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It is well known that the main difficulty in solving eigenvalue problems under shape de-
formation relates to the continuation of multiple eigenvalues of the unperturbed config-
uration. These eigenvalues may evolve, under shape deformation, as separated, distinct
eigenvalues. In this paper, we address the integral equation method in the evaluation of
eigenfunctions and the corresponding eigenvalues of the two-dimensional Laplacian op-
erator under boundary variations of the domain. Using surface potentials, we show that
the eigenvalues are the characteristic values of meromorphic operator-valued functions.

1. Introduction

The properties of eigenvalue problems under shape deformation have been the subject
of comprehensive studies [7, 13] and the area continues to carry great importance up to
now [14]. A substantial portion of these investigations is related to smoothness properties
of eigenfunctions with respect to boundary perturbations. Recently, Bruno and Reitich
have presented in [4] explicit constructions of high-order boundary perturbation expan-
sions for eigenelements. Their algorithm is based on certain properties of joint analytic
dependence on the boundary perturbations and spatial variables of the eigenfunctions.
The main difficulty in solving eigenvalue problems relates to the continuation of multi-
ple eigenvalues of the unperturbed configuration. These eigenvalues may evolve, under
shape deformation, as separated, distinct eigenvalues, and this splitting may only become
apparent at high orders in their Taylor expansions.

In this paper, we use the technique of integral equation to evaluate the analyticity
properties and asymptotic expansions of the eigenfunctions and the eigenvalues of the
Laplacian operator under boundary variations of the domain of definition. Using surface
potentials, we show that the eigenvalues are the characteristic values of meromorphic
operator-valued functions which are of Fredholm type with index 0. We then proceed
using the generalized Rouché’s theorem [6] and the result found in [10] to construct
their complete asymptotic expressions. Our approach concerning the question of analytic
dependence and asymptotic expansion is based on a holomorphic formulation of the
boundary integral equations and its characteristic problem version.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:8 (2005) 1201-1220
DOI: 10.1155/JMMS.2005.1201


http://dx.doi.org/10.1155/S0161171205405086

1202  The integral equation methods for eigenvalue problems

Our analysis and uniform asymptotic formulas of the eigenfunctions, which are rep-
resented as sum of a single-layer potential and of a double-layer potential involving the
Green’s function, are considerably different from that in [9]. We would here like to find
an efficient and accurate method, different from what we have presented in [2]. Power-
ful techniques from the theory of meromorphic operator-valued functions and careful
asymptotic analysis of integral kernels are combined for solving this problem. Similar
results can be obtained when considering the homogeneous Neumann boundary condi-
tion with only minor modifications of the arguments and techniques presented in this
work. We just replace the Dirichlet Green’s function by the Neumann Green’s function in
the integral representation and in a way completely similar, we establish our asymptotic
formulas.

2. Problem formulation

Let y(£): [0,1] — R?and (t) : [0,1] — R? be two analytic, 1-periodic functions satisfying
[y'(t)| > C for all t € [0,1], where C is a positive constant. We introduce

ye(t) =y(t)+€B(t), €eR. (2.1)

With this definition, (f,€) — p¢(t) is an analytic function on [0,1] X R, 1-periodic in the
variable ¢, and satisfies

ye(®)| > (2.2)

N[O

for any € such that 2| (£)l|¢o0,17) < C. We consider the bounded domain Q¢ in R?
with boundary 0Q) parameterized by the function y.(¢):

0Qc = {ye(t), t € [0,1]}. (2.3)

The outward unit normal to dQ is denoted by ve.
In this paper, we deal with the asymptotics of eigenvalues and eigenfunctions associ-
ated to the following eigenvalue problem:

Au(e) +A%(€)u(e) =0 in Q, u(e) =0 ondQe. (2.4)

It is well known that the operator —A on L?(Qc) with domain H?(Q¢) N Hg (Q¢) is
selfadjoint with compact resolvent. Consequently, its spectrum only consists of isolated,
real, and positive eigenvalues with finite multiplicity, and there are corresponding eigen-
functions which build an orthonormal basis of L?(Q¢).

Let A§ > 0 denote an eigenvalue of the eigenvalue problem (2.4) for € = 0 with geo-
metric multiplicity m > 1. There exists a small constant ry > 0 such that A3 is the unique
eigenvalue of (2.4) for € = 0 in the set {A*,A € D,,(A¢)}, where D,, (o) is a disc of center
Ao and radius ro. We define the Ag-group as the whole perturbed eigenvalues of (2.4) for
€ > 0 generated by splitting from Ay. The following analyticity result is well known [7].

THEOREM 2.1. There exists €y > 0 such that for |€| < €, the Ag-group consists of m eigenval-
ues, Ai(€), i = 1,...,m (repeated according to their multiplicity). Moreover, these A;(€) are
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analytic functions with respect to € satisfying A;(0) = Ay, i = 1,...,m. The normalized eigen-
functions associated to the Ao-group of eigenvalues are analytic with respect to € and their
values at 0 are m linearly independent solutions of the unperturbed eigenvalue problem.

Classical regularity results and the previous theorem imply that the eigenfunctions
associated to the Ag-group of eigenvalues are separately analytic in the small parameter €
and the spatial variable x. Using an integral equation technique, we will also establish the
joint analytic dependence of these functions with respect to (x,€). As it is well known,
joint analyticity does not follow from separate real analyticity properties.

3. Integral equation method

The use of integral equations is a convenient tool for a number of investigations [5].

We now develop a boundary integral formulation for solving the eigenvalue problem

(2.4). We use this method to characterize the eigenvalue and the normal derivative of the

eigenfunction as characteristic value and root function of some operator-valued function.

This characterization is the key point in deriving our results and asymptotic formulae.
Let u be the solution to the Helmholtz equation:

Au+ANu=0, inR% (3.1)
We begin by defining the outgoing Green’s function G(x, y) as the solution of
AG(x,y) +A12G(x,y) = =6, (x), inR?, (3.2)

with the radiation condition as |x| — +oo:

oG 1
16| -o( ). 33
alxi ] 5
In fact, G is explicitly given as
G(xy) = TH (A~ y1), (34)

where Hél) (z) is the Hankel function of the first kind and of order zero [1]. Its singularity
has the form

1
G(x,y)~ﬂlog|x—y|+--- asx — y. (3.5)

3.1. Preliminary results. Consider (3.1) for the function u in the exterior of Qc, multiply
by the Green’s function G and integrate by parts, we get that for x € R? \ Q,

Jdu
u)= | (5r] 06ty a1z S| o). (36)
The jump condition for du/dv, on 9Q) yields
3G
MMZ_LQ&Mw+.’)WM0 J Guy GMoly). ()
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Of course, the above equations does not hold up to the boundary of Q, but if we take
the limit as x — 9Q), we get from, for instance, [5, 12] that

1
~u

JG
30, (x) = _JBQE ave()’) +(x,y)u(y)d0(y)

+J G(x,y)al‘ (y)do(y) forx € dQe.
20, 0Ve | _

(3.8)

We introduce the following operators, called single- and double-layer potentials, re-
spectively:

SI)g(x) = LQ Glx,9)g(y)do(y), x e R2\ a0,
‘ (3.9)
DI(A)g(x) = LQ O (y»G(x,y)g(y)do(y), x¢€ R2\ 9Q2.

For g € €™ (0Q¢), or even g € L'(dQ), the functions SI(1)g and DI(A)g are well de-
fined and smooth for x € R?\ 9Q,.
Now define the following operators:

SA) : H V2(0Qc) — HY?(9Q), D(A): H?2(0Qc) — HY?(9Q), (3.10)

where

S g — LQ G, )g(»)da(y),
‘ (3.11)

D(/\):g—»J

a0 9ve(y) (-, y)g(y)do(y).

+

For such g and every x € dQ¢, we denote by g.(x) and g_(x) the limits of g(y) as
y—x, from y € Qc and y € R2\ Q, respectively, when these limits exist. It is a well-
known classical result that, for x € 0Q,

(SI(D)g) . (x) = (SI(D)g) _ (x) = S(A)g(x),

1 (3.12)
(DIA)g) . (x) = = Eg(x) +D)g(x),

where S(A) is pseudodifferential operator of order —1.

Throughout this paper, we use for simplicity the notation H;(]0,1[) = H*(R/]0,1[),
for s € R, where H*(R/]0,1[) denotes the classical Sobolev H*-space on the quotient
R/]0,1[.

Using a change of variables and integral equations, the following important result im-
mediately holds from Taylor [16, page 184].

ProrosITION 3.1. Let Le(A) : H;m(]O, 1)) — H;/Z(]O, 1[) be defined as follows:
LcA)f(1) = (S f(yeh)) (ye(®))

it , s (3.13)
= ZL Hy (A ye(t) —ye(s)|) |ye(s)| f(s)ds  for f € H;V2(]0,1]).
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Then the operator-valued function L¢ () is Fredholm analytic with index 0 in C \ iR~. More-
over, L;' (1) is a meromorphic function and its poles are in {J(z) < 0}. I(z) means the
imaginary part of z and R(z) is the real part.

From now on we will focus our attention on solving the eigenvalue problem (2.4).

3.2. Joint analyticity of kernel. Based on the result found in [3] and on the argument
of Millar [11], we will now prove the following proposition. The following result will be
useful in Sections 4 and 5.

ProrosITION 3.2. There exist a constant 1 > 0 and a complex neighborhood V" of 0 such that
for every function ¢(t,€) € H;m(]O,l[) analytic in (t,€) € {|3(t)| < n} XV, the function
Le(M)g(t€) € H;/z(]O, 1[) is analytic with respect to (t,€,A) in {|3(¢)| < n} XV x Dy, (L),
where Dy, (Ao) is a disc of center Ay and radius r,.

Proof. The proof of this proposition heavily relies on the work of Bruno and Reitich [3]
where they expressed the kernel of L¢ (1) in the following form:

i
7 (U yed) = ye) D 17:6)|

, (3.14)
== Z log (It =s = p)h(A? [ye(t) = ye(s)|*) [ye(s) | +k(t5,€,0),
p=-1

for (t,s,€6,A) € $N{J(t) =0} N {T(s) =0} N {T(e) =0}, s & {t,t+ 1,t — 1}, where h is
an analytic function in C, and k is analytic in $. Here $ = {|3()| < ;13(s)| < 3 1el <
;A € Dyy(Ao);—p < R(t) < 1+ p;—p < R(s) < 1+ p}, for the positive numbers p, o, 7,
and §.

The central difficulty to prove the analytic property of the operator L, comes from the
spatial regularity of its kernel. We show that logarithmic singularity of the kernel of L¢ (1)
is independent of the parameter €.

We introduce

1 1
Ot e,N) = —JO S loglt—s— plh(A2[e(t) = ye(9) ) (5,0 | yi(s) [ds.  (3.15)
p=-1
Using a change of variables, this function can be rewritten as follows:

2
O(teN) = — Llog [t =sIh (A2 ye(t) = ye(s)|*) (s, €) [ ye(s) | . (3.16)
An integration by parts leads to

D(t,6,1) =log (It — 21) y(£,2,6,1)

y(t,5,6,0) (3.17)

“log (It 1) w(t,—1,e,1) - J B0 ds,
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where

y(t,s,€,1) = — fh(ﬂ [7e() = ye(2) ) p(z,€) | e (2) | d. (3.18)

Clearly, ®(t,€,1) can be extended to a complex analytic function in C X V" X Dy, (A¢).
Furthermore, from the following identity

1
LeNglte) = D(te )+ | Kits.e s (3.19)

0
we deduce the desired result applying (3.14). g

4. Reduction to a characteristic value problem

In this section, we first recall some definitions and notations from [6, 10]. Using bound-
ary integral equations, we reduce the problem (2.4) to the existence and the distribution
of the characteristic values of selfadjoint integral operators in the complex plane.

4.1. Notations and definitions. Let € and % be two Banach spaces and let £(€,%) be
the algebra of all bounded-valued function acting from € into %. €’ and ¥’ denote the
dual spaces of € and &, respectively.

Let Ag be a fixed complex value in C. We denote by $4(1) an operator-valued function
acting from Dy, (A¢) into £(€,F), where D, (1) is a disc of center Ay and radius ro > 0.
Ao is called a characteristic value of sd(1) if

(1) s4(A) is holomorphic in some neighborhood of Ay, except possibly at A,

(ii) there exists a vector-valued function ¢(A): D;,(1g) — # holomorphic at Ay and
verifying ¢(1o) # 0, such that sd(1)$(A) is holomorphic at 1 and vanishes at this
point.

¢(A) is called a root function of sd(A) associated to Ay and the vector ¢y = ¢p(Ay) is
called an eigenvector. The closure of the linear set of eigenvectors corresponding to Ay is
denoted by Ker s (A).

Suppose that A is a characteristic value of the function s{(A) and ¢(A) is a root func-
tion satisfying (ii). Then there exists a number m(¢) > 1 and a vector-valued function

w(A): Dy, (Ao) — # holomorphic such that

AN = A=20)"PyL),  w(ho) £0. (4.1)

The number m(¢) is called the multiplicity of the root function ¢(A). Let ¢y be an eigen-
vector corresponding to A and let

R(po) = {m(¢); (M) is a root function such ¢ (o) = ¢o}. (4.2)

Then by rank of ¢y we mean rank(¢y) = max®(¢o). Suppose that n = dimKer o4 (1) <

+o0 and that the ranks of all vectors in Ker (1) are finite. A system of eigenvectors ¢},
j=1,...,n,is called a canonical system of eigenvectors of s1(A) associated to Ay if the ranks

possess the following property: rank(¢}) is the maximum of the ranks of all eigenvectors
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in some direct complement in dim Ker sd(Ao) of the linear span of the vectors Bose.s é_l
Letr; = rank((pé). Then (r;); uniquely determines the function s{(1). We call
N(st(Xo)) = D1 (4.3)
j=1

the null multiplicity of the characteristic value Ay of sd(A).

If Ay is not a characteristic value of {(1), we put N(sd(Aq)) = 0.

Suppose that $4~'(1) exists and is holomorphic in some neighborhood of Ay, except
possibly at Ag. Then the number

M(s4(Xo)) = N(s4(ho)) = N (47" (X)) (4.4)

is called the multiplicity of the characteristic value Ay of 94(A). Suppose that A, is a pole of
the operator-valued function. The Laurent expansion of #(1) in A, is given by

AN = S (A-1)’A;. (4.5)

j==s

If in the last expression the operators A_j, j = 1,...,s, are finite dimensional, then A)
is called finitely meromorphic at A;.

The operator-valued function s4(1) is said to be of Fredholm type at the point A, if the
operator Ay in the last expansion is a Fredholm operator.

If s4(A) is holomorphic at the point Ay and the operator s{(Ao) is invertible, then Ay is
called a regular point of A(L).

We set

(yev)(w):=wv)y (weF),

vey)w:=(uy (uee) (46)

for y € € and v € ¥'. Note that y®v € L(F,€), ve y € L(€,F"), and (y @ v)* =
v ® y. An ordered set {yo, ¥1,...,¥n} C € is called a chain of eigenvectors and associated
vectors (CEAV) of A at A if

h
Y= (- (47)
1=0

is a root function of o at A with m(Y) > h+ 1. Conversely, if Y is a root function of o at
Aand m(Y) = h+ 1, then the function

Y(u) =D (=M, (4.8)
1=0

{0, ¥1>-..>yn} is CEAV.
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A system { yl(j 1< j=<h, 0<l<m;} is called a canonical system of eigenvectors
and associated vectors (CSEAV) of o at A if {yéj) 11 < j <h} is a basis of Ker(s4(1)),
{y((,]),ygj),...,yfé])»} isa CEAVof o at A (j =1,...,h), mj = supim(y) : y € Ker(A(A)) \

Span{y(()k) tk<j}}; (1 <j<h). Obviously mj = m(y(()j)).
We recall the generalization of Steinberg’s theorem [15].

THEOREM 4.1. Suppose that si is an operator-valued function which is finitely meromorphic
and of Fredholm type in the domain Dy, (Ao). If the operator (L) is invertible at one point
of Dy,, then SA(A) has a bounded inverse for all A € D,,, except possibly for certain isolated
points.

We will reduce, as mentioned in the introduction, the eigenvalue problem to some
characteristic problem. From Proposition 3.1, we know that if A3 is an eigenvalue of (2.4),
then A is a characteristic value of Ly(A). Moreover, for ry small enough, the function
Ly (1) is meromorphic in Dy, (o), where D,, (o) the disc of center Ay and radius ro, and
Ao is its unique pole in Dy,.

We begin by establishing the following lemma which characterises the eigenvalues of
(2.4)ife =0.

LEMMA 4.2. Any eigenvalue of the problem (2.4) is a simple pole of Ly (A).

Proof. Let A} be an eigenvalue of (2.4). Let uy be an associated eigenfunction normalized
in L*(€)). Using an integration by parts, we know that d,,u is in fact a characteristic
function of the operator-valued function A — Lo(A) corresponding to the characteristic
value Ao, that is, Ly(A¢) 0y, tp = 0 on Q. We define ¢ (1) as a root function of Ly(A) corre-
sponding to (Ag; 9y, up); it is holomorphic in Dy (Ag), ¢(Ag) = 9, uy and satisfies the iden-
tity Lo(A)¢(A) 122, = 0. The multiplicity of ¢(A) is the order of Ay as a zero of Ly(A)p(A).
But it is well known that the order of Ay as a pole of Ly (1) is precisely the maximum of
the ranks of the eigenvectors in KerLy(Ap). Then it suffices to show that the rank of an
arbitrary eigenvector is equal to one.

We write Ly(A)¢(A) = (A2 — A3)w (L), where (1) is a holomorphic function in H'?
(0Q). For A € D,, (o), we denote by u()) the unique solution of (A +A?)u(1) =0 in Q
with the boundary condition u(1) = w(1)y~! on 0. Using a trivial integration by parts
over (g, we find that

J Wi dx = (12 Ag)‘lj (N o do(x) = J vVatodo(x),  (49)
(o1 Qo Qg
which immediately implies that
J v (Ao) Oy, uodo(x) = J |u0|2dx =1, (4.10)
BQO QO

since fQO u(A)updx is holomorphic in Dy, (Ay). Therefore, |y(Ao) Iiz(aﬂo) # 0 and thus the
function y(Ay) is nontrivial. O

Our main results in this section are summarized in the following theorem.
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THEOREM 4.3. There exists a positive constant €, = €1(ry,€g) such that €, < € and for
l€| < €1, the operator-valued function A — L¢ (M) has exactly m characteristic values (A;(€));
(counted according to their multiplicity) in Dy, (Ao). These characteristic values build the Ao-
group associated to the perturbed eigenvalue problem (2.4), and are analytic with respect to
€ in | —€1,€1[. They satisfy Ai(0) = Ao, for i = 1,...,m. Moreover, if(/i,-(e))fi1 denotes the
set of distinct values of (A;(€))IZ,, then the following assertions hold:

S M(Le (i) = m,
i=1

L' = Tz (A=1i(e) (&) + R ),

i=1

(4.11)

where €;(€) : Ker(Le¢ (Xi(e))) — Ker(Le¢ ()Ati(e))) and Re(A) is a holomorphic function with
respect to (€,A) €] — €p,€0[ XDy, (Ao).

Proof. We first recall that m is the geometric multiplicity of A as an eigenvalue of the
eigenvalue problem (2.4). Proposition 3.2 implies that L. (1) is an analytic operator-val-
ued function with respect to (€,A) € R X D, (A¢). Then there exists a constant € (ro,€p) >
0 such that for any € lying in ] — €1, €, [, the following holds:

| (Lg A) - Lo()t))Lal(A) |§€(HJ/Z,H;/Z) <1, Vle E)D,O (Ao) (4.12)

From the generalized Rouché’s theorem and the results of Gohberg and Sigal [6], we
deduce that L¢ (M) is invertible on 0D, and has 7, characteristic values (Xi(e))i in Dy, (Ap)
which are (obviously) the poles of the function LZ'(1) in the disc Dy, (1o). Thus, with the
definitions introduced earlier, the following holds:

Te

> M(Le(Li(€))) = M(Lo(Ao)). (4.13)

i=1

Using Theorem 2.1 and Proposition 3.2, it can now be easily seen that the set of these
characteristic values build precisely the Ao-group of eigenvalues introduced in the last
section, that is, (/T,-(e)),- = (Ai(€))i. Hence, they are analytic in the variable €. Notice that
in general we have M(Ly(A)) = dimKerLy(1g) = m. But Lemma 4.2 implies M (Ly(A9)) =
m. Furthermore, we have the Laurent expansion

L' V) = (A= Xo) " 8o +Ro(), (4.14)

where £, = >, £:(0) and Ro(1) is a holomorphic function. From the decomposition
(4.14), we obtain

€Lo(Ao) =0 in £(H;"*(]0,1[),H, "*(10,1[)),
4.15
Lo(Ao)€o =0 in L(H}*(]0,1[),H}*(]0,1)). (419
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It follows that €, : Ker Lg (1g) — KerLy(Ao). But from the properties of the Green’s func-
tion G(x, y), we know that

Ker L (Ag) = Ker Lo (Ao). (4.16)

Note that using similar arguments, we can prove that (1;(€)); are also simple poles of
L:Y(A) and M(Le(Ai(€))) = dimKer Le(Ai(€)), for i = 1,...,m. Moreover, we have

Te

L' =D (A= di(€)) ™ li(e) + Re (D),
i=1 (4.17)

&i(€) : Ker (Le (Li(€))) — Ker (Le (Ai(€))),

where R¢ (M) is a holomorphic function which completes the proof of the theorem. [

Let Ay be a characteristic value of Ly(1). From Keldys’s theorem which is simplified in
[10, page 462], there exist {gbf) :1 <i<m} CSEAV of Ly at A\g and {1//6 :1 <i<m} CSEAV
of L{ such that the operator

1
0= 5.
2im Ja-dol=p

(Lo(V) 'dA = ¢f @y (4.18)
i=1

is well defined.

Analogously, by the result of Reinhard and Moller which is due to Keldys [8], for each
characteristic value A;(€) (1 < i < m), there exist {¢; j(€):1 <i<m, 1 <j <m;} CSEAV
of L¢ at Aj(€) and {y;;(€): 1 <i<m, 1 <j<m;} CSEAV of L such that the operator

- L =S g .
A& =5 o, L) dA ngcpl,J(e)w,J(e) (4.19)

is well defined. Introduce the operator
A(e) = D Aile), forlel <er. (4.20)
i=1

Based on Theorem 4.3, [15] and on relation (4.20), one can see that the operator A(€) is
selfadjoint and holomorphic function with respect to € €] — €1, €;[. It is quite easy to see
that Ap = A(e = 0) and the following results hold.

ProposiTiON 4.4. For |€| <€, and forie {1,...,7¢},
(1) the operator Ai(€) satisfies

AlO) | (kerteeueny: =0 (4.21)
(2) if Ai(€) and Aj(€) are two characteristic values of Le(A) with i # j, then

KerLe(Ai(€)) L KerLe (Aj(€)). (4.22)
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Proof. (1) Let¢ € H;l/z such that A;(€)¢ = 0, then

Z ¢, i (€)) i j (€ (4.23)

The fact that (¢;;);; and (y;;);; are CSEAV implies that ¢ = 0 and, therefore, yields the
desired result.

(2) Tt suffices to prove the result only for i = 1 and j = 2. From relation (4.16), we
deduce that

Le(Ai(€)) KerLe (A;(€)) € KerLe (A5(€)). (4.24)
Then,

Le(Ai(€)) Ker (Le (Aa(€))) € Ker (Le (Aa(€))) N (Ker (Le (11 (€)))) (4.25)

Using the last relation, the relation

Ker (Le (12(€))) = Le (A1 (€)) Ker (Le (A2(€))) + (I = Le (A1 (€))) Ker (Le (A2(€))) - (4.26)

becomes

(I = Le(Mi(€))) Ker (Le (A2(€))) = 0. (4.27)

The operator-valued function Le(A,(€)) is Fredholm of index 0 which completes the
proof. O

Our strategy now is to investigate the properties of the eigenelements corresponding
to the operators Ay and A.. Let (‘ué)ls j<n be the family of eigenvalues of the operator
Ay with multiplicity m; each. Using the generalisation of Theorem 2.1, see [7, 13], we
know that there exists €, = €;(€1) > 0 such that for |€] < €; and for j € {1,...,h}, the ;,té—
group consists of m; eigenvalues of A(e), wji(€), I=1,..., m; (repeated according to their
multiplicity).

Let €3 = inf(€,€2). For |€] < €3, the following projector is well defined:

mj mjl

Pj(e) = if (u=4©) 'du=3 > gl © 2 gl (e, (4.28)
lu—uji(€)l=p1

2im O

where for 1 < j < hand for 1 <[ < mj, the family (ql(’];)(e))lgssmj, denotes the orthogonal
family of eigenfunctions corresponding to the eigenvalues y;;(€). For € = 0, we have

1 B mj .
Pi0)==| . (u-40)"du=>q"©0)eq’0), (4.29)
278 J\u—ps =2 -1
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where the family (ql(j )(0))1§15m ; is the orthogonal family of eigenfunctions correspond-
ing to the eigenvalue u). Now it seems natural, from the previous results, that for all
j=1,...,h, the family (ql(])(O))lslsmj is mj-characteristic functions of Ly(A¢) and for all

I =1,...,mj, the family (qg)(E))gsSmﬁ, is mj-characteristic functions of L¢(1;(€)) and

h h
= > Pj(e), forlel<es,  P(0)=> Pj(0). (4.30)
j=1 j=1

5. Analyticity and asymptotic expansion

This section is devoted to the study of the asymptotics of the characteristic elements and,
therefore, the asymptotics of the eigenelements of (2.4) when the parameter € goes to
zero. We will give a method in order to calculate the coefficients of the expansions of the
eigenelements in a neighborhood of zero when the eigenvalue A§ of —A is not simple. Our
strategy, for deriving asymptotic expansions of the perturbations in a multiple eigenvalue
Ao with multiplicity m that are due to boundary deformations, relies on finding the ana-
lyticity and complete asymptotic expansions of the eigenelements of A(€). The following
holds.

ProrosrTioN 5.1. For |€]| < €3,
(1) the operator P(€) is holomorphic for € €] — €3,€3[ and P(e) = P(0) + R(€), where
R(€) is holomorphic with respect to €,
(2) P(e) = Z;”Zlq(f)(e) ® q'/)(€), where (¢ (€))1<j<m denotes an orthonormal basis
of KerLe(Ai(€)). Also, P(0) = 37, q'7(0) ® '7(0), where (q'7(0))1<j<m is an or-
thonormal basis of Ker Ly (Ao).

Proof. (1) This property is clear by recalling that the operator A(€) is holomorphic and
has the expansion A(e) = A(0) +K(€), where the operator X(e) is holomorphic with
respect to € and goes to 0 as € — 0 and by considering, for € €] — €3, €3, the Neumann
series

(u—AE) " = (u- + 3, (4= 40) [A@@-a0)", G

which converges uniformly with respect to ¢ in a neighborhood of y ; i

(2) As said at the end of Section 4, the elements of the family (ql ( MNi<j<hi<i<m; are
characteristic functions of Ly(Ag) and the idea here is to organize this family as follows:

2"(0) = gi",43"(0) = ¢57,...,q™(0) = ™. (5.2)

Then, the family (q(()j)hg j<m defines an orthogonal basis in KerLy(Ao). Using similar ar-

guments, the family (ql(i)(e))1S15m].,1§55mﬂ,13j5h, given by (4.28), can be organized:

gi(€) = 4V(€),q13(0) = @ (e),....q%) . (€) = 4" (e), (5.3)
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where for all j = 1,...,m, g/ (€) — qo as € — 0. The family (q"/)(€))1<j<m defines an
orthogonal basis in EB,:1 Ker(Le(Ai(€))), and so the order of organization of its elements

directly depends on the order of organization of the basis (q(()j)) 1<j<m- O

Let B¢ = [ay] be the (m X m) matrix, where for [ = 1,...,mand fors = 1,...,m,

o= (209)- (5.4)

Then, By = I,,, where I,,, denotes the identity matrix. From Proposition 5.1, we have

> (49(€)q €)= 3 (ay”)as’ +Ree). (5.5)
j=1 j=1
Relation (5.5) implies that
(Bege), = g0 +R(€)qy, (5.6)
where
T
go= (" nai™)s g = (40(©)ng™ (@) . (5.7)

ProrosITION 5.2. There exists some constant €, = €4(€3) >0, (€4 < €3), such that for j €
{1,...,m},
1) the functions g7 (€)(t) are holomorphic in (t,€) and satisfy the following uniform
expansions: for t € [0,1],

gt =g (1) + > g (t)e”, (5.8)
n=1
where the first coefficient satisfies

g/ = Rig’, (5.9)

and for n = 2, the coefficients qff " are given by

n—-1 m

g =Rugi’ = Y. Y (46”4 ) 4 so (5.10)

k=1i=1

with Ry = 0 and R, (n = 1) being the Taylor coefficients of R(€)
(2) the characteristic values Aj(€) = A9 (€) satisfy

AD(€) =g+ > AP e, (5.11)
nx1
The first coefficient satisfies

. Lo(Ao) g, 11V gy
A§])=—1 (0(0‘11 1‘10) (5.12)

Hllo) (J)H
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and for n > 2,

Vg £ S e )

(5.13)

n—1

— l n
+> Z(sz k‘]n z»1 ‘10 ) Z (Fkn kq(()]), L qo )]
1=0 k=0 P}

Here for all integers k and s, the expressions l,(:) and Fy.s are two operator-valued functions
with simple forms.

Proof. (1) Define the matrix: %, = (dfp)sp; the coefficients dfp are given by
d, =00+ (R@©)gd,q), (87 =1ifp=sand ol =0if p £5). (5.14)

The analyticity of the operator-valued function R(€) with respect to € €] — €3,€3[ guar-
antees the analyticity of %¢. The inner product of (5.5) by q((,p ) gives

M=

(45".4"(@) (4" nai") = 8 + (Rt ai”) (5:15)

1
which implies that
B =%.. (5.16)

Relation (5.5) implies

Bege = ¢o + R(€) . (5.17)

We now verify that the function ¢, is jointly analytic in (t,€). Through relation (5.17),
we deduce that

Pe = (Be)™! (¢o +R(€)¢po). (5.18)

The analyticity of ¢o(f) in ¢ is a classical result. Then we deduce the result by using the
analyticity of the matrix BZ! in €, which is obvious from (5.16), and the fact that the
function R(€)¢y(t) is jointly analytic in (t,€). From relation (5.7), we then deduce the
analyticity of the functions qg'/)(€) follows for all j = 1,...,m

The analyticity of the matrix operator B allows writing, in a neighborhood of 0, the
expansion

B =By+€Bi+€’By+---. (5.19)
By expanding

de = > €kqy, for el < e, (5.20)
k=0
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and (5.7), relation (5.17) implies

+o0 +oo +oo
( > e”Bn) (Z esqs> =qo+ . €"Ruqo, (5.21)
n=0 s=0 n=1
where we have considered ¢y = qo and R(€) = >.,.1 €"R,,. Then,

> Bk@u-k = 9o+ Rugo. (5.22)
k=0

The jth component of the vector Brg,— is given by

3

(Begu-i); = 2 (404" ) 4. (5.23)
i=1
and then relation (5.22) becomes
SR ) )
(Bogn);+ >, > (454" ) 4\ = 45" + Rugt’- (5.24)
k=11i=1
The relation By = I,,, implies
SRS N L) )
- Z( ’ql(cl))qslk"'%] +Ruqq - (5.25)
k=11i=1
Therefore,
O S o\ e () )
g == (aa)a’ - 3. > (a6 )al e+ a4 +Ruai’ . (5.26)
i=1 k=1i=1

Taking the inner product with q((f), s=1,...,m, we have

|
—

e

n

(¢5%a") =~ (a5"4%) -

Then,

(a0"4") (25", ) + 8+ (a6 Roqs”)-  (5.27)

=~
Il

—
Il
—_

(46",4%) = —(a6%a") - i(qéj),qii))(qés),qiilk)+5sj+(qé”,an8j))- (5.28)

i=1

=
—_

=
—

If we replace this equality in (5.26), we find

: m . m [n—1 m ) ) '

g/ => (a9 a8 +> [z S (408 (a4 - 6, - (q(()s),an(()J)>j|q(()s)

i=1 s=1 i=1

n—-1 m ‘ ) ‘

=3 () a i+ a8 + Ragt’.
k=11i=1

(5.29)
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We recall that

P(O)gY = i(qé’),qn ol

i=1

Then relation (5.29) becomes

. m n—-1 m )
(I-Po)gi’ = Z[ Z(qo ad ) (a0 ak) =8 — (467, nqé’))]qé”
- i(q Lal)al i +ai + Rugt’.

From the previous relation and the properties of the operator I — Py, we deduce

(1- ( (’)+Z Z(qo a)al anéj)> =0.

k=1i=1

In other words, it is obvious that an(()j ) & Ker(Lo(Ay)) forall j =1,...,m. Then

( D WZ i(% 3Ql(<l)) angj)) ¢ Ker (Lo(Ao)).

Thus, relation (5.32) means that

n-1 m .
2 z z <q(()1),qk )qfﬂk _an(()f) -0
k=1i=1

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(2) In order to find out the coefficients in (5.11), our method is based on expanding
the expression L. (A)(€)) for € near zero. To handle this, we have to expand, first, the
operator-valued function L¢ (1) around € = 0 and so the resulting expression around A =

Ao.
We first recall the formula (see [1] and [3, page 332])

Hy"(z) = Jo(2) +iYo(2),

where Jy and Yj are the Bessel functions

(5.35)
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Thus, in particular, we can write
H"(2) = h1 (%) + by (22) log(2) = hy (22) + (To + 2%h3 (22) ) log(2), (5.37)
for some entire functions h, h,, and hs, with Ty being a real constant.

Combining the last result and the kernel of the operator L¢ (1) (see Proposition 3.1), we
formally obtain the following uniform expansion: for all (A,¢,s) € D;,(Ao) X [0,1] x [0,1],

G t,s) iHél)(MyE( 1)) = 3 Galhtrs)e (5.38)

n=0

with the Taylor coefficients

] " ’ 7 n—k
Go(Lt,s) = ﬁ ZAk( B(t) — B(s),y(t) — )/(S))) ((/3 (s),y (s)))
" k=0

o [y(1) = y(s)] ly'(9)] (5.39)
X — Ay =y6) ).
As an immediate consequence, the following holds:
oo
Le(M) = Z L,(A)€", for € small enough. (5.40)
n=0

By considering Proposition 3.1, it seems clear that each operator L,(1) has kernel G,(A,
t,s). One also gets from (5.39) the following uniform expansion: for (t,s) € [0,1] X [0,1],

Gp(L,1,5) = Zoo (A=20) G (1,5), (5.41)

k=0

where A is in a neighborhood of Ay, with the coefficients

i & [(B(t) = B(s), y(t) = y(s) ]
G -
~anl zozzol' - Dt |y<t>—y<s>|’” ¢
(B (s),y'(s))\""d'(A) dk”’
X( ()] ) Nl ' W E=L oLy =y)1).
(5.42)
Now, for (€,A) in a neighborhood of (0,1¢), we have the following expansions:
Le(A) = i Zwe"()t—)to)kl,i”), (5.43)

n=0 k=0
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where the operator l,i") has kernel G,((")(t,s). We know that A)(€) — Ag as € — 0. Then for
€ small enough, we can replace /) (€) given by (5.11) in relation (5.43), and so we obtain

Le(AY f ( > Fin- k) (5.44)

where
Fn,O = l(()n))
k o (5.45)
-y ( > - A‘“)l}").
i=1 \gj+---+s;=k
Remember that
Le(A7(e)q P (e) =0, Vj=1,..,m. (5.46)
Then by using (5.10) and (5.44) at order n = 1, we can easily write
Lo ()
> > Frikq, = 0. (5.47)
1=0 k=0
Thus, from (5.45) and by simple calculus, we find for n > 2,
() 1 § )
¢ B ) )
q =2 S1t+---tsi=n
n—1 1 n ( ) (548)
+z Z (Fkl kqn P 1 % )"'z (Fkn k‘lo] , 1 ‘JO )]
1=0 k=0 k=1
O

We now give the following lemma which seems useful to prove the fundamental result
in this section.

Lemma 5.3. Let Ho be a bounded neighborhood of Qg in R?. The functions uij(e)(x) =
S(Xj(e))q(i)(e)(y‘l) are jointly analytic in the variables (x,€) € Hox] — €4,€4[.

Proof. The function #;;(€)(x) = S()Alj(e))q(")(e)(y‘l) satisfies the Helmholtz equation
in Q¢ with the boundary conditions #;;(€)|9Qc = 0 and 0, u; j(€)(ye(1)) = g7 (e)(1),
which are jointly analytic with respect to the variables (t,€) € [0,1]X] — €4, €4[. The out-
ward unit normal v to 0Q is given by y.(¢)/|y.(¢)], as a function of t = y~!(x). The
symbol of the operator Ay = 32 + 92 is F(&,&,€) = & +&3. Thus F(ve) = 1 > 0. Since
the surface 0Q¢ is noncharacteristic for Ay, the Cauchy-Kowaleski theorem implies that
ﬁi,j(e)(x) is jointly analytic with respect to (x,€) in {|x — y(£)| < ap}X] — €4,€4[, where
o 1s a positive constant. ]

The following result holds.
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THEOREM 5.4. Let Iy be a bounded neighborhood of Qg in R?. Then there exists a con-
stant €5 > 0 smaller than €, such that an orthonormal basis of eigenfunctions (u;(€)); corre-
sponding to the Ay-group, (A;(€));, in H(Qe) can be chosen to depend holomorphically on
(x,€) € KoX] — €5,€s5[. Moreover, these eigenfunctions satisfy the following uniform expan-
sion: for x € Ko,

() =uy’ + > wlen, (5.49)

nx=1

where the family u(()j ! builds a basis of eigenfunctions of (2.4) associated to A} and normalized

in L*(Qy). The terms u are computed from the Taylor coefficients of q'/) (€).

Proof. Propositions 5.1 and 5.2 imply that there exists an orthonormal basis
(9(€))12i<mj(t,€) € H;m(]o,l[) of Ker(Le (A9 (€))), which is analyticin (t,€) € [0,1]X
] — €4,€4[. We know that S(Xj (€))g'”(e)(y~") builds a basis of eigenfunctions of the eigen-
value problem (2.4) associated to X?(e). Using the Schmidt orthogonalization process
once again, we construct the desired orthonormal basis. Clearly, the functions (#;;(€));j,
introduced in Lemma 5.3, build a basis of the eigenspaces corresponding to the Ao-group,
(Aj(€))j in H{}(Qe). We will now give the asymptotic expansion of these functions when
€ tends to 0. To simplify notations, we drop the subscripts i and j. Integral equations give

1
O = || GO |x=ye O a@)® Yo dt, x %o (5.50)

The perturbed eigenvalue A(€) lies in a small neighborhood of Ay for small values of €.
Then, there exists €5 > 0 (€5 < €4), such that we have the following Taylor expansion:

GME) [x=ye® ) |ye@®) | =GAolx—y®]) |y ()] + D € Grlx,1), (5.51)

k>1

which holds uniformly in x € ¥, and t € [0,1]. We use Proposition 5.2 to write

q(€)(t) = qo(t) + > " q(t), (5.52)

k>1

uniformly in t € [0, 1]. Substituting the last two expansions into (5.50), we find

k
ale) = a(0)+ > € [ > Jol qk_n(t)Gn(x,t)dt}. (5.53)
n=1

k=1

Now we use the Schmidt orthogonalization process to construct from the eigenfunctions
(4j(€)); an orthonormal basis (#;(€)); of the direct sum of eigenspaces associated to the
Ao-group. This method allows us to compute the asymptotic expansion of these functions.

O
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