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We establish the characterizations of metric spaces under compact-covering (resp.,
pseudo-sequence-covering, sequence-covering) π-s-maps by means of cfp-covers (resp.,
sfp-covers, cs-covers) and σ-strong networks.

1. Introduction and definitions

In 1966, Michael [11] introduced the concept of compact-covering maps. Since many
important kinds of maps are compact-covering, such as closed maps on paracompact
spaces, much work has been done to seek the characterizations of metric spaces under
various compact-covering maps, for example, compact-covering (open) s-maps, pseudo-
sequence-covering (quotient) s-maps, sequence-covering (quotient) s-maps, and
compact-covering (quotient) s-maps, see [3, 9, 12, 15, 16]. π-map is another impor-
tant map which was introduced by Ponomarev [13] in 1960 and correspondingly, many
spaces, including developable spaces, weak Cauchy spaces, g-developable spaces, and
semimetrizable spaces, were characterized as the images of metric spaces under certain
quotient π-maps, see [1, 4, 6, 7].

The purpose of this paper is to establish the characterizations of metric spaces un-
der compact-covering (resp., pseudo-sequence-covering, sequence-covering) π-s-maps
by means of cfp-covers (resp., sfp-covers, cs-covers) and σ-strong networks.

In this paper, all spaces are Hausdroff, and all maps are continuous and surjective. N
denotes the set of all natural numbers. ω denotesN∪{0}. τ(X) denotes a topology on X .
For a collection � of subsets of a space X and a map f : X → Y , denote { f (P) : P ∈�}
by f (�). For the usual product space

∏
i∈NXi, πi denotes the projective

∏
i∈NXi onto Xi.

For a sequence {xn} in X , denote 〈xn〉 = {xn : n∈N}.
Definition 1.1. Let f : X → Y be a map.

(1) f is called a compact-covering map [11] if each compact subset of Y is the image
of some compact subset of X .

(2) f is called a sequence-covering map [14] if whenever {yn} is a convergent se-
quence in Y , then there exists a convergent sequence {xn} in X such that each
xn ∈ f −1(yn).
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(3) f is called a pseudo-sequence-covering map [3] if each convergent sequence (in-
cluding its limit point) of Y is the image of some compact subset of X .

(4) f is called an s-map, if f −1(y) is separable in X for any y ∈ Y .
(5) f is called a π-map [13], if (X ,d) is a metric space, and for each y ∈ Y and its open

neighborhood V in Y , d( f −1(y),M \ f −1(V)) > 0.
(6) f is called a π-s-map, if f is both π-map and s-map.
It is easy to check that compact maps on metric spaces are π-s-maps.

Definition 1.2. Let {�n} be a sequence of covers of a space X such that �n+1 refines �n

for each n∈N.
(1)

⋃{�n : n ∈ N} is called a σ-strong network [5] for X if for each x ∈ X , 〈st(x,
�n)〉 is a local network of x in X . If every �n satisfies property P, then

⋃{�n :
n∈N} is called a σ-strong network consisting of P-covers.

(2) {�n} is called a weak development for X if for each x ∈ X , 〈st(x,�n)〉 is a weak
neighborhood base of x in X .

Definition 1.3 [2]. Let X be a space.
(1) Let {xn} be a convergent sequence in X , and P ⊂ X . {xn} is eventually in P if when-

ever {xn} converges to x, then {x}⋃{xn : n≥m} ⊂ P for some m∈N.
(2) Let x ∈ P ⊂ X . P is called a sequential neighborhood of x in X if whenever a se-

quence {xn} in X converges to X , then {xn} is eventually in P.
(3) Let P ⊂ X . P is called a sequentially open subset in X if P is a sequential neighbor-

hood of x in X for any x ∈ P.
(4) X is called a sequential space if each sequentially open subset in X is open.

Definition 1.4 [10]. Let � be a collection of subsets of a space X .
(1) � is called a cfp-cover (i.e., compact-finite-partition cover) of compact subset K

in X if there are a finite collection {Kα : α ∈ J} of closed subsets of K and {Pα :
α∈ J} ⊂� such that K =⋃{Kα : α∈ J} and each Kα ⊂ Pα.

(2) � is called a cfp-cover for X if for any compact subset K of X , there exists a finite
subcollection �� ⊂� such that �� is a cfp-cover of K in X .

(3) � is called an sfp-cover (i.e., sequence-finite-partition cover) for X if for any con-
vergent sequence (including its limit point) K in X , there exists a finite subcollec-
tion �� ⊂� such that �� is a cfp-cover of K in X .

(4) � is called a cs-cover for X , if every convergent sequence in X is eventually in some
element of �.

2. Results

Theorem 2.1. A space X is the compact-covering π-s-image of a metric spaces if and only if
X has a σ-strong network consisting of point-countable cfp-covers.

Proof. To prove the only if part, suppose f : (M,d)→ X is a compact-covering π-s-map,
where (M,d) is a metric space. For each n ∈N, put �n = { f (B(z,1/n)) : z ∈M}, where
B(z,1/n) = {y ∈M : d(z, y) < 1/n}. Obviously, �n+1 refines �n. We claim that

⋃{�n :
n ∈N} is a σ-strong network for X . In fact, for each x ∈ X , and its open neighborhood
U , since f is a π-map, then there exists n ∈ N such that d( f −1(x),M \ f −1(U)) > 1/n.
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We can pick m∈N such that m≥ 2n. If z ∈M with x ∈ f (B(z,1/m)), then

f −1(x)
⋂
B(z,1/m) �= ∅. (2.1)

If B(z,1/m) �⊂ f −1(U), then

d
(
f −1(x),M \ f 1(U)

)≤ 2
m
≤ 1
n

, (2.2)

which is a contradiction. Thus B(z,1/m)⊂ f −1(U), so f (B(z,1/m))⊂U . Hence st(x,�m)
⊂U . Therefore

⋃{�n : n∈N} is a σ-strong network for X .
For each n∈N, let �n be a locally finite open refinement of {B(z,1/n) : z ∈M}. Since

locally finite collections are closed under finite intersections, we can assume that �n+1

refines �n for each n ∈ N. Put �n = f (�n). Obviously, �n+1 refines �n. Since f is an
s-map, each �n is point-countable in X . Because �n refines �n for each n ∈ N, then⋃{�n : n∈N} is also a σ-strong network for X .

We now show that each �n is a cfp-cover for X . Suppose K is compact in X , since
f is compact-covering, then f (L) = K for some compact subset L of M. Since �n is an
open cover of L in M, �n have a finite subcover �L

n. Thus �L
n can be precisely refined

by some finite cover of L consisting of closed subsets of L, denoted by {Lα : α∈ Jn}. Put
�K
n = f (�L

n), since �K
n is precisely refined by closed cover { f (Lα) : α∈ Jn} of K , then �K

n

is a cfp-cover of K in X . Hence each �n is a cfp-cover for X .
To prove the if part, suppose

⋃{�i : i∈N} is a σ-strong network for X consisting of
point-countable cfp-covers. For each i∈N, �i is a point-countable cfp-cover for X . Let
�i = {Pα : α∈Λi}, endow Λi with the discrete topology, then Λi is a metric space. Put

M =
{
α= (αi)∈

∏
i∈N

Λi :
〈
Pαi
〉

forms a local network at some point xα in X
}

, (2.3)

and endowM with the subspace topology induced from the usual product topology of the
collection {Λi : i∈N} of metric spaces, then M is a metric space. Since X is Hausdroff, xα
is unique in X . For each α ∈M, we define f : M → X by f (α) = xα. For each x ∈ X and
i∈N, there exists αi ∈Λi such that x ∈ Pαi . Since

⋃{�i : i∈N} is a σ-strong network for
X , then {Pαi : i∈N} is a local network of x in X . Put α= (αi), then α∈M and f (α)= x.
Thus f is surjective. Suppose α = (αi) ∈M and f (α) = x ∈ U ∈ τ(X), then there exists
n∈N such that Pαn ⊂U . Put

V = {β ∈M : the nth coordinate of β is αn
}

, (2.4)

then V is an open neighborhood of α in M, and f (V)⊂ Pαn ⊂U . Hence f is continuous.
For each α,β ∈M, we define

d(α,β)=



0, α= β,

max
{

1/k : πk(α) �= πk(β)
}

, α �= β,
(2.5)

then d is a distance on M. Because the topology of M is the subspace topology induced
from the usual product topology of the collection {Λi : i ∈N} of discrete spaces, thus d
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is a metric on M. For each x ∈U ∈ τ(X), there exists n∈N such that st(x,�n)⊂U . For
α ∈ f −1(x), β ∈M, if d(α,β) < 1/n, then πi(α) = πi(β) whenever i ≤ n. So x ∈ Pπn(α) =
Pπn(β). Thus,

f (β)∈
⋂
i∈N

Pπi(β) ⊂ Pπn(β) ⊂U. (2.6)

Hence

d
(
f −1(x),M \ f −1(U)

)≥ 1
n
. (2.7)

Therefore f is a π-map.
For each x ∈ X , it follows from the point-countable property of �i that {α∈ Λi : x ∈

Pα} is countable. Put

L=
(∏
i∈N

{
α∈Λi : x ∈ Pα

})⋂
M, (2.8)

then L is a hereditarily separable subspace ofM, and f −1(x)⊂ L. Thus f −1(x) is separable
in M, that is, f is an s-map.

We will prove that f is compact-covering. Suppose K is compact in X . Since each
�n is a cfp-cover for X , there exists finite subcollection �K

n such that it is a cfp-cover
of K in X . Thus there are a finite collection {Kα : α ∈ Jn} of closed subsets of K and
{Pα : α∈ Jn} ⊂�K

n such that K =⋃{Kα : α∈ Jn} and each Kα ⊂ Pα. Obviously, each Kα is
compact in X . Put

L=
{(
αi
)

: αi ∈ Ji,
⋂
i∈N

Kαi �= ∅
}

, (2.9)

then
(i) L is compact in M.
In fact, for all (αi) �∈ L,

⋂
i∈NKαi =∅. From

⋂
i∈NKαi =∅, there exists n0 ∈ N such

that
⋂n0
i=1Kαi =∅. Put

W = {(βi) : βi ∈ Ji, βi = αi, 1≤ i≤ n0
}

, (2.10)

then W is an open neighborhood of (αi) in
∏

i∈N Ji, and W
⋂
L=∅. Thus L is closed in∏

i∈N Ji. Since
∏

i∈N Ji is compact in
∏

i∈NΛi, L is compact in M.
(ii) L⊂M, f (L)= K .
In fact, for all (αi)∈ L,

⋂
i∈NKαi �= ∅. Pick x ∈⋂i∈NKαi , then 〈Pαi〉 is a local network

of x in X , so (αi)∈M. This implies L⊂M.
For all x ∈ K , for each i∈N, pick αi ∈ Ji such that x ∈ Kαi . Thus f ((αi))= x, so K ⊂

f (L). Obviously, f (L)⊂ K . Hence f (L)= K .
In a word, f is compact-covering. �

Corollary 2.2. A space X is the compact-covering, quotient, and π-s-image of a metric
space if and only if X has a weak-development consisting of point-countable cfp-covers.
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Proof. To prove the only if part, suppose X is the compact-covering, quotient, and π-
s-image of a metric space M. From Theorem 2.1, X has a σ-strong network consisting
of point-countable cfp-covers

⋃{�n : n ∈ N}. For each x ∈ X , st(x,�n) is a sequential
neighborhood of x in X . Obviously, X is a sequential space. Thus st(x,�n) is a weak
neighborhood base of x in X . Hence {�n} is a weak-development for X .

To prove the if part, suppose X has a weak development consisting of point-countable
cfp-covers. From Theorem 2.1,X is the image of a metric space under a compact-covering
π-s-map f . Obviously, X is sequential. By [8, Proposition 2.1.16], f is quotient. �

Similar to the proofs of Theorem 2.1 and Corollary 2.2, we have the following theo-
rem.

Theorem 2.3. A space X is the pseudo-sequence-covering π-s-image of a metric space if and
only if X has a σ-strong network consisting of point-countable sfp-covers.

Corollary 2.4. A space X is the pseudo-sequence-covering, quotient, and π-s-image of
a metric space if and only if X has a weak-development consisting of point-countable sfp-
covers.

Theorem 2.5. A space X is the sequence-covering π-s-image of a metric space if and only if
X has a σ-strong network consisting of point-countable cs-covers.

Proof. To prove the only if part, suppose f : (M,d)→ X is a sequence-covering π-s-map,
where (M,d) is a metric space. Similar to the proof of Theorem 2.1, we can show that⋃{�n : n ∈N} is a σ-strong network consisting of point-countable covers. It suffices to
show that each �n is a cs-cover for X . Suppose {xn} converges to x ∈ X in X . Since f
is sequence-covering, then there exists a convergent sequence {zi} such that each zi ∈
f −1(xi). Suppose {zi} → z, then z ∈ f −1(x) and z ∈ B for some B ∈ �n. Thus {zi} is
eventually in B, so {xi} is eventually in f (B)∈�n. Hence each �n is a cs-cover for X .

To prove the if part, suppose
⋃{�i : i∈N} is a σ-strong network consisting of point-

countable cs-covers for X . For each i ∈ N, �i is a point-countable cs-cover for X . Let
�i = {Pα : α∈Λi}. Similar to the proof of Theorem 2.1, we can show that f is a π-s-map.
It suffices to show that f is sequence-covering. Suppose {xn} converges to x inX . For each
i∈N, since �i is a cs-cover for X , then there exists Pαi ∈�i such that {xn} is eventually in
Pαi . For each n∈N, if xn ∈ Pαi , let αin = αi; if xn �∈ Pαi , pick αin ∈ Λi such that xn ∈ Pαin.
Thus there exists ni ∈N such that αin = αi for all n > ni. So {αin} converges to αi. For each
n∈N, put

βn =
(
αin
)∈∏

i∈N
Λi, (2.11)

then (βn)∈ f −1(xn) and {βn} converges to x. Thus f is sequence-covering. �

Similar to the proof of Corollary 2.2, we have the following corollary.

Corollary 2.6. A space X is the sequence-covering, quotient, and π-s-image of a metric
space if and only if X has a weak-development consisting of point-countable cs-covers.

We give examples to illustrate the theorems of this paper.
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Example 2.7. Let Z be the topological sum of the unit interval [0,1], and the collection
{S(x) : x ∈ [0,1]} of 2ω convergent sequence S(x). Let X be the space obtained from Z
by identifying the limit point of S(x) with x ∈ [0,1], for each x ∈ [0,1]. Then, from [8,
Example 2.9.27], or see [3, Example 9.8], we have the following facts.

(1) X is the compact-covering, quotient compact image of a locally compact metric
space.

(2) X has no point-countable cs-network.
The above facts together with [9, Theorem 1] yield the following conclusion: compact-

covering (quotient) π-s-images of metric spaces are not sequence-covering (quotient)
π-s-images of metric spaces.

Example 2.8. Let X be a sequential fan Sω (see [8, Example 1.8.7]), then X is a Fréchet
and ℵ0-space. So X is the sequence-covering s-image of a metric space. Because X is
not g-first countable, thus X is not the pseudo-sequence-covering π-image of a metric
space. Hence the following holds: sequence-covering (resp., pseudo-sequence-covering)
s-images of metric spaces are not sequence-covering (resp., pseudo-sequence-covering)
π-s-images of metric spaces.

Example 2.9. Let X be a Gillman-Jerison space ψ(N) (see [8, Example 1.8.4]). Since X is
developable, then X is the sequence-covering, quotient π-image of a metric space by [10,
Corollary 3.1.12]. But X has no point-countable cs∗-networks. Then, it follows from [8,
Theorem 2.7.5] that X is not the pseudo-sequence-covering s-image of a metric space.
Thus,

(1) sequence-covering (quotient) π-images of metric spaces are not sequence-
covering (quotient) π-s-images of metric spaces,

(2) pseudo-sequence-covering (quotient) π-images of metric spaces are not pseudo-
sequence-covering (quotient) π-s-images of metric spaces.
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