN:Ny, 1,(e) <1 -y},

(2.11)
Kna(p,e) :={(j,k) eNXN:Ny, 1,(e) <1—yp}.

Since sty, —limx = L;, we have 8, {Ky,1(y,€)} = 0 for all ¢ > 0. Furthermore, using sty,
—limx = L, we get §:{Kn2(y,€)} = 0 for all € > 0. Now let Ky(y,¢) := {Kn,1(p,€)} N
{Kn,1(y,€)}. Then observe that §, {Kn(y,¢)} = 0 which implies

S {NXN | Ky(p,e)} = 1. (2.12)

If (j,k) € N X N/Kn(y,¢), then we have

Np-1,(6) = Nyy1, (%) « Ny, 1, (%) SA-p % (1-y)=1-1 (2.13)

Since A > 0 was arbitrary, we get Ny, 1, (¢) = 1 for all € > 0, which yields L, = L,. There-
fore, we conclude that the sty, — limit is unique. O

THEOREM 2.6. Let (X,N, %) be a PN-space. If N, —limx = L for a double sequence x =
(xjk), then sty, —limx = L.
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Proof. By hypothesis, for every A € (0,1) and ¢ > 0, there is a number ky € N such that
Ny -r(€) > 1= A for all j > ko and k > ko. This guarantees that the set {(j,k) € NXN:
Ny, -r(€) < 1— A} has at most finitely many terms. Since every finite subset of the natural
numbers has double density zero, we immediately see that

8:{(j,k) € NXN: Ny, () <1-A} =0, (2.14)

whence the result. O

The following example shows that the converse of Theorem 2.6 does not hold in gen-
eral.

Example 2.7. Let (R,| - |) be a real normed space, and N,(t) = t/(¢ + |x|), where x € X
and t > 0 (standard *-norm induced by | - |). In this case, observe that (X,N,*) is a
PN-space. Now we define a sequence x = (x;x) whose terms are given by

. {\/Tk, if j and k are squares, (2.15)

0, otherwise.

Then, for every A € (0,1) and for any € > 0, let

Koo (n,m) := {(j,k), j<n, k<m:Ny,(e) <1-A}. (2.16)
Since
. . t
Koe(n,m) = {(],k), j<n k<m: o] <1 —/\}
:{(j,k),an,kSm x| ZL>0}
! 1-1 (2.17)
- {(j,k), j<n k<m:xj =\/]7k}
={(j,k), j <n, k <m:j, k are squares},
we get
1 1o _
— | Ko (n,m)| < —|{(j,k), j <n, k<m:j, kare squares} |
. - (2.18)
_
nm

which implies that §, {K(\¢)(n,m)} = 0. Hence, by Definition 2.3, we get sty, —limx = 0.
However, since the sequence x = (xjx) given by (2.15) is not convergent in the space (R,
| - ), by Remark 1.8, we also see that x is not convergent with respect to the probabilistic
norm N.

Tueorem 2.8. Let (X,N, *) be a PN-space and let x = (xj) be a double sequence. Then
sty, — limx = L if and only if there exists a subset K = {(j,k): j,k=1,2,...} = N XN, such
that 6,(K) = 1 and N, — lim(]]-’,]fcyeo;(xjk =L.
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Proof. We first assume that sty, —limx = L. Now, for any ¢ >0 and r € N, let

K(re)i= {(K) ENXN: Ny 1@ < 1=, -

M(r,e) = {(j,k) ENXN:Ng, () >1— %}

Then 6,{K(r,e)} =0and
(1) M(1,6) DM (2,e) D -+ - D M(i,e) DM(i+1,¢) D...,
(2) 6 {M(r,e)} =1,r=1,2,....
Now we have to show that for (j,k) € M(r,e), (xji) is Ny-convergent to L. Suppose
that (x;) is not N;-convergent to L. Therefore there is A > 0 such that

{(j,k) ENXN:Ny,1(e) <1-A} (2.20)
for infinitely many terms.
Let
M(Ae) = {(j,k) ENXN:Ny, 1(e) >1 -1}, A> % (r=12,...). (2.21)
Then

(3) 52{M(A, &)} =0,
and by (1), M(r,e) C M(A,¢). Hence 8;{M(r,e)} = 0 which contradicts (2). Therefore
(xjk) is N>-convergent to L.
Conversely, suppose that there exists a subset K = {(j,k) : j,k =1,2,...} € Nx N such
that §,(K) = 1 and N, — lim; ek xjk = L, that is, there exists ko € N such that for every
Ae(0,1)ande>0

ijka(S) >1 —)L, V],k = ko. (2.22)
Now
M(\e) ={(j,k) e NXN :Nyy-1(e) <1 -}
. . (2.23)
SNXN- {(]kg+1akk0+l)> (]k0+2>kk0+2)a~- }
Therefore, 5, {M(A,e)} < 1—1 = 0. Hence, we conclude that sty, —limx = L. O

Definition 2.9. Let (X, N, *) be a PN-space. It is assumed that a double sequence x = (x;x)
is statistically Cauchy with respect to the probabilistic norm N provided that, for every
e>0and A € (0,1), there exist M" = M’ (¢) and M = M(e) such that for all j,p = M’,
k,q = M, the set

{(ok), j<n k<m:Ng, ,(e) <1-1} (2.24)

has double natural density zero.

Now using a similar technique in the proof of Theorem 2.8, one can get the following
result at once.
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Tueorem 2.10. Let (X, N, *) be a PN-space, and let x = (xji) be a double sequence whose
terms are in the vector space X. Then, the following conditions are equivalent:
(1) x is a statistically Cauchy sequence with respect to the probabilistic norm N;
(ii) there exists an increasing index sequence K = {(j,k) : j,k =1,2,...} = N XN such
that 6,(K) = 1 and the subsequence {xji}(j x)ex is a Cauchy sequence with respect to
the probabilistic norm N.

Now we show that statistical convergence of double sequences on probabilistic normed
spaces has some arithmetical properties similar to properties of the usual convergence
on R.

LeEmma 2.11. Let (X,N, %) be a PN-space.
(i) If sty, —limxjx = & and sty, —lim yjx = 5, then sty, —lim(xjx + yjx) = E+1.
(i) If sty, —limxj; = & and & € R, then sty, —limaxjx = af.
(iii) If sty, —limxjx = & and sty, —lim yjx = n, then sty, —lim(xjx — yjx) = & — 7.

Proof. (i) Let sty, —limxjx = &, sty, —limyjx = 5, ¢ >0 and A € (0,1). Choose y € (0,1)
such that (1 —y) * (1 —y) = 1 — A. Then we define the following sets:

Ky (pse) := {(j,k) ENXN: Ny, ¢(e) < 1-yp},

(2.25)
Kna(p,e) :={(j,k) eNXN:Ny, ,(e) <1-y}.
Since sty, —limxj; = &, we have
0 {Kni(p,e)} =0 Ve>0. (2.26)
Similarly, since sty, —lim yjx = #, we get
0 {Kna(y,e)} =0 Ve>0. (2.27)

Now let Ky (y,€) := Kn,1(p,€) N Kn2(y,€). Then observe that §; {Kn(y,€)} = 0 which im-
plies 5 {N X N/Kn(y,e)} = 1. If (j,k) € N X N/Kn(y,¢), then we have

€ €
N6 +(yje—n) (€) = Nag—¢ (5) * Ny (5)

>(I=-p)x(1-p)=1-A

(2.28)
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This shows that
82({(j,k) eNXxN :N(xj'rf)+(yjk711)(5) <1-A})=0 (2.29)
so sty, —lim(xjx + yjx) = E+ 7.
(ii) Let sty, —limxjx = &, 1 € (0,1) and & > 0. First of all, we consider the case of & = 0.
In this case

Noxjk,of(e) = No(&) =1>1-A\ (230)

So we obtain N, —limOxjx = 0. Then from Theorem 2.6 we have sty, —lim0xj; = 0.
Now we consider the case of @ € R (& # 0). Since sty, —limxj; = &, if we define the set

Kn(y,€) := {(j,k) ENXN: Ny, ¢(e) <1-A}, (2.31)

then we can say 8(Kn(y,e)) = 0 for all € > 0. In this case 0:(N x N/Ky(y,¢)) = 1. If
(j,k) € N x N/Ky(y,e) then

Nax}-k—ocf(g) = ijk E( |) = Nx];‘ E( ) *N0<ﬁ _8>
1=

lal (2.32)
xp-£(€) k1= Ny, ¢(e) >1 -2
for « € R (a # 0). This shows that
8 ({(j,k) € NXN: Nagy—at(6) <1-1}) =0 (2.33)
so sty, —limaxjx = aé.
(iii) The proof is clear from (i) and (ii). O

Definition 2.12. Let (X,N, *) be a PN-space. For x = (xjx) € X, t >0 and 0 < r < 1, the
ball centered at x with radius r is defined by

B(x,r,t) = {y € X : Ny_(t) > 1 —r}. (2.34)

Definition 2.13. A subset Y of PN-space (X, N, *) is called bounded on PN-spaces if for
every r € (0,1), there exists ty > 0 such that Ny, (fo) >1—r forallx = (xjx) €Y.

It follows from Lemma 2.11 that the set of all bounded statistically convergent dou-
ble sequences on PN-space is a linear subspace of the linear normed space £32(X) of all
bounded sequences on PN-space.

THEOREM 2.14. Let (X,N, %) be a PN-space and the set sty,(X) N €X2(X) is closed linear
subspace of the set €32 (X).

Proof. Tt is clear that sty, (X) N €Y (X) C sty, (X) ey *(X). Now we show sty, (X) N 2N (X)

C sty (X) N €¥2(X). Let y € sty, (X) N €8 (X). Since B(y,7,t) N (sty, (X) N EY2(X)) # &,
there is an x € B(y,7,t) N (sty, (X) N €X2(X)).
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Let t >0 and ¢ € (0,1). Choose r € (0,1) such that (1 —7r) % (1 —7) > 1 —&. Since
x € B(y,1,1) N (stn, (X) N €Y2(X)), there is a set K = N x N with 8,(K) = 1 such that

Ny (%) >1-r, Ny <§) >1—r (2.35)
for all (j,k) € K. Then we have
Nyjk(t) = Nyjk—xijjk(t)

t t
ZN}’jk*%k(E) *ij (E) (2.36)

>S(1-r)x(1-r)=1-c¢

for all (j,k) € K. Hence

82({(j,k) € NX NN, () > 1—e}) = 1 (2.37)
and thus y € sty, (X) N €32 (X). O

3. Conclusion

In this paper, we obtained results on statistical convergence for double sequences on prob-
abilistic normed spaces. As every ordinary norm induces a probabilistic norm, the ob-
tained results here are more general than the corresponding results of normed spaces.
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