DUAL SERIES EQUATIONS INVOLVING GENERALIZED
LAGUERRE POLYNOMIALS
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An exact solution is obtained for the dual series equations involving generalized Laguerre
polynomials.

1. Introduction

We consider the following dual series equations:

i AL [(x+ b))

2 T Ta+ntD) = f(x), 0<x<a, (1.1)
S ALY [(x+b)"]
ngor(“_'_—n_'_ﬁ):g(x% a<x< oo, (12)

where a++1>B>1—-m,0+1>a+ >0, mis a positive integer, and 0 < h < oo,
0 < b< oo, and h and b are finite constants. LY [(x + b)"] is a Laguerre polynomial, A,
are unknown coefficients, and f (x) and g(x) are prescribed functions.

Srivastava [5, 6] has solved the following dual series equations:
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S ?ain(j‘i) f), 0<x<a, (13)
n=0

& ALY (x)

Z T(a+n+p) =glx), a<x<eo. (1.4)

The triple series equations (1.3) and (1.4) are a special case of the dual series equations
(1.1) and (1.2) when

h=1, b=0. (1.5)

Recently, Lowndes and Srivastava [3] have solved the triple series equations involving
Laguerre polynomials. References for the solutions of dual and triple series equations
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involving Laguerre polynomials are given in [3]. Connected to this work, references and
solutions for dual series equations are given by Sneddon [4].

The dual series equations (1.1) and (1.2) are new in the literature and have importance
due to the closed-form solution. The results of this note are shown to be in agreement
with those of Srivastava [5]. The analysis is purely formal and no justification had been
given for the change of the order of integrations and summation.

2. Some useful results

In this section, we will discuss some results which are useful in solving dual series equa-
tions (1.1) and (1.2). The orthogonality relation for Laguerre polynomials is given by [2,
page 292, equation (2)] and [2, page 293, equation (2)], from which we have

I'a+n+1)

% x (@) ()] (@) _
Jo x%e LY (x) L,y (x)dx [(nt 1)

Onm> a>—1, (2.1)

where 8, is the Kronecker delta.
We can easily find, with the help of integrals [2, page 293, equation (5)] and [2, page
405, equation (20)], that
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From [1, page 190, equation (27)], we find that

dm

dxm
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x*Li(x). (2.4)

3. Solution of dual series equations (1.1) and (1.2)

We assume that

x+b=X"" f(X""-b) = A(X),

3.1
gX"—b)=g(X), b'=c¢  (at+b) =4, G-D
then the dual series equations (1.1) and (1.2) can be written in the following form:
ALY (X)
gr(mnﬂ = AilX), c<X<d, (3.2)
Z A (X). =g(X), d<X<o. (3.3)
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We assume that

0<X<ec (3.4)

>

S ALY (X)
z I'a+n+1) =X

n=0

Combining the series equations (3.2) and (3.4), we can write the dual series equations

(3.2) and (3.3) in the form

i AaLJ: an(fl)) =F(X), 0<X<d, (3.5)
’i a+/3(+Xn) —q(X), d<X<o, (3.6)

where
AX), 0<X<e o)

F(X)={
f(X), c<X<d.

Multiplying (3.5) by X*(& — X)#*m=2 where m is a positive integer, integrating with re-
spect to X over (0,¢), and interchanging the order of integrations, we find on using (2.2)

that

(a+p+m—1) —a—p-m+1 ¢
> ?«f + /3+m+(2 B Ffﬁ+m - 1) L XHE=X)FM2R(X)dX, 0<&<d,  (38)
n=0

where
a>-1, B+m>1. (3.9
If we now multiply (3.8) by E¥*#*+m~1_ differentiate both sides m times with respect to &

and use formula (2.4), we find that

il (a+p-1) —a—p+1
2 F(a+/3+1(1§) F(/§+m 1)d£mJX“(f X 2F(X)dX, 0<§<d,

(3.10)

where
(3.11)

a>-—1, B+m>1.
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Multiplying (3.6) by e X (X — £)?~%B, integrating with respect to x over (£, ), and in-
terchanging the order of integrations, we find by using formula (2.3) that

i L) el

T(a+B+n) T(o—a-pB+1)

J: e X(X - §)7 % PBg (X)dX, d<E<oo, (3.12)

n=0
where

o+1>a+p>0. (3.13)

The left-hand sides of (3.10) and (3.12) are now identical. Making use of the orthogo-
nality relation (2.1), we find from (3.10) and (3.12) that

4Ly PR (E)dE (2 e LTV (6)G(E)dE
A,,zl"(n+1)[f0 I(B+m—1) d INo—a—-p+1) ]’ (3.14)
where
o B+m—
RO - Jen J X%(E - X)Pm2E(X)dX, (3.15)
G(X) = L e X(X - )7 Bg, (X)dX, (3.16)

provided thata+f+1>1-mando+1>a+f>0.
With the help of (3.7), (3.15) can be written in the form:

Fi(§) = dw“xaf X)Brm- 2ﬁ(XdX+JX“E X)prm- Zf(XdX] <k
(3.17)
When we put

b=0, h=1, f£(X)=0 (3.18)

in the solution of the dual series equations (1.1) and (1.2), we then obtain the solution of
the dual series equations (1.3) and (1.4) and the results are in complete agreement with
those of [5].
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