
CONVEX SEPARABLE MINIMIZATION PROBLEMS WITH
A LINEAR CONSTRAINT AND BOUNDED VARIABLES

STEFAN M. STEFANOV

Received 30 June 2004 and in revised form 19 April 2005

Consider the minimization problem with a convex separable objective function over a
feasible region defined by linear equality constraint(s)/linear inequality constraint of the
form “greater than or equal to” and bounds on the variables. A necessary and sufficient
condition and a sufficient condition are proved for a feasible solution to be an optimal so-
lution to these two problems, respectively. Iterative algorithms of polynomial complexity
for solving such problems are suggested and convergence of these algorithms is proved.
Some convex functions, important for problems under consideration, as well as compu-
tational results are presented.

1. Introduction

In many cases, we have to minimize a convex separable function over a region defined
by a linear equality or inequality “≥” constraint with positive coefficients, and two-sided
bounds on the variables.

Such problems and problems related to them arise, for example, in production plan-
ning and scheduling [2] and Problem 4, Section 5, in allocation of resources [2, 31] and
Problem 1, Section 5, in allocation of effort resources among competing activities [16]
and Problems 3, 5, and 6, Section 5, in the theory of search [6], in subgradient opti-
mization [11], in facility location [24], and in the implementation of projection methods
when the feasible region is of the considered form [28] and Problem 2, Section 5, and so
forth.

The problems under consideration can mathematically be formulated as follows:

min

{
c(x)=

∑
j∈J

c j
(
xj
)}

(1.1)

subject to

∑
j∈J

d jxj

{=
≥
}
α, (1.2)

aj ≤ xj ≤ bj , j ∈ J , (1.3)

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:9 (2005) 1339–1363
DOI: 10.1155/IJMMS.2005.1339

http://dx.doi.org/10.1155/S0161171205406444

1340 Convex separable minimization with linear constraints

where cj(xj) are twice differentiable convex functions, defined on the open convex sets
Xj in R, j ∈ J , respectively; dj > 0 for every j ∈ J , x = (xj) j∈J , and J ≡ {1, . . . ,n}.

Denote this problem by (C=) in the first case (problem (1.1), (1.2), and (1.3) with
equality constraint (1.2)), and by (C≥) in the second case (problem (1.1), (1.2), and (1.3)
with inequality “≥” constraint (1.2)). Denote byX= andX≥ the feasible region (1.2)-(1.3)
in the two cases, respectively. A constraint like (1.2) is known as the knapsack constraint.

Also, a generalization of problem (C=), denoted by (C=m), is considered in which (1.2)
is defined by m linear equality constraints.

The feasible region (1.2)-(1.3) is an intersection of the hyperplane(s)/halfspace (1.2)
and the box (1.3) of dimension |J| = n. Therefore, (1.2)-(1.3) is a convex set. Therefore,
(C=),(C=m), and (C≥) are convex programming problems.

Problems like (C=) and (C≥) are subject of intensive study. Related problems and
methods for them are considered in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. The solution of knapsack problems
with arbitrary convex or concave objective functions is studied in [2, 16, 20, 25, 31], and
so forth. Algorithms for solving convex quadratic minimization problems with a linear
equality/inequality constraint and box constraints are proposed in [27]. Quadratic knap-
sack problems and problems related to them are studied in [4, 22, 23], and so forth. A
nonconvex variant of these problems is considered in [29], and algorithms for the case of
convex quadratic objective function are proposed in [4, 9, 12, 21], and so forth. Bounded
knapsack sharing is considered in [3]. Algorithms for bound constrained quadratic pro-
gramming problems are proposed in [19], and minimization of quadratic functions sub-
ject to box constraints is considered in [8]. Quasi-Newton updates with bounds are sug-
gested in [5]. A Lagrangian relaxation algorithm for the constrained matrix problem is
proposed in [7]. Analytic solutions of nonlinear programs subject to one or two equality
constraints are studied in [10], and minimization subject to one linear equality constraint
and bounds on the variables is considered in [17]. Iterative quadratic optimization algo-
rithms for pairs of inequalities are proposed in [13]. A polynomial-time algorithm for
the resource allocation problem with a convex objective function and nonnegative inte-
ger variables is suggested in [14]. Algorithms for the least-distance problem are proposed
in [1, 30]. Polynomial algorithms for projecting a point onto a region defined by a lin-
ear constraint and box constraints in Rn are suggested in [28]. An algorithm for finding
a projection onto a simple polytope is proposed in [18]. A method for solving a con-
vex integer programming problem is suggested in [26]. The problems of maximizing and
minimizing subsums subject to a sum- and a Schur-convex constraint are solved in [15]
without the use of the theory of convex programming.

In this paper, we propose iterative algorithms (Sections 3.2 and 3.4) which are based
on Theorems 2.1 and 2.4 (Sections 2.1 and 2.3, resp.). Convergence of these algorithms
is based on Theorem 3.2 (Section 3.3). Then we pay our attention to some extensions
concerning theoretical and computational aspects of the proposed approach (Section 4).
In Section 5, we give examples of convex functions cj(xj), which are involved in problems
under consideration, and some computational results.

This paper is a continuation of the author’s work [25] in which we proposed poly-
nomial-time algorithms for a convex separable problem subject to convex separable

Stefan M. Stefanov 1341

inequality constraint of the form “≤” and bounded variables, and generalization of the
author’s paper [27], in which the special case of quadratic separable objective function is
studied.

2. Main results: characterization theorems

2.1. Problem (C=). First consider the following problem (C=):

min

{
c(x)=

∑
j∈J

c j
(
xj
)}

(2.1)

subject to

∑
j∈J

d jxj = α, dj > 0, j ∈ J , (2.2)

aj ≤ xj ≤ bj , j ∈ J. (2.3)

Suppose that the following assumptions are satisfied.
(1a) aj ≤ bj for all j ∈ J . If ak = bk for some k ∈ J , then the value xk := ak = bk is

determined in advance.
(2a)

∑
j∈J d jaj ≤ α ≤∑ j∈J d jbj . Otherwise, the constraints (2.2) and (2.3) are incon-

sistent and X= =∅, where X= is defined by (2.2) and (2.3).
Let h=j , j ∈ J , be the value of xj for which c′j(xj) = 0. If a finite value with this prop-

erty does not exist, this means that the function cj(xj) does not change the type of its
monotonicity, that is, cj(xj) is a nondecreasing or nonincreasing function in the interval
(−∞,+∞). That is why, in case there does not exist a finite value h=j such that c′j(h

=
j)= 0,

we adopt the following:
(i) h=j :=−∞, if cj(xj) is a nondecreasing function;

(ii) h=j := +∞, if cj(xj) is a nonincreasing function.
The Lagrangian for problem (C=) is

L(x,u,v,λ)=
∑
j∈J

c j
(
xj
)

+ λ

(∑
j∈J

d jxj −α

)
+
∑
j∈J

uj
(
aj − xj

)
+
∑
j∈J

v j
(
xj − bj

)
, (2.4)

where λ ∈ R1, u,v ∈ Rn
+, and Rn

+ consists of all vectors with n real nonnegative compo-
nents.

The Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions for
the minimum solution x∗ = (x∗j) j∈J for problem (C=) are

c′j
(
x∗j
)

+ λdj −uj + vj = 0, j ∈ J , (2.5)

uj
(
aj − x∗j

)= 0, j ∈ J , (2.6)

vj
(
x∗j − bj

)= 0, j ∈ J , (2.7)

1342 Convex separable minimization with linear constraints

λ∈R1, uj ∈R1
+, vj ∈R1

+, j ∈ J , (2.8)∑
j∈J

d jx
∗
j = α, (2.9)

aj ≤ x∗j ≤ bj , j ∈ J , (2.10)

where λ,uj ,vj , j ∈ J , are the Lagrange multipliers associated with the constraints (2.2),
aj ≤ xj , xj ≤ bj , j ∈ J , respectively. If aj =−∞ or bj = +∞ for some j, we do not consider
the corresponding condition (2.6) ((2.7), resp.) and Lagrange multiplier uj (vj , resp.).

Since cj(xj), j ∈ J , are convex differentiable functions in one variable, then c′j(xj) are
monotone nondecreasing functions of xj , j ∈ J , that is,[

c′j
(
x1
j

)− c′j
(
x2
j

)](
x1
j − x2

j

)≥ 0 ∀x1
j , x

2
j , j ∈ J. (2.11)

Since uj ≥ 0, vj ≥ 0, j ∈ J , and since the complementary conditions (2.6) and (2.7)
must be satisfied, in order to find x∗j , j ∈ J , from system (2.5), (2.6), (2.7), (2.8), (2.9),
and (2.10), we have to consider all possible cases for uj , vj : all uj , vj equal to 0; all uj ,
vj different from 0; some of them equal to 0 and some of them different from 0. The
number of these cases is 2|J| = 22n, where 2n is the number of all uj ,vj , j ∈ J , and |J| =
n. Obviously, this is an enormous number of cases, especially for large-scale problems.
For example, when n= 1500, we have to consider 23000 ≈ 10900 cases. Moreover, in each
case, we have to solve a large-scale system of (nonlinear) equations in x∗j ,λ,uj ,vj , j ∈ J .
Therefore, the direct application of the KKT theorem, using explicit enumeration of all
possible cases, for solving large-scale problems of the considered form would not give a
result and we need efficient methods to solve the problems under consideration.

Theorem 2.1 gives necessary and sufficient condition (characterization) of the optimal
solution to problem (C=). Its proof, of course, is based on the KKT theorem. As we will see
in Section 5, by using Theorem 2.1, we can solve problem (C=) with n = 1500 variables
for about 0.0001 seconds on a personal computer.

Theorem 2.1 (characterization of the optimal solution to problem (C=)). A feasible sol-
ution x∗ = (x∗j) j∈J ∈ X= is an optimal solution to problem (C=) if and only if there exists a
λ∈R1 such that

x∗j = aj , j ∈ Jλa
def=
{
j ∈ J : λ≥− c′j

(
aj
)

dj

}
, (2.12)

x∗j = bj , j ∈ Jλb
def=
{
j ∈ J : λ≤− c′j

(
bj
)

dj

}
, (2.13)

x∗j : λdj =−c′j
(
x∗j
)
, j ∈ Jλ

def=
{
j ∈ J :− c′j

(
bj
)

dj
≤ λ≤− c′j

(
aj
)

dj

}
. (2.14)

When cj(xj) are strictly convex, inequalities defining Jλ in (2.14) are strict.

Proof. Necessity. Let x∗ = (x∗j) j∈J be an optimal solution to (C=). Then there exist con-
stants λ,uj ,vj , j ∈ J , such that KKT conditions (2.5), (2.6), (2.7), (2.8), (2.9), and (2.10)
are satisfied.

Stefan M. Stefanov 1343

(a) If x∗j = aj , then uj ≥ 0 and vj = 0 according to (2.6), (2.7), and (2.8). Therefore,
(2.5) implies that c′j(x

∗
j)= uj − λdj ≥−λdj . Since dj > 0, then

λ≥− c′j
(
x∗j
)

dj
≡− c′j

(
aj
)

dj
. (2.15)

(b) If x∗j = bj , then uj = 0 and vj ≥ 0 according to (2.6), (2.7), and (2.8). Therefore,
(2.5) implies that c′j(x

∗
j)=−vj − λdj ≤−λdj . Hence,

λ≤− c′j
(
x∗j
)

dj
≡− c′j

(
bj
)

dj
. (2.16)

(c) If aj < x∗j < bj , then uj = vj = 0 according to (2.6) and (2.7). Therefore, (2.5) im-
plies that c′j(x

∗
j) = −λdj . Since cj(xj), j ∈ J , are convex differentiable functions, then

c′j(xj) are nondecreasing functions, and since bj > x∗j , x∗j > aj , j ∈ J , by the assumptions,
it follows that

c′j
(
bj
)≥ c′j

(
x∗j
)≥ c′j

(
aj
)
, j ∈ J. (2.17)

Multiplying these inequalities by −1/dj and using that

dj > 0, λ=− c′j
(
x∗j
)

dj
, (2.18)

we obtain

− c′j
(
bj
)

dj
≤ λ≤− c′j

(
aj
)

dj
. (2.19)

When cj(xj), j ∈ J , are strictly convex, then aj < x∗j < bj implies that c′j(bj) > c′j(x
∗
j) >

c′j(aj), j ∈ J , strictly. Then inequalities in (2.19) are strict.

To describe cases (a), (b), and (c), we introduce the index sets Jλa , Jλb , Jλ defined by
(2.12), (2.13), and (2.14), respectively. It is obvious that Jλa ∪ Jλb ∪ Jλ = J . The “necessity”
part of Theorem 2.1 is proved.

Sufficiency. Conversely, let x∗ = (x∗j) j∈J ∈ X= and components of x∗ satisfy (2.12),
(2.13), and (2.14). Set

λ=− c′j
(
x∗j
)

dj
; uj = vj = 0 for j ∈ Jλ;

uj = c′j
(
aj
)

+ λdj (≥ 0), vj = 0 for j ∈ Jλa ;

uj = 0, vj =−c′j
(
bj
)− λdj (≥ 0) for j ∈ Jλb .

(2.20)

Clearly, x∗,λ,uj ,vj , j ∈ J , satisfy KKT conditions (2.5), (2.6), (2.7), (2.8), (2.9), and
(2.10), which are necessary and sufficient conditions for a feasible solution to be an opti-
mal solution to a convex minimization problem. Therefore, x∗ is an optimal solution to
problem (C=) defined by (2.1), (2.2), and (2.3).

1344 Convex separable minimization with linear constraints

When cj(xj), j ∈ J , are strictly convex, this optimal solution is unique. �

The importance of Theorem 2.1 consists in the fact that it describes components of
the optimal solution to problem (C=) only through the Lagrange multiplier λ associated
with the equality constraint (2.2).

Since we do not know the optimal value of λ from Theorem 2.1, we define an iterative
process with respect to the Lagrange multiplier λ and we prove the convergence of this
process in Section 3.

Using that dj > 0, j ∈ J , from monotonicity of c′j(xj) and from aj ≤ bj , j ∈ J , it follows

that ubj
def= −c′j(bj)/dj ≤ −c′j(aj)/dj

def= la j , j ∈ J , for the expressions by means of which

we define the sets Jλa , Jλb , and Jλ.
The problem how to ensure a feasible solution to problem (C=) defined by (2.1), (2.2),

and (2.3), which is an assumption for Theorem 2.1, is discussed in Section 3.3.
The question whether xj , j ∈ Jλ, are always uniquely determined from (2.14) in [aj ,bj]

is important. In general, if c(x)≡∑ j∈J c j(xj) is a strictly convex function, then problem
(C=) has a unique optimal solution in the feasible region X= defined by (2.2) and (2.3) in
case (C=) has a feasible solution, that is, x∗j , j ∈ Jλ, are uniquely determined from (2.14)
in this case. If the parameters aj , bj , and so forth of particular problems of type (C=)
are generated in intervals where the functions cj(xj) are strictly convex, then the optimal
solution to the corresponding problem (C=), if it has an optimal solution, is unique.

If c(x) is a convex function but not necessarily a strictly convex function, then, as it is
known, any local minimum point of c(x) is a global minimum point as well and the set
of optimal solutions to a convex minimization problem is convex. Therefore, the optimal
value of the objective function subject to (2.2) and (2.3) is the same for all optimal solu-
tions to (C=) if it has more than one optimal solution. If, for example, (2.14) is a linear
equation of x∗j , then x∗j , j ∈ Jλ, are uniquely determined from (2.14) in this case as well.

2.2. Problem (C=m). Denote by (C=m) the problem

min

{
c(x)=

∑
j∈J

c j
(
xj
)}

(2.21)

subject to

Dx = α, (2.22)

a≤ x ≤ b, (2.23)

where cj(xj) are differentiable strictly convex functions, j ∈ J , D = (di j)∈Rm×n, α∈Rm,
a= (a1, . . . ,an), and b= (b1, . . . ,bn)∈Rn.

The feasible region (2.22)-(2.23) is an intersection of m hyperplanes (2.22) and the
box (2.23).

Problem (C=), considered in Section 2.1, is a special case of problem (C=m) with m= 1.
We consider problem (C=) separately because Theorem 2.1 and the algorithm suggested
for (C=) in Section 3.2 are used in the proof of Theorem 2.4 and in the statement of
Algorithm 3.2 for problem (C≥), respectively.

Stefan M. Stefanov 1345

Denote by Pc(D,α,a,b) the solution to problem (C=m). Since c(x) is strictly convex as a
sum of strictly convex functions, then Pc(D,α,a,b) is uniquely defined, that is, there is at
most one minimum which is both local and global.

Denote y = [x]b
a , where yj =min{max{xj ,aj},bj} for each j ∈ J .

The KKT conditions for x∗ ∈Rn to be a local minimum of (C=m) are

Dx∗ = α, (2.24)

a≤ x∗, (2.25)

x∗ ≤ b, (2.26)

c′
(

x∗
)

+DTλ−u + v = 0, (2.27)

uj
(
aj − x∗j

)= 0, j ∈ J , (2.28)

vj
(
x∗j − bj

)= 0, j ∈ J , (2.29)

u≥ 0, (2.30)

v ≥ 0, (2.31)

where λ∈Rm, u,v ∈Rn
+ are the Lagrange multipliers associated with (2.22) and the two

inequalities of (2.23), respectively.
The map c′ ≡ ∇c : Rn → Rn is strict monotone increasing since c is a strictly convex

function. Therefore, (∇c)−1 :Rn→Rn is well defined.

Theorem 2.2. Let c :Rn→R be separable, differentiable, and strictly convex. Then,{
Pc(D,α,a,b)

}= {(c′)−1[−DT t
]c′(b)

c′(a) : t∈Rm
}

, (2.32)

where D,α,a,b are defined above.

Proof. Relation (2.32) is proved by two-way inclusion.
(i) Let x∗ = Pc(D,α,a,b) for some α ∈ Rm. Then there exist λ ∈ Rm, u,v ∈ Rn

+ satis-
fying the KKT conditions (2.24), (2.25), (2.26), (2.27), (2.28), (2.29), (2.30), and (2.31)
together with this x∗.

It follows from (2.27) that

DTλ=−c′
(

x∗
)

+ u− v, (2.33)

that is, 〈
D j ,λ

〉=−c′j(x∗j)+uj − vj (2.34)

for each j ∈ J .
If 〈D j ,λ〉 >−c′j(x∗j), then uj > vj ≥ 0, so x∗j = aj according to (2.28), that is,〈

D j ,λ
〉
>−c′j

(
x∗j
)

implies that x∗j = aj . (2.35)

Similarly, if 〈D j ,λ〉 <−c′j(x∗j), then vj > uj ≥ 0, so x∗j = bj according to (2.29), that is,〈
D j ,λ

〉
<−c′j

(
x∗j
)

implies that x∗j = bj . (2.36)

1346 Convex separable minimization with linear constraints

Since aj ≤ bj , j ∈ J , by assumption, we have three cases to consider.

Case 1. 〈D j ,λ〉 > −c′j(aj). Then 〈D j ,λ〉 > −c′j(x∗j) according to (2.25) and the mono-
tonicity of c′j . Hence, x∗j = aj in accordance with (2.35).

Case 2. 〈D j ,λ〉 < −c′j(bj). Then 〈D j ,λ〉 < −c′j(x∗j) according to (2.26) and the mono-
tonicity of c′j . Hence, x∗j = bj in accordance with (2.36).

Case 3. −c′j(bj)≤〈D j ,λ〉 ≤ −c′j(aj). If 〈D j ,λ〉<−c′j(x∗j), then x∗j =bj according to (2.36).
Therefore, 〈D j ,λ〉 ≥ −c′j(x∗j) because 〈D j ,λ〉 ≥ −c′j(bj) by the assumption of Case 3, a
contradiction. Similarly, if we assume that 〈D j ,λ〉 > −c′j(x∗j) strictly, this would imply
that x∗j = aj according to (2.35) and 〈D j ,λ〉 ≤ −c′j(x∗j), a contradiction.

Then 〈D j ,λ〉 = −c′j(x∗j), so it follows that x∗j = (c′j)−1(−〈D j ,λ〉).

In the three cases considered, we have

x∗j =
(
c′j
)−1[− 〈D j ,λ

〉]c′j (bj)

c′j (aj)
. (2.37)

Hence, x∗ = (c′)−1[−DTλ]c′(b)
c′(a) , that is,

{
Pc(D,α,a,b)

}⊆ {(c′)−1[−DT t
]c′(b)

c′(a) : t∈Rm
}
. (2.38)

(ii) Conversely, suppose that x∗ ∈Rn and x∗ = (c′)−1[−DT t]c′(b)
c′(a) for some t∈Rm. Set

α=D(c′)−1[−DT t
]c′(b)

c′(a) ,

λ= t,

u= c′(a) +DT t,

v =−c′(b)−DT t.

(2.39)

We have to prove that x∗, α, λ, u, v satisfy the KKT conditions (2.24), (2.25), (2.26),
(2.27), (2.28), (2.29), (2.30), and (2.31).

Obviously, x∗ and α satisfy (2.24), x∗ satisfies (2.25) and (2.26) (these are (2.23))
according to the definition of [x]b

a and the monotonicity of c′.
In order to verify (2.27), (2.28), (2.29), (2.30), and (2.31), we consider each j ∈ J .

There are three possible cases.

Case 1. 〈D j ,t〉 > −c′j(aj). Then c′j(aj) + 〈D j ,t〉 > 0, and since aj ≤ bj , then −c′j(bj)−
〈D j ,t〉 < 0. Therefore, x∗j = aj , λ= t, uj = c′j(aj) + 〈D j , t〉, vj = 0.

Case 2. 〈D j ,t〉 < −c′j(bj). Then −c′j(bj)− 〈D j ,t〉 > 0, and since aj ≤ bj , then c′j(aj) +
〈D j ,t〉 < 0. Therefore, x∗j = bj , λ= t, uj = 0, vj =−c′j(bj)−〈D j , t〉.
Case 3. −c′j(bj) ≤ 〈D j ,t〉 ≤ −c′j(aj). Then −c′j(bj) − 〈D j , t〉 ≤ 0, 〈D j , t〉 + c′j(aj) ≤ 0.
Therefore, x∗j = (c′)−1

j (−〈D j ,t〉), λ= t, uj = vj = 0.

Obviously, in each of the three cases, x∗j ,uj ,vj (j ∈ J), λ satisfy (2.27), (2.28), (2.29),
(2.30), and (2.31) as well.

Stefan M. Stefanov 1347

Therefore, x∗, α, λ, u, v satisfy the KKT conditions (2.24), (2.25), (2.26), (2.27), (2.28),
(2.29), (2.30), and (2.31), so x∗ ∈ Pc(D,α,a,b) according to the definition of Pc(D,α,a,b).

The two-way inclusion implies (2.32). �

Define the functions x :Rm→Rn, α :Rm→Rm by

x(t)= (c′)−1[−DT t
]c′(b)

c′(a) , (2.40)

α(t)=D(c′)−1[−DT t
]c′(b)

c′(a) . (2.41)

Then the following corollary holds.

Corollary 2.3. Vectors x∗ ∈Rn, α∗ ∈Rm satisfy x∗ = Pc(D,α∗,a,b) if and only if there
exists t∗ ∈Rm such that

x
(

t∗
)= x∗, (2.42)

α
(

t∗
)= α∗. (2.43)

Proof of Corollary 2.3 follows from the statement of problem (C=m) and (2.32).
It follows from Corollary 2.3 that x∗ = Pc(D,α∗,a,b) can be solved with respect to x∗

for given α∗ by first solving (2.43) for t∗ and then calculating x∗ by using (2.42).
Let S be the set of solutions to (2.43) for a particular value of α∗:

S= {t∈Rm : α(t)= α∗
}
. (2.44)

According to (2.41), each component of α(t) is a linear combination of the same set of

terms. Each term (c′)−1
j [−DT

j t]
c′j(bj)

c′j(aj)
is a smooth function of t except on the pair of break

hyperplanes

Aj =
{

t∈Rm :
〈

D j ,t
〉=−c′j(aj

)}
,

Bj =
{

t∈Rm :
〈

D j ,t
〉=−c′j(bj

)}
.

(2.45)

These break hyperplanes are generalizations of breakpoints considered in Section 3.1.

2.3. Problem (C≥). Consider now the problem (C≥) with linear inequality “≥” con-
straint (1.2):

min

{
c(x)=

∑
j∈J

c j
(
xj
)}

(2.46)

subject to ∑
j∈J

d jxj ≥ α, dj > 0, j ∈ J , (2.47)

aj ≤ xj ≤ bj , j ∈ J. (2.48)

1348 Convex separable minimization with linear constraints

Suppose that the following assumptions are satisfied.
(1b) aj ≤ bj for all j ∈ J .
(2b) α ≤∑ j∈J d jbj . Otherwise, the constraints (2.47) and (2.48) are inconsistent and

X≥ = ∅, where X≥ is defined by (2.47) and (2.48). In addition to this assumption, we
suppose that

∑
j∈J d jaj ≤ α (see comments after the proof of Theorem 2.4, Section 2.3).

Let h≥j , j ∈ J , be the value of xj for which c′j(xj) = 0. If such a value does not exist,
since c′j(xj) is a monotone nondecreasing function (cj(xj) is convex), we adopt h≥j = +∞
for problem (C≥).

Rewrite problem (C≥) in the form

min

{
c(x)=

∑
j∈J

c j
(
xj
)}

(2.49)

subject to

−
∑
j∈J

d jxj ≤−α, dj > 0, j ∈ J , (2.50)

aj ≤ xj ≤ bj , j ∈ J. (2.51)

Since the linear function d(x)
def= −∑ j∈J d jxj + α is both convex and concave, then (C≥)

is a convex optimization problem.
Let λ, λ≥ be the Lagrange multipliers associated with (2.2) (problem (C=)) and with

(2.47) (problem (C≥)), and let x∗j ,x≥j , j ∈ J , be components of the optimal solutions to
(C=), (C≥), respectively. For the sake of simplicity, we use uj ,vj , j ∈ J , instead of u≥j ,v≥j ,
j ∈ J , for the Lagrange multipliers associated with aj ≤ xj , xj ≤ bj , j ∈ J , from (2.51),
respectively.

The Lagrangian for problem (C≥) is

L
(

x,u,v,λ≥
)=∑

j∈J
c j
(
xj
)

+λ≥
(
−
∑
j∈J

d jxj+α

)
+
∑
j∈J

uj
(
aj−xj

)
+
∑
j∈J

v j
(
xj−bj

)
, (2.52)

and the KKT conditions for (C≥) are

c′j
(
x≥j
)− λ≥dj −uj + vj = 0, j ∈ J , (2.53)

uj
(
aj − x≥j

)= 0, j ∈ J , (2.54)

vj
(
x≥j − bj

)= 0, j ∈ J , (2.55)

λ≥
(
α−

∑
j∈J

d jx
≥
j

)
= 0, λ≥ ∈R1

+; (2.56)

∑
j∈J

d jx
≥
j ≥ α, (2.57)

aj ≤ x≥j ≤ bj , j ∈ J , (2.58)

uj ∈R1
+, vj ∈R1

+, j ∈ J. (2.59)

Stefan M. Stefanov 1349

We can replace (2.53) and (2.56) by

c′j
(
x≥j
)

+ λ≥dj −uj + vj = 0, j ∈ J , (2.60)

λ≥
(∑

j∈J
d jx

≥
j −α

)
= 0, λ≥ ∈R1

−, dj > 0, (2.61)

respectively, where we have redenoted λ≥ :=−λ≥ ∈R1−.
Conditions (2.60), (2.54), (2.55), (2.58), and (2.59) with λ instead of λ≥ are among the

KKT conditions for problem (C=).

Theorem 2.4 (sufficient condition for optimal solution to problem (C≥)). (i) If λ =
−c′j(x∗j)/dj ≤ 0, j ∈ Jλ, then x∗j , j ∈ J , solve problem (C≥) as well.

(ii) If λ=−c′j(x∗j)/dj > 0, j ∈ Jλ, then x≥j , j ∈ J , defined as follows:

(a) x≥j = bj , j ∈ Jλb ,

(b) x≥j =min{bj ,h≥j }, j ∈ Jλ,

(c) x≥j =min{bj ,h≥j } for all j ∈ Jλa such that c′j(aj) < 0,

(d) x≥j = aj for all j ∈ Jλa such that c′j(aj)≥ 0,
solve problem (C≥).

Proof. (i) Let λ = −c′j(x∗j)/dj ≤ 0, j ∈ Jλ. Since x∗j , j ∈ J , satisfy KKT conditions (2.5),
(2.6), (2.7), (2.8), (2.9), and (2.10) for problem (C=) as components of optimal solution
to (C=), then (2.60), (2.54), (2.55), and (2.57) with equality (and therefore (2.61)), (2.58),
and (2.59) are satisfied as well (with λ instead of λ≥). Since they are the KKT necessary
and sufficient conditions for problem (C≥), then x∗j , j ∈ J , solve problem (C≥) as well.

(ii) Let λ=−c′j(x∗j)/dj > 0, j ∈ Jλ. Since x∗ = (x∗j) j∈J is an optimal solution to prob-
lem (C=) by the assumption, then KKT conditions (2.5), (2.6), (2.7), (2.8), (2.9), and
(2.10) for problem (C=) are satisfied. If x≥ := (x≥j) j∈J is an optimal solution to (C≥),
then x≥ satisfies (2.60), (2.54), (2.55), (2.61), (2.57), (2.58), and (2.59). Since λ > 0, then
λ cannot play the role of λ≥ in (2.60) and (2.61) because λ≥ must be a nonpositive real
number in (2.60) and (2.61). Therefore x∗j , which satisfy KKT conditions (2.5), (2.6),
(2.7), (2.8), (2.9), and (2.10) for problem (C=), cannot play the roles of x≥j , j ∈ J , in
(2.60), (2.54), (2.55), (2.61), (2.57), (2.58), and (2.59). Hence, in the general case, the
equality

∑
j∈J d jx

≥
j = α is not satisfied for xj = x≥j . Therefore, in order that (2.61) be sat-

isfied, λ≥ must be equal to 0. This conclusion helps us to prove the theorem.
Let x≥ := (x≥j) j∈J be defined as in part (ii) of the statement of Theorem 2.4.
Set λ≥ = 0;

(1) uj = 0, vj =−c′j(bj) (≥ 0 since λ > 0, dj > 0, and according to the definition of Jλb
(2.13)) for j ∈ Jλb ;

(2) uj = vj = 0 for j ∈ Jλa such that c′j(aj) < 0 and for j ∈ Jλ such that h≥j < bj ;

(3) uj = 0, vj =−c′j(bj) (≥ 0) for j ∈ Jλ such that h≥j ≥ bj ;

(4) uj = c′j(aj)≥ 0, vj = 0 for j ∈ Jλa such that c′j(aj)≥ 0.
In case (2), we have c′j(aj) < 0 ≡ c′j(h

≥
j), therefore aj ≤ h≥j = x≥j according to the mono-

tonicity of c′j(xj) and the definition of x≥j in this case. In case (3), since bj ≤ h≥j , then
c′j(bj)≤ c′j(h

≥
j)= 0 according to monotonicity of c′j(xj), and therefore vj :=−c′j(bj)≥ 0.

1350 Convex separable minimization with linear constraints

Consequently, conditions (2.58) and (2.59) are satisfied for all j according to (1), (2), (3),
and (4).

As we have proved, (2.61) is satisfied with λ≥ = 0. Since the equality constraint (2.2)∑
j∈J d jx

∗
j = α is satisfied for the optimal solution x∗ to (C=); since the components of x≥

defined in the statement of Theorem 2.4(ii), are such that some of them are the same as
the corresponding components of x∗; since some of the components of x≥, namely those
for j ∈ Jλa with c′j(aj) < 0, are greater than the corresponding components x∗j = aj , j ∈ Jλa ,
of x∗; and since dj > 0, j ∈ J , then obviously the inequality constraint (2.47) (condition
(2.57)) holds for x≥. It is easy to check that other conditions (2.60), (2.54), and (2.55) are
also satisfied. Thus, x≥j , j ∈ J , defined in the statement of Theorem 2.4(ii), satisfy the KKT
conditions for problem (C≥). Therefore, x≥ is an optimal solution to problem (C≥). �

According to Theorem 2.4, the optimal solution to problem (C≥) is obtained by using
the optimal solution and optimal value of the Lagrange multiplier λ for problem (C=).
That is why we suppose that

∑
j∈J d jaj ≤ α in addition to assumption (2b) (see Step 1 of

Algorithm 3.2, Section 3.4), as we assumed this in assumption (2a) for problem (C=).

3. Algorithms

3.1. Analysis of the optimal solution to problem (C=). Since the optimal solution x∗

to problem (C=) depends on λ, we consider the components of x∗ as functions of λ for
different λ∈R1:

xj(λ)=


aj , j ∈ Jλa ,

bj , j ∈ Jλb ,

x∗j : c′j
(
x∗j
)

+ λdj = 0, j ∈ Jλ.

(3.1)

Functions xj(λ), j ∈ J , are piecewise linear, monotone, piecewise differentiable functions
of λ, with two breakpoints at λ=−c′j(aj)/dj and λ=−c′j(bj)/dj .

Let

δ(λ)
def=

∑
j∈Jλa

djaj +
∑
j∈Jλb

djbj +
∑
j∈Jλ

djxj(λ)−α. (3.2)

According to uj = vj = 0, j ∈ Jλ, condition (2.5) becomes

c′j
(
xj(λ)

)
+ λdj = 0, j ∈ Jλ. (3.3)

If we differentiate both sides of each of these expressions with respect to λ (using that
c′′j (xj), j ∈ Jλ, exist by assumption; x′j(λ), j ∈ Jλ, exist because xj(λ) are defined by xj(λ)=
x∗j such that c′j(x

∗
j) + λdj = 0 for j ∈ Jλ), we obtain

c′′j
(
xj(λ)

)
x′j(λ) +dj = 0, j ∈ Jλ. (3.4)

Stefan M. Stefanov 1351

Therefore,

x′j(λ)=− dj

c′′j
(
xj(λ)

) , j ∈ Jλ, (3.5)

and since c′′j (xj) ≥ 0, j ∈ J , as the second derivatives of convex differentiable functions;

dj > 0 by the assumption, then x′j(λ) < 0, j ∈ Jλ. (If we assume that c′′j (xj(λ)) = 0, then
dj = 0 according to (3.4). However, dj > 0, j ∈ J , by the assumption, a contradiction.)
Consequently,

δ′(λ)≡
∑
j∈Jλ

djx
′
j(λ) < 0, (3.6)

when Jλ �= ∅, and δ′(λ)= 0 when Jλ =∅. Hence, δ(λ) is a monotone nonincreasing func-
tion of λ∈R1.

Using equation δ(λ) = 0, where δ(λ) is defined by (3.2), we are always able to deter-
mine λ as an implicit function of x : λ= λ(x), because δ′(λ) < 0 when Jλ �= ∅ according to
(3.6) (it is important that δ′(λ) �= 0). Moreover, since δ(λ) is a linear function of x(λ), it
is always possible to obtain a closed-form expression of λ. It turns out that for our purpose,
without loss of generality, we can assume that δ′(λ) �= 0, that is, δ(λ) depends of λ, which
means that Jλ �= ∅ (see the third paragraph of Remark 3.3).

At iteration k of the implementation of algorithms, denote by λ(k) the value of the
Lagrange multiplier associated with the constraint (2.2) ((2.47), resp.), by α(k) the right-

hand side of (2.2) ((2.47), resp.); by J (k), Jλ(k)
a , Jλ(k)

b , Jλ(k) the current sets J , Jλa , Jλb , Jλ,
respectively.

3.2. Algorithm 3.1 (for problem (C=)). According to Theorem 2.1 and the preliminary
analysis, we can suggest the following algorithm for solving problem (C=) with strictly
convex differentiable functions cj(xj), see Algorithm 3.1.

Remark 3.1. To avoid a possible “endless loop” in programing Algorithm 3.1, the criterion
of Step 5 to go to Step 8 at iteration k usually is not δ(λ(k))= 0 but δ(λ(k))∈ [−ε,ε] where
ε > 0 is some tolerance value up to which the equality δ(λ∗)= 0 (i.e.,

∑
j∈J d jx

∗
j = α) must

be satisfied.

3.3. Convergence and complexity of Algorithm 3.1. Theorem 3.2 states convergence of

Algorithm 3.1, that is, “convergence” of λ(k), Jλ(k), Jλ(k)
a , Jλ(k)

b , generated by Algorithm 3.1,
to the optimal λ, Jλ, Jλa , Jλb from Theorem 2.1, respectively.

Theorem 3.2. Let λ(k) be the sequence generated by Algorithm 3.1. Then,
(i) if δ(λ(k)) > 0, then λ(k) ≤ λ(k+1);

(ii) if δ(λ(k)) < 0, then λ(k) ≥ λ(k+1).

Proof. Denote by x(k)
j the components of x(k) = (xj) j∈J (k) at iteration k of implementation

of Algorithm 3.1.

1352 Convex separable minimization with linear constraints

Step 1 (initialization). J := {1, . . . ,n}, k := 0, J (0) := J , α(0) := α, n(0) := n, Jλa :=∅,
Jλb :=∅, initialize h=j , j ∈ J . If

∑
j∈J d jaj ≤ α≤∑ j∈J d jbj , go to Step 2, else go to

Step 9.
Step 2. Jλ(k) := J (k). Calculate λ(k) by using the closed-form expression of λ,

determined from the equality constraint
∑

j∈Jλ(k) djxj = α(k), where xj are given by
(2.14). Go to Step 3.

Step 3. Construct the sets Jλ(k)
a , Jλ(k)

b , Jλ(k) through (2.12), (2.13), and (2.14) (with

j ∈ J (k) instead of j ∈ J) and find their cardinalities |Jλ(k)
a |, |Jλ(k)

b |, |Jλ(k)|,
respectively. Go to Step 4.

Step 4. Calculate

δ
(
λ(k)) :=

∑
j∈Jλ(k)

a

djaj +
∑

j∈Jλ(k)
b

djbj +
∑

j∈Jλ(k)

djx
∗
j −α(k), (3.7)

where x∗j , j ∈ Jλ(k), are determined from (2.14) with λ= λ(k). Go to Step 5.

Step 5. If δ(λ(k))= 0 or Jλ(k) =∅, then λ := λ(k), Jλa := Jλa ∪ Jλ(k)
a , Jλb := Jλb ∪ Jλ(k)

b ,
Jλ := Jλ(k), go to Step 8;

else if δ(λ(k)) > 0, go to Step 6;
else if δ(λ(k)) < 0, go to Step 7.

Step 6. x∗j := aj for j ∈ Jλ(k)
a , α(k+1) := α(k)−∑ j∈Jλ(k)

a
djaj , J (k+1) := J (k) \ Jλ(k)

a ,

n(k+1) := n(k)−|Jλ(k)
a |, Jλa := Jλa ∪ Jλ(k)

a , k := k+ 1. Go to Step 2.

Step 7. x∗j := bj for j ∈ Jλ(k)
b , α(k+1) := α(k)−∑ j∈Jλ(k)

b
djbj , J (k+1) := J (k) \ Jλ(k)

b ,

n(k+1) := n(k)−|Jλ(k)
b |, Jλb := Jλb ∪ Jλ(k)

b , k := k+ 1. Go to Step 2.
Step 8. x∗j := aj for j ∈ Jλa ; x∗j := bj for j ∈ Jλb ; assign x∗j the value determined from

(2.14) for j ∈ Jλ. Go to Step 10.
Step 9. Problem (C=) has no optimal solution because X= =∅.
Step 10. End.

Algorithm 3.1

(i) Let δ(λ(k)) > 0. Using Step 6 of Algorithm 3.1, which is performed when δ(λ(k)) > 0,
we get

∑
j∈Jλ(k+1)

djx
(k)
j ≡

∑
j∈J (k+1)

djx
(k)
j =

∑
j∈J (k)\Jλ(k)

a

djx
(k)
j = α(k)−

∑
j∈Jλ(k)

a

djx
(k)
j . (3.8)

Let j ∈ Jλ(k)
a . According to the definition (2.12) of Jλ(k)

a and relation λ(k)dj =−c′j(x(k)
j),

we have

− c′j
(
aj
)

dj
≤ λ(k) =−

c′j
(
x(k)
j

)
dj

. (3.9)

Stefan M. Stefanov 1353

Multiplying this inequality by −dj < 0, we obtain c′j(aj)≥ c′j(x
(k)
j). Hence, aj ≥ x(k)

j , j ∈
Jλ(k)
a , in accordance with monotonicity of c′j(xj).

Taking into consideration (3.8), dj > 0, aj ≥ x(k)
j , j ∈ Jλ(k)

a , and Step 6, we get

∑
j∈Jλ(k+1)

djx
(k)
j = α(k)−

∑
j∈Jλ(k)

a

djx
(k)
j ≥ α(k)−

∑
j∈Jλ(k)

a

djaj = α(k+1) =
∑

j∈Jλ(k+1)

djx
(k+1)
j . (3.10)

Since dj > 0, j ∈ J , then there exists at least one j0 ∈ Jλ(k+1) such that x(k)
j0 ≥ x(k+1)

j0 . Then

λ(k) =−
c′j0
(
x(k)
j0

)
dj0

≤−
c′j0
(
x(k+1)
j0

)
dj0

= λ(k+1), (3.11)

where we have used the relationship (2.14) between λ(k) and x(k)
j for j ∈ Jλ(k) according

to Step 2 of Algorithm 3.1, the fact that −c′j0 (xj) is a monotone nonincreasing function,
and dj > 0, j ∈ J .

The proof of part (ii) is omitted because it is similar to that of part (i). �

Remark 3.3. Since we do not know the optimal value of λ which is involved in the state-
ment of Theorem 2.1, we approximate the value of λ until we obtain the optimal value of
λ at the last iteration of algorithm performance. In order to determine the current value
λ(k) of λ at each iteration (including the initial value), we assume that Jλ(k) = J (k) at the
beginning of the corresponding iteration (Step 2).

Theorem 3.2, definitions of Jλa (2.12), Jλb (2.13), and Steps 6 and 7 of Algorithm 3.1
allow us to assert that the values of λ(k), k = 0,1, . . ., calculated at Step 2, are such that

j ∈ Jλ(k)
a implies that j ∈ Jλ(k+1)

a , j ∈ Jλ(k)
b implies that j ∈ Jλ(k+1)

b , and since Jλ(k) is reduced

(Steps 6 and 7), then j ∈ Jλ(k+1) implies that j ∈ Jλ(k); that is, we have Jλ(k)
a ⊆ Jλ(k+1)

a , Jλ(k)
b ⊆

Jλ(k+1)
b , and Jλ(k) ⊇ Jλ(k+1). This means that if j belongs to current index set Jλ(k)

a , then j

belongs to next index set Jλ(k+1)
a and, therefore, to the “optimal” index set Jλa according

to Theorem 3.2 and definition (2.12); the same holds true about the sets Jλ(k)
b and Jλb

(2.13). Therefore, λ(k) converges to the optimal value λ from Theorem 2.1 and Jλ(k)
a , Jλ(k)

b ,
Jλ(k) “converge” to Jλa , Jλb , Jλ, respectively. This means that calculation of λ, operations

x∗j := aj , j ∈ Jλ(k)
a (Step 6), x∗j := bj , j ∈ Jλ(k)

b (Step 7), and the construction of Jλa , Jλb , Jλ

are in accordance with Theorem 2.1. The final sets Jλa , Jλb , Jλ are constructed at Step 1 or
at Step 5 (when δ(λ(k))= 0 or Jλ(k) =∅) of iteration k, where k is the number of the last
iteration of algorithm performance.

Since at the beginning of Algorithm 3.1, we have Jλ(0) := J (Steps 1, 2) and since Jλ(k) ⊇
Jλ(k+1), then Jλ(k) �= ∅ for all k ≤ k0, where k0 is some nonnegative integer. If we obtain

Jλ(k0) =∅, this would mean that Jλ(k0)
a ∪ Jλ(k0)

b = J , that is, the problem has been already
solved at iteration k0, and δ(λ(k0))= const.

Algorithm 3.1 belongs to the group of so-called “active set” algorithms.

1354 Convex separable minimization with linear constraints

At each iteration, Algorithm 3.1 calculates the value of at least one variable (Steps 6, 7,
and 8) and at each iteration, we solve a problem of the form (C=) but of less dimension
(Steps 2, 3, 4, 5, 6, and 7). Therefore, Algorithm 3.1 is finite and it converges with at most
n= |J| iterations, that is, the iteration complexity of Algorithm 3.1 is �(n).

Step 1 takes time �(n). The calculation of x(k)
j , j ∈ J , and λ(k) requires �(n) time

(Step 2). Step 3 takes �(n) time because of the construction of Jλ(k)
a , Jλ(k)

b , Jλ(k). Step 4
also requires �(n) time and Step 5 requires constant time. Each of Steps 6, 7, and 8 takes
time which is bounded by �(n) because at these steps, we assign some of the xj ’s optimal
value, and since the number of all xj ’s is n, then Steps 6, 7, and 8 take time �(n). Hence,
Algorithm 3.1 has �(n2) running time and it belongs to the class of strongly polynomially
bounded algorithms.

As the computational experiments show (Section 5), the number of iterations of the
algorithm performance is not only at most n but it is much, much less than n for large
n. In fact, this number does not depend on n but only on the three index sets defined by
(2.12), (2.13), and (2.14). In practice, Algorithm 3.1 has �(n) running time.

Consider the feasibility of x∗ = (x∗j) j∈J generated by Algorithm 3.1.

Components x∗j = aj , j ∈ Jλa , and x∗j = bj , j ∈ Jλb , obviously satisfy (2.3). Using

−c′j(bj)/dj < λ≡−c′j(x∗j)/dj <−c′j(aj)/dj , j ∈ Jλ, and dj > 0, j ∈ J , it follows that c′j(aj) <

c′j(x
∗
j) < c′j(bj), j ∈ Jλ. Therefore, aj ≤ x∗j ≤ bj for j ∈ Jλ as well according to the mono-

tonicity of c′j(xj). Hence, all x∗j , j ∈ J , satisfy (2.3).

In the sequel, since at each iteration λ(k) is determined from the “current” equality
constraint (2.2) (Step 2 of Algorithm 3.1) and since xj , j ∈ J , are determined in accor-
dance with λ(k) at each iteration (Steps 5, 6, 7, and 8 of Algorithm 3.1), then x∗ satisfies
(2.2) as well.

Therefore x∗, obtained by Algorithm 3.1, is feasible for (C=), which is an assumption
of Theorem 2.1.

3.4. Algorithm 3.2 (for problem (C≥)). Algorithm 3.2 for solving problem (C≥) with
strictly convex differentiable functions cj(xj) is based on Theorem 2.4 and Algorithm 3.1
(see Algorithm 3.2).

Since Algorithm 3.2 is based on Theorem 2.4 and Algorithm 3.1 and since the “itera-
tive” Steps 2, 3, 4, 5, 6, and 7 of Algorithms 3.1 and 3.2 are the same, then “convergence”
of Algorithm 3.2 follows from Theorem 3.2 as well. Because of the same reason, compu-
tational complexity of Algorithm 3.2 is the same as that of Algorithm 3.1.

4. Extensions

4.1. Theoretical aspects. Up to now, we required dj > 0, j ∈ J , in (2.2) and (2.47) of
problems (C=) and (C≥), respectively. However, if it is allowed that dj = 0 for some j ∈ J
in problems (C=) and (C≥), then for such indices j, we cannot construct the expressions
−c′j(aj)/dj and/or −c′j(bj)/dj , by means of which we define sets Jλa , Jλb , and Jλ for the
corresponding problem. In these cases, xj ’s are not involved in (2.2) (in (2.47), resp.) for
such indices j. It turns out that we can cope with this difficulty and solve problems (C=)
and (C≥) with dj = 0 for some indices j ∈ J .

Stefan M. Stefanov 1355

Step 1 (initialization). J := {1, . . . ,n}; k := 0; J (0) := J ; α(0) := α, n(0) := n; Jλa :=∅,
Jλb :=∅, initialize h≥j , j ∈ J . If

∑
j∈J d jaj ≤ α≤∑ j∈J d jbj , go to Step 2, else go to

Step 9.
Steps 2, 3, 4, 5, 6, and 7 are the same as Steps 2, 3, 4, 5, 6, and 7 of Algorithm 3.1,

respectively.
Step 8. If λ≤ 0, then x≥j := aj for j ∈ Jλa , x≥j := bj for j ∈ Jλb , assign x≥j the value

determined through (2.14) for j ∈ Jλ, go to Step 10;
else if λ > 0, then

x≥j := bj for j ∈ Jλb ,

x≥j :=min{bj ,h≥j } for j ∈ Jλ,

if j ∈ Jλa and c′j(aj) < 0, then x≥j :=min{bj ,h≥j };
else if j ∈ Jλa and c′j(aj)≥ 0, then x≥j := aj ;
go to Step 10.

Step 9. Problem (C≥) has no optimal solution because X≥ =∅ or there do not exist
x∗j ∈ [aj ,bj], j ∈ J , such that

∑
j∈J d jx

∗
j = α.

Step 10. End.

Algorithm 3.2

Denote

Z0= { j ∈ J : dj = 0
}
. (4.1)

Here, “0” denotes the “computer zero.” In particular, when J = Z0 and α= 0, then X= (or
X≥) is defined only by (2.3) (by (2.48), resp.).

Theorem 4.1 (characterization of the optimal solution to problem (C=): an extended
version). Problem (C=) can be decomposed into two subproblems: (C1=) for j ∈ Z0 and
(C2=) for j ∈ J \Z0. The optimal solution to (C1=) is

x∗j =


aj , j ∈ Z0, h=j ≤ aj ,

bj , j ∈ Z0, h=j ≥ bj ,

h=j , j ∈ Z0, aj < h=j < bj .

(4.2)

The optimal solution to (C2=) is given by (2.12), (2.13), and (2.14) with J := J \Z0.

Proof. Necessity. Let x∗ = (x∗j) j∈J be an optimal solution to (C=).
(1) Let j ∈ Z0, that is, dj = 0 for this j. The KKT conditions are

c′j
(
x∗j
)−uj + vj = 0, j ∈ Z0, (4.3)

and (2.6), (2.7), (2.8), (2.9), and (2.10).
(a) If x∗j = aj , then uj ≥ 0, vj = 0 according to (2.6), (2.7), and (2.8). It follows from

(4.3) and the definition of h=j that c′j(x
∗
j) = uj ≥ 0 ≡ c′j(h

=
j). Therefore, x∗j = aj ≥ h=j

according to monotonicity of c′j(xj).

1356 Convex separable minimization with linear constraints

(b) If x∗j = bj , then uj = 0, vj ≥ 0 according to (2.6), (2.7), and (2.8). Therefore, (4.3)
implies that c′j(x

∗
j) = −vj ≤ 0 ≡ c′j(h

=
j). Using monotonicity of c′j(xj), we obtain x∗j =

bj ≤ h=j .
(c) If aj < x∗j < bj , then uj = vj = 0 according to (2.6) and (2.7). Therefore, (4.3) im-

plies that −c′j(x∗j)= 0, that is, x∗j = h=j according to definition of h=j .
(2) Components of the optimal solution to (C2=) are obtained by using the approach

as that of the necessity part of the proof of Theorem 2.1 but with the reduced index set
J := J \Z0.

Sufficiency. Conversely, let x∗ ∈ X= and components of x∗ satisfy (4.2) for j ∈ Z0, and
(2.12), (2.13), and (2.14) for j ∈ J \Z0. Set

λ= 0; uj = vj = 0 for aj < x∗j < bj , j ∈ Z0;

uj = c′j
(
aj
)

(≥ 0), vj = 0 for x∗j = aj , j ∈ Z0;

uj = 0, vj =−c′j
(
bj
)

(≥ 0) for x∗j = bj , j ∈ Z0;

λ=− c′j
(
x∗j
)

dj
; uj = vj = 0 for aj < x∗j < bj , j ∈ J \Z0;

uj = c′j
(
aj
)

+ λdj (≥ 0), vj = 0 for x∗j = aj , j ∈ J \Z0;

uj = 0, vj =−c′j
(
bj
)− λdj (≥ 0) for x∗j = bj , j ∈ J \Z0.

(4.4)

It can be verified that x∗,λ,uj ,vj , j ∈ J , satisfy the KKT conditions (2.5), (2.6), (2.7),
(2.8), (2.9), and (2.10). Then x∗ with components (4.2) for j ∈ Z0, and (2.12), (2.13),
and (2.14) with J := J \Z0 is an optimal solution to problem (C=)= (C1=)∪ (C2=). �

Thus, with the use of Theorem 4.1, we can express components x∗j , j ∈ Z0, of the
optimal solution to (C=) (and therefore those to problem (C≥)) without the necessity of
constructing the expressions −c′j(aj)/dj and −c′j(bj)/dj with dj = 0.

Since Theorem 2.4 and Algorithm 3.2 are based on the sets of indices Jλa , Jλb , Jλ of prob-
lem (C=), then Theorem 4.1 solves the problem of decomposition of problem (C≥) as
well.

With the use of set Z0, we can deduce the following about checking whether the feasi-
ble region is empty or nonempty when J = Z0 for problems (C=) and (C≥).

When J = Z0, aj ≤ bj , j ∈ J , α = 0, the corresponding feasible regions are always
nonempty and it is not necessary to check anything else in this case.

4.2. Computational aspects. Algorithms 3.1 and 3.2 are also applicable in cases when
aj =−∞ for some j ∈ J and/or bj =∞ for some j ∈ J . However, if we use the computer
values of −∞ and +∞ at Step 1 of the algorithms to check whether the corresponding
feasible region is empty or nonempty and at Step 3 in the expressions −c′j(xj)/dj with

xj =−∞ and/or xj = +∞, by means of which we construct sets Jλa , Jλb , Jλ, this could some-
times lead to arithmetic overflow. If we use other values of −∞ and +∞ with smaller
absolute values than those of the computer values of −∞ and +∞, it would lead to

Stefan M. Stefanov 1357

inconvenience and dependence on the data of the particular problems. To avoid these
difficulties and to take into account the above discussion, it is convenient to do the fol-
lowing.

Construct the sets of indices

SVN= { j ∈ J \Z0 : aj >−∞, bj < +∞},

SV1= { j ∈ J \Z0 : aj >−∞, bj = +∞},

SV2= { j ∈ J \Z0 : aj =−∞, bj < +∞},

SV= { j ∈ J \Z0 : aj =−∞, bj = +∞}.
(4.5)

It is obvious that Z0∪ SV∪SV1∪ SV2∪ SVN = J , that is, the set J \ Z0 is partitioned
into the four sets SVN, SV1, SV2, SV, defined above.

When programming the algorithms, we use computer values of −∞ and +∞ for con-
structing the sets SVN, SV1, SV2, SV.

In order to construct the sets Jλa , Jλb , Jλ without the necessity of calculating the values
−c′j(xj)/dj with xj = −∞ or xj = +∞, except for the sets J , Z0, SV, SV1, SV2, SVN, we
need some subsidiary sets defined as follows.

For SVN,

JλSVN =
{
j ∈ SVN :− c′j

(
bj
)

dj
< λ <− c′j

(
aj
)

dj

}
,

JλSVN
a =

{
j ∈ SVN : λ≥− c′j

(
aj
)

dj

}
,

JλSVN
b =

{
j ∈ SVN : λ≤− c′j

(
bj
)

dj

}
.

(4.6)

For SV1,

JλSV1 =
{
j ∈ SV1 : λ <− c′j

(
aj
)

dj

}
,

JλSV1
a =

{
j ∈ SV1 : λ≥− c′j

(
aj
)

dj

}
.

(4.7)

For SV2,

JλSV2 =
{
j ∈ SV2 : λ >− c′j

(
bj
)

dj

}
,

JλSV2
b =

{
j ∈ SV2 : λ≤− c′j

(
bj
)

dj

}
.

(4.8)

For SV,

JλSV = SV . (4.9)

1358 Convex separable minimization with linear constraints

Then,

Jλ := JλSVN∪ JλSV1∪ JλSV2∪ JλSV,

Jλa := JλSVN
a ∪ JλSV1

a ,

Jλb := JλSVN
b ∪ JλSV2

b .

(4.10)

We use the sets Jλ, Jλa , Jλb in (4.10) as the corresponding sets with the same names in
Algorithms 3.1 and 3.2.

The reason to construct namely the sets (4.5), (4.6), (4.7), (4.8), and (4.9) is the fol-
lowing.

If j ∈ SVN, then none of the aj ’s is equal to −∞ and none of the bj ’s is equal to +∞.
That is why there is not any peculiarity of the described type for such indices j.

If j ∈ SV1, that is, if aj > −∞ and bj = +∞, then vj = 0, j ∈ SV1, according to (2.7)
for problem (C=) and according to (2.55) for problem (C≥). Then j ∈ Jλa or j ∈ Jλ using
the same reasoning as in (a) and (c) from the proof (necessity part) of Theorem 2.1.
Therefore, it is sufficient to consider only sets of the type of Jλa and Jλ for SV1, and we
have denoted these sets by JλSV1

a and JλSV1 in (4.7), respectively.
Similarly, if j ∈ SV2, then bj < +∞ and aj =−∞ for these j’s. Then uj = 0 according

to (2.6) for problem (C=) or according to (2.54) for problem (C≥). Hence j ∈ Jλb or j ∈ Jλ

according to cases (b) and (c) of the proof (necessity part) of Theorem 2.1. That is why
it is sufficient to consider only sets of the type Jλb and Jλ for SV2. We have denoted these
sets by JλSV2

b and JλSV2 in (4.8), respectively.
If j ∈ SV, then aj = −∞ and bj = +∞. Therefore, uj = vj = 0 according to (2.6) and

(2.7) for problem (C=), and according to (2.54) and (2.55) for problem (C≥). Hence
j ∈ Jλ according to (c) from the proof (necessity part) of Theorem 2.1. Therefore j ∈
SV implies that j ∈ Jλ, and we have denoted by JλSV the set { j ∈ SV : −c′j(bj)/dj < λ <
−c′j(aj)/dj} in this case.

Since Theorem 2.4 (sufficient condition for solution to (C≥)) is based on the index sets
for problem (C=) from Theorem 2.1, these conclusions are also valid for problem (C≥).

The assumption that dj ≥ 0, j ∈ J , for problems (C=) and (C≥) helps us to draw the
following conclusions.

About problem (C=). (i) If SVN = J \ Z0, that is, if aj ’s and bj ’s are finite for all j ∈ J
which are involved in (2.2) with dj �= 0, then the checking whether X is nonempty is

∑
j∈SVN

djaj ≤ α≤
∑

j∈SVN

djbj . (4.11)

(ii) Else if SV1∪ SVN= J \Z0, that is, if all aj ’s are finite but some of (or all) bj ’s are
equal to +∞ for the variables which are involved in (2.2), then the checking is whether∑

j∈J\Z0

djaj ≤ α (4.12)

and it is not necessary to check whether α≤∑ j∈J\Z0djbj in this case.

Stefan M. Stefanov 1359

(11) (initialization) J := {1, . . . ,n}; k := 0; J (0) := J ; α(0) := α, n(0) := n; Jλa :=∅,
Jλb :=∅, initialize h=j , j ∈ J .

Construct the set Z0. If j ∈ Z0, then
if h=j ≤ aj , then x∗j := aj ;
else if h=j ≥ bj , then x∗j := bj ;
else if aj < h=j < bj , then x∗j := h=j .

If J = Z0 and α= 0, go to Step 10, else if J = Z0 and α �= 0, go to Step 9.
Set J := J \Z0, J (0) := J , n(0) := n−|Z0|, α(0) := α−∑ j∈Z0djx

∗
j ≡ α.

Construct the sets SVN, SV1, SV2, SV.
If SVN= J , then

if
∑

j∈J d jaj ≤ α≤∑ j∈J d jbj , go to Step 2;
else go to Step 9 (feasible region X= is empty)

else if SV1∪ SVN= J , then
if
∑

j∈J d jaj ≤ α, go to Step 2;
else go to Step 9 (feasible region X= is empty)

else if SV2∪ SVN= J , then
if α≤∑ j∈J d jbj , go to Step 2;
else go to Step 9 (feasible region X= is empty);

else if SV �= ∅, go to Step 2 (feasible region X= is always nonempty).
(31) Construct the sets JλSVN, JλSVN

a , JλSVN
b , JλSV1, JλSV1

a , JλSV2, JλSV2
b , JλSV (with J (k)

instead of J).
Construct the sets Jλ(k)

a , Jλ(k)
b , Jλ(k) by using (4.10) and find their cardinalities. Go to

Step 4.

Algorithm 4.1. About Algorithm 3.1.

(iii) Else if SV2∪ SVN= J \Z0, that is, if all bj ’s are finite but some of (or all) aj ’s are
equal to −∞ for variables which are involved in (2.2), then the checking is whether

α≤
∑

j∈J\Z0

djbj (4.13)

and it is not necessary to check whether
∑

j∈J\Z0djaj ≤ α in this case.
(iv) Else if SV �= ∅, that is, when there exists at least one variable xj which is involved in

(2.2) with aj =−∞ and bj = +∞, then X= �=∅ and it is not necessary to check anything
else in this case.

Similarly we can treat problem (C≥).
With the use of results of this section, Steps 1 and 3 of Algorithm 3.1 can be modified

as follows (see Algorithm 4.1), respectively.
Similarly, we can modify Steps 1 and 3 of Algorithm 3.2.
Modifications of the algorithms connected with theoretical and computational aspects

do not influence their computational complexity, discussed in Section 3.3, because these
modifications do not affect the “iterative” steps of algorithms.

1360 Convex separable minimization with linear constraints

5. Computational experiments

In this section, we present results of some computational experiments obtained by apply-
ing Algorithms 3.1 and 3.2, proposed in this paper, to problems (C=) and (C≥). The com-
putations were performed on an Intel Pentium II Celeron Processor 466 MHz/128 MB
SDRAM IBM PC compatible. Each type of problems was run 30 times. Parameters and
data were randomly generated in intervals where the functions cj(xj) are strictly convex.

Problem 1. See Table 5.1,

cj
(
xj
)=− s j

(
xj + cj

)
xj +mj

, mj > cj , s j > 0, xj >−mj. (5.1)

Table 5.1

Problem (C=) (C≥)
Number of variables n= 1200 n= 1500 n= 1200 n= 1500
Average number of iterations 4.07 7.1 4.1 7.17
Average run time (s) 0.0001 0.00019 0.00011 0.00021

Problem 2. See Table 5.2,

cj
(
xj
)= 1

2
cj ·

(
xj − x̂ j

)2
, cj > 0, x̂ j , j ∈ J , are known. (5.2)

Problem (2.1), (2.2), and (2.3) ((2.46), (2.47), and (2.48) respectively) with cj(xj) defined
above and cj = 1(> 0) is equivalent to projecting x̂ = (x̂1, . . . , x̂n) onto the feasible region
(2.2)-(2.3) ((2.47)-(2.48), resp.).

Table 5.2

Problem (C=) (C≥)
Number of variables n= 1200 n= 1500 n= 1200 n= 1500
Average number of iterations 2.2 2.33 2.3 2.4
Average run time (s) 0.0001 0.00011 0.00012 0.00017

Problem 3. See Table 5.3,

cj
(
xj
)=−s jx j +mjx

2
j , mj > 0. (5.3)

Here cj(xj) is a strictly convex function with a minimum point at hj = s j /2mj . We sup-
pose that aj < hj , j ∈ J , α <

∑
j∈J min{bj ,hj}.

Problem 4. See Table 5.4,

cj
(
xj
)= 1

2

(
h

S
− xj

s j

)2

, s j > 0, S �= 0. (5.4)

Stefan M. Stefanov 1361

Table 5.3

Problem (C=) (C≥)
Number of variables n= 1200 n= 1500 n= 1200 n= 1500
Average number of iterations 2.4 3.2 2.5 3.33
Average run time (s) 0.00011 0.00012 0.00013 0.00015

Table 5.4

Problem (C=) (C≥)
Number of variables n= 1200 n= 1500 n= 1200 n= 1500
Average number of iterations 2.07 7.033 2.23 7.1
Average run time (s) 0.0001 0.00017 0.00012 0.00019

Problem 5. See Table 5.5,

cj
(
xj
)=−s j ln

(
1 +mjxj

)
, mj > 0, s j > 0, xj >− 1

mj
. (5.5)

Table 5.5

Problem (C=) (C≥)
Number of variables n= 1200 n= 1500 n= 1200 n= 1500
Average number of iterations 3.433 4.13 3.47 4.23
Average run time (s) 0.00009 0.00011 0.0001 0.00013

Problem 6. See Table 5.6,

cj
(
xj
)= s j

(
e−mjxj − 1

)
, mj > 0, s j > 0. (5.6)

Table 5.6

Problem (C=) (C≥)
Number of variables n= 1200 n= 1500 n= 1200 n= 1500
Average number of iterations 3.13 3.23 3.17 3.27
Average run time (s) 0.000096 0.00011 0.000101 0.00013

Problem 7. See Table 5.7,

cj
(
xj
)= ekjxj , kj > 0. (5.7)

When n < 1200, the run time of the algorithms is so small that the timer does not rec-
ognize the corresponding value from its computer zero. In such cases, the timer displays
0 seconds.

1362 Convex separable minimization with linear constraints

Table 5.7

Problem (C=) (C≥)
Number of variables n= 1200 n= 1500 n= 1200 n= 1500
Average number of iterations 2.3 5.2 2.4 5.3
Average run time (s) 0.00001 0.000101 0.000012 0.000103

Similarly, we are able to consider other convex objective functions c(x)=∑ j∈J c j(xj).
The effectiveness of Algorithms 3.1 and 3.2 for problems (C=) and (C≥), respectively,

has been tested by many other examples. As we can observe, the average number of iter-
ations is much less than the number of variables n for large n.

References

[1] P. Berman, N. Kovoor, and P. M. Pardalos, Algorithms for the least distance problem, Complexity
in Numerical Optimization (P. M. Pardalos, ed.), World Scientific, New Jersey, 1993, pp.
33–56.

[2] G. R. Bitran and A. C. Hax, Disaggregation and resource allocation using convex knapsack prob-
lems with bounded variables, Management Sci. 27 (1981), no. 4, 431–441.

[3] J. R. Brown, Bounded knapsack sharing, Math. Program. Ser. A 67 (1994), no. 3, 343–382.
[4] P. Brucker, An O(n) algorithm for quadratic knapsack problems, Oper. Res. Lett. 3 (1984), no. 3,

163–166.
[5] P. H. Calamai and J. J. Moré, Quasi-Newton updates with bounds, SIAM J. Numer. Anal. 24

(1987), no. 6, 1434–1441.
[6] A. Charnes and W. W. Cooper, The theory of search: optimum distribution of search effort, Man-

agement Sci. 5 (1958), 44–50.
[7] R. W. Cottle, S. G. Duvall, and K. Zikan, A Lagrangean relaxation algorithm for the constrained

matrix problem, Naval Res. Logist. Quart. 33 (1986), no. 1, 55–76.
[8] R. S. Dembo and U. Tulowitzki, On the minimization of quadratic functions subject to box con-

straints, Working Paper Series B 71, School of Organization and Management, Yale Univer-
sity, New Haven, 1983.

[9] J.-P. Dussault, J. A. Ferland, and B. Lemaire, Convex quadratic programming with one constraint
and bounded variables, Math. Program. 36 (1986), no. 1, 90–104.

[10] J. A. Ferland, B. Lemaire, and P. Robert, Analytic solutions for nonlinear programs with one
or two equality constraints, Publication 285, Departement d’Informatique et de Recherche
Operationnelle, Université de Montréal, Montréal, 1978.

[11] M. Held, P. Wolfe, and H. P. Crowder, Validation of subgradient optimization, Math. Program.
6 (1974), 62–88.

[12] R. Helgason, J. Kennington, and H. Lall, A polynomially bounded algorithm for a singly con-
strained quadratic program, Math. Program. 18 (1980), no. 3, 338–343.

[13] G. T. Herman and A. Lent, A family of iterative quadratic optimization algorithms for pairs of
inequalties, with application in diagnostic radiology, Math. Programming Stud. 9 (1978),
15–29.

[14] N. Katoh, T. Ibaraki, and H. Mine, A polynomial time algorithm for the resource allocation prob-
lem with a convex objective function, J. Oper. Res. Soc. 30 (1979), no. 5, 449–455.

[15] A. Kovačec, J. K. Merikoski, O. Pikhurko, and A. Virtanen, Optimizers for sub-sums subject to
a sum- and a Schur-convex constraint with applications to estimation of eigenvalues, Math.
Inequal. Appl. 6 (2003), no. 4, 745–763.

Stefan M. Stefanov 1363

[16] H. Luss and S. K. Gupta, Allocation of effort resources among competing activities, Oper. Res. 23
(1975), no. 2, 360–366.

[17] R. K. McCord, Minimization with one linear equality constraint and bounds on the variables,
Tech. Report SOL 79-20, System Optimization Laboratory, Department of Operations Re-
search, Stanford University, Stanford, 1979.

[18] C. Michelot, A finite algorithm for finding the projection of a point onto the canonical simplex of
Rn, J. Optim. Theory Appl. 50 (1986), no. 1, 195–200.

[19] J. J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems,
Numer. Math. 55 (1989), no. 4, 377–400.

[20] J. J. Moré and S. A. Vavasis, On the solution of concave knapsack problems, Math. Program. Ser.
A 49 (1991), no. 3, 397–411.

[21] P. M. Pardalos and N. Kovoor, An algorithm for a singly constrained class of quadratic programs
subject to upper and lower bounds, Math. Program. Ser. A 46 (1990), no. 3, 321–328.

[22] P. M. Pardalos, Y. Ye, and C.-G. Han, Algorithms for the solution of quadratic knapsack problems,
Linear Algebra Appl. 152 (1991), 69–91.

[23] A. G. Robinson, N. Jiang, and C. S. Lerme, On the continuous quadratic knapsack problem,
Math. Program. Ser. A 55 (1992), no. 1, 99–108.

[24] S. M. Stefanov, On the implementation of stochastic quasigradient methods to some facility loca-
tion problems, Yugosl. J. Oper. Res. 10 (2000), no. 2, 235–256.

[25] , Convex separable minimization subject to bounded variables, Comput. Optim. Appl. 18
(2001), no. 1, 27–48.

[26] , Method for solving a convex integer programming problem, Int. J. Math. Math. Sci. 2003
(2003), no. 44, 2829–2834.

[27] , Convex quadratic minimization subject to a linear constraint and box constraints, Appl.
Math. Res. Express 2004 (2004), no. 1, 17–42.

[28] , Polynomial algorithms for projecting a point onto a region defined by a linear constraint
and box constraints in Rn, J. Appl. Math. 2004 (2004), no. 5, 409–431.

[29] S. A. Vavasis, Local minima for indefinite quadratic knapsack problems, Math. Program. Ser. A
54 (1992), no. 2, 127–153.

[30] P. Wolfe, Algorithm for a least-distance programming problem, Math. Programming Stud. 1
(1974), 190–205.

[31] P. H. Zipkin, Simple ranking methods for allocation of one resource, Management Sci. 26 (1980),
no. 1, 34–43.

Stefan M. Stefanov: Department of Mathematics, Faculty of Natural Sciences and Mathematics,
South-West University “Neofit Rilski,” 2700 Blagoevgrad, Bulgaria

E-mail address: stefm@aix.swu.bg

mailto:stefm@aix.swu.bg

Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

• Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

• Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

• Implementation aspects: decision support systems,
expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

