
ON INJECTIVE L-MODULES

PAUL ISAAC

Received 30 June 2004 and in revised form 18 November 2004

The concepts of free modules, projective modules, injective modules, and the like form
an important area in module theory. The notion of free fuzzy modules was introduced
by Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameri
introduced the concept of projective and injective L-modules. In this paper, we give an
alternate definition for injective L-modules and prove that a direct sum of L-modules is
injective if and only if each L-module in the sum is injective. Also we prove that if J is an

injective module and µ is an injective L-submodule of J , and if 0→ µ
f−→ ν

g−→ η→ 0 is a
short exact sequence of L-modules, then ν� µ⊕η.

1. Introduction

Though the notion of a fuzzy set was introduced by L. A. Zadeh in 1965, its application
to algebraic concepts started only in 1971 when A. Rosenfeld introduced fuzzy subgroups
of a group. Tremendous and rapid growth of fuzzy algebraic concepts resulted in a vast
literature. The book of Mordeson and Malik [7] gives an account of all these up to 1998.
The notion of L-modules as an extension of classical module theory is available in this
book. However, there are many concepts in abstract algebra which are to be analyzed
in the fuzzy context. The notion of free fuzzy modules was introduced by Muganda [8]
as an extension of free modules in the fuzzy context. The concept of a free L-module is
available in [7]. Zahedi and Ameri [9] introduced the concepts of fuzzy projective and
injective modules.

In our earlier paper [5], we introduced an alternate definition for a projective L-
module and proved some related results. In this paper, in Section 2, we give the essential
preliminaries and in Section 3, we give an alternate definition for an injective L-module
and prove some results using this definition. Throughout this paper, unless otherwise
stated, L(∨,∧,1,0) represents a complete Brouwerian lattice with maximal element “1”
and minimal element “0;” R a ring with unity “1” and M a left module over R. “∨” de-
notes the supremum and “∧” the infimum in L. We call L a regular lattice if a∧ b > 0 for
all a,b > 0 in L. “⊆” denotes the inclusion and “⊂” the proper inclusion. The set of all
L-subsets of M, that is, the set of all functions from M to L, is denoted by LM .
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For x ∈M, a∈ L, the L-subset which takes the value a at x and 0 elsewhere is denoted
by a{x}. That is,

a{x}(y)=

a if y = x,

0 if y 	= x. (1.1)

2. Preliminaries

In this section, we review some definitions and results which will be used later. For details,
reference may be made to Mordeson and Malik [7], for preliminaries regarding lattices
Birkhoff [1], and for theory of modules, Goodearl and Warfield [2] and Hungerford [3].

Definition 2.1 (see [7]). For µ,ν∈ LM , define µ+ ν and −µ as follows.
For x ∈M,

(µ+ ν)(x)=∨{µ(y)∧ ν(z) : y,z ∈M, y + z = x}, (−µ)(x)= µ(−x). (2.1)

Also for an arbitrary family µi ∈ LM , i∈ I , of L-subsets of M, define

∑
i∈I
µi(x)=∨

{
∧
i∈I
µi
(
xi
)

: xi ∈M, i∈ I ,
∑
i∈I
xi = x

}
, (2.2)

where in the expression x =∑i∈I xi, at most finitely many xi’s are not equal to 0.

Definition 2.2 (see [7]). For µ∈ LM , define the following:
(i) µ∗= {x ∈M : µ(x) > 0}, called the support of µ,

(ii) for a ∈ L, µa = {x ∈M : µ(x) ≥ a}, called the a-cut or a-level subset of µ, and
µ>a = {x ∈M : µ(x) > a}, called the strict a-cut or strict a-level subset of µ.

Definition 2.3 (see [7]). Let f be a mapping from X into Y , and let µ ∈ LX and ν ∈ LY .
The L-subsets f (µ)∈ LY and f −1(ν)∈ LX , defined by, for all y ∈ Y ,

f (µ)(y)=

∨

{
µ(x) : x ∈ X , f (x)= y

}
if f −1(y) 	= φ,

0 otherwise,
(2.3)

and for all x ∈ X ,

f −1(ν)(x)= ν
(
f (x)

)
, (2.4)

are called, respectively, the image of µ under f and the preimage of ν under f .

Definition 2.4 (see [7]). Let µ∈ LM . Then µ is said to be an L-submodule of M if
(i) µ(0)= 1,

(ii) µ(x+ y)≥ µ(x)∧µ(y) for all x, y ∈M,
(iii) µ(rx)≥ µ(x) for all r ∈ R, for all x ∈M.
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Saying µ is a left L-module means that µ is an L-submodule of some left module M
over a ring R. The set of all L-submodules of M is denoted by L(M).

Remark 2.5. We note from [7] that if µ,η ∈ L(M), then µ+ η ∈ L(M). Also if µi ∈ L(M),
i∈ I , then

∑
i∈I µi ∈ L(M). From [6], we see that µ∈ L(M) if and only if µa is anR-module

for all a∈ L.

Definition 2.6 (see [7]). Let M and N be R-modules and let µ∈ L(M) and ν∈ L(N). An
isomorphism f of M onto N is called a weak isomorphism of µ into ν if f (µ) ⊆ ν. If f
is a weak isomorphism of µ into ν, then say that µ is weakly isomorphic to ν and write
µ� ν.

An isomorphism f of M onto N is called an isomorphism of µ onto ν if f (µ)= ν. If f
is an isomorphism of µ onto ν, then say that µ is isomorphic to ν and write µ∼= ν.

Definition 2.7 (see [4]). Let Ai, i ∈ Z, be R-modules and let µi ∈ L(Ai). Suppose that

··· fi−1−−→ Ai−1
fi−→ Ai

fi+1−−→Ai+1
fi+2−−→ ··· is an exact sequence of R-modules. Then the se-

quence ··· fi−1−−→ µi−1
fi−→ µi

fi+1−−→ µi+1
fi+2−−→ ··· of L-modules is said to be exact if, for all

i∈ Z, the set of integers,
(i) fi+1(µi)⊆ µi+1,

(ii) fi(µi−1)(x) > 0 if x ∈ Ker fi+1 and fi(µi−1)(x)= 0 if x /∈ Ker fi+1.

Definition 2.8 (see [4]). Let 0→ A
f−→ B

g−→ C→ 0 be a short exact sequence of R-modules.
Let µ∈ L(A), η ∈ L(B), and ν∈ L(C). Then an exact sequence of L-modules of the form

0→ µ
f−→ η

g−→ ν→ 0 is called a short exact sequence of L-modules.

Definition 2.9 (see [4]). Let

0 A
f

φ

B
g

ψ

C

ξ

0

0 A′
f ′

B′
g′

C′ 0

(2.5)

be two isomorphic short exact sequences of R-modules with the given isomorphisms φ,
ψ, and ξ. Let µ∈ L(A), ν∈ L(B), η ∈ L(C), µ′ ∈ L(A′), ν′ ∈ L(B′), and η′ ∈ L(C′) be such
that

0 µ
f

ν
g

η 0, (2.6)

0 µ′
f ′

ν′
g′

η′ 0 (2.7)

are short exact sequences of L-modules. Then the sequence (2.6) is said to be weakly
isomorphic to the sequence (2.7) if ϕ(µ)⊆ µ′, ψ(ν)⊆ ν′, and ξ(η)⊆ η′.

The sequence (2.6) is said to be isomorphic to the sequence (2.7) if ϕ(µ)= µ′, ψ(ν)=
ν′, and ξ(η)= η′.
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Definition 2.10 (see [7]). Let µ,η,ν∈ L(M). Then µ is said to be the direct sum of η and
ν if

(i) µ= η+ ν,
(ii) η∩ ν= 1{0}.
In this case, write µ= η⊕ ν.

Definition 2.11 (see [4]). Let A and B be two R-modules, µ ∈ L(A), η ∈ L(B). Consider
the direct sumA⊕B. Extend the definition of µ and η toA⊕B to get µ′ and η′ in L(A⊕B)
as follows:

µ′(x)=

µ(x) if x ∈ A,

0 if x /∈ A,
i.e., µ′(a,b)=


µ(a) if b = 0,

0 if b 	= 0,
for (a,b)∈ A⊕B,

η′(x)=

η(x) if x ∈ B,

0 if x /∈ B,
i.e., η′(a,b)=


η(b) if a= 0,

0 if a 	= 0,
for (a,b)∈A⊕B.

(2.8)

Then µ′,η′ ∈ L(A⊕B). Moreover

(
µ′ ∩η′)(x)= µ′(x)∧η′(x)=


1 if x = 0,

0 if x 	= 0.
(2.9)

Therefore µ′ +η′ is in fact a direct sum and is denoted by µ⊕η.

Remark 2.12. Note that

(µ⊕η)(a,b)

= (µ′ +η′)(a,b)

=∨{µ′(a1,b1
)∧η′(a2,b2

)
:
(
a1,b1

)
,
(
a2,b2

)∈A⊕B;
(
a1,b1

)
+
(
a2,b2

)= (a,b)
}

= µ′(a,0)∧η′(0,b)= µ(a)∧η(b).
(2.10)

Definition 2.13 (see [7]). Let µ,µi ∈ L(M), for all i∈ I , then µ is said to be the direct sum
of {µi : i∈ I}, denoted by

⊕
i∈I µi, if

(i) µ=∑i∈I µi,
(ii) µj ∩

∑
i∈I−{ j}µi = 1{0} for all j ∈ I .

3. Injective L-modules

The concept of free fuzzy modules was introduced by Muganda [8], which is later gener-
alized to that of free L-modules (cf. [7]). Zahedi and Ameri [9] introduced the concepts
of fuzzy projective and injective modules. In this section, we give an alternate definition
for injective L-modules and prove that a direct sum of L-modules is injective if and only
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if each summand in the sum is injective. Also we prove that if µ∈ L(J) is an injective L-

module, and if 0→ µ
f−→ ν

g−→ η→ 0 is a short exact sequence of L-modules, then ν� µ⊕η.

Definition 3.1. Let J be an injective R-module and let µ ∈ L(J). Then µ is said to be an
injective L-module if for R-modules A, B, and η ∈ L(A), ν∈ L(B), g any monomorphism
from A to B such that g(η) = ν on g(A), and f : A→ J any R-module homomorphism
such that f (η) = µ on f (A), there exists an R-module homomorphism h : B → J such
that hg = f and h(ν)⊆ µ.

From the crisp module theory, it is known that an R-module J is injective if and only

if every short exact sequence 0→ J
f−→ B

g−→ C→ 0 splits so that B ∼= J ⊕C. An analogous
result exists in the case of L-modules.

To prove this we need the following theorem.

Theorem 3.2 (see [4]). Let 0→ A1
f−→ B

g−→ A2 → 0 be a short exact sequence of R-modules

and let µ1 ∈ L(A1), µ2 ∈ L(A2), η ∈ L(B) be such that 0 → µ1
f−→ η

g−→ µ2 → 0 is a short
exact sequence of L-modules. If there exists an R-module homomorphism k : B → A1 with
k f = IA1 , the identity map on A1, such that k(η) ⊆ µ1, then the given short exact sequence

0→ µ1
f−→ η

g−→ µ2 → 0 is weakly isomorphic to the short exact sequence 0→ µ1
i−→ µ1⊕ µ2

π−→
µ2 → 0. In particular η � µ1⊕µ2.

Theorem 3.3. Let J be an injective module and µ∈ L(J) an injective L-module. If 0→ J
f−→

B
g−→ C→ 0 is a short exact sequence of R-modules and ν∈ L(B) and η ∈ L(C) are such that

0→ µ
f−→ ν

g−→ η→ 0 is a short exact sequence of L-modules where f (µ)= ν on f (J), then ν is
weakly isomorphic to µ⊕η. That is, ν� µ⊕η.

Proof. Since J is injective, it is well known that any short exact sequence 0→ J
f−→ B

g−→
C → 0 splits and B ∼= J ⊕C, and the sequence 0→ J

f−→ B
g−→ C → 0 is isomorphic to 0→

J
i−→ J ⊕C π−→ C→ 0. Now since µ ∈ L(J) is an injective L-module, and since f (µ) = ν on

f (J), from the definition, we get h(ν)⊆ µ. Thus there exists a homomorphism h : B→ J

such that h f = IJ and h(ν)⊆ µ. Then, by the above theorem, 0→ µ
f−→ ν

g−→ η→ 0 is weakly

isomorphic to 0→ µ
i−→ µ⊕η π−→ η→ 0, in particular ν� µ⊕η. �

In the crisp theory, we have the theorem that a direct sum of modules is injective if
and only if each summand is injective. The same is true in the fuzzy case.

Theorem 3.4. LetQα, α∈ I be injectiveR-modules and µα ∈ L(Qα), α∈ I . Then
⊕

α∈I µα ∈
L(
⊕

α∈I Qα) is injective if and only if µα is injective for all α∈ I .
Proof. As we have already mentioned, the module

⊕
α∈I Qα is injective if and only if Qα

is injective for all α ∈ I . Let iα : Qα →
⊕

α∈I Qα and πα :
⊕

α∈I Qα → Qα be, respectively,
the canonical injection and projection. Obviously

⊕
α∈I µα ∈ L(

⊕
α∈I Qα) and suppose⊕

α∈I µα is an injective L-submodule of
⊕

α∈I Qα. We prove that µα is injective for all
α∈ I . LetA, B be R-modules, η ∈ L(A), ν∈ L(B), g any monomorphism fromA to B such
that g(η)= ν on g(A). For α∈ I if fα : A→Qα is any R-module homomorphism such that
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fα(η)= µα on fα(A), then we have to show that there exists an R-module homomorphism
hα : B→Qα such that hαg = fα and hα(ν)⊆ µα,

0 A
g

fα

B

hα

Qα

iα

⊕
Qα

πα

(3.1)

Let
⊕

α∈I Qα be injective. Consider iα fα : A →⊕
α∈I Qα. First of all, we show that

(iα fα)(η)=⊕α∈I µα on (iα fα)(A).
We have (iα fα)(η)∈ L(

⊕
α∈I Qα), and if x =⊕xα ∈ (iα fα)(A)⊆⊕α∈I Qα where xα ∈

Qα (α ∈ I), then x = (iα fα)(a) for some a ∈ A. That is, x = iα( fα(a)) where fα(a) ∈ Qα.
Then

(
iα fα

)
(η)(x)=∨{η(a′) : a′ ∈A;

(
iα fα

)
(a′)= x}

=∨{η(a′) : a′ ∈A;
(
iα fα

)
(a′)= (iα fα)(a)

}
=∨{η(a′) : a′ ∈A; iα

(
fα(a′)

)= iα( fα(a)
)}

=∨{η(a′) : a′ ∈A; fα(a′)= fα(a)
}
.

(3.2)

Also

⊕
α∈I

µα(x)=∨
{
∧µα

(
xα
)

: xα ∈Qα, α∈ I ; x =
∑
α∈I

xα

}

= µα
(
fα(a)

) (
since the supremum is attained for the direct sum

decomposition x = 0 + 0 + ···+ 0 + fα(a) + 0 + ···+ 0
)

= fα(η)
(
fα(a)

)=∨{η(a′) : a′ ∈ A; fα(a′)= fα(a)
}
.

(3.3)

From (3.2) and (3.3), we get (iα fα)(η)(x)=⊕α∈I µα(x) for all x ∈ (iα fα)(A).
Now since

⊕
α∈I µα is injective, we get that iα fα : A→⊕

α∈I Qα has an extension k : B→⊕
α∈I Qα satisfying kg = iα fα and k(ν)⊆⊕α∈I µα. Take hα = παk. Then hα : B→Qα is an

extension of fα : A→Qα satisfying hαg = fα. It remains to prove that hα(ν)⊆ µα.
We have k(ν)⊆⊕α∈I µα. Therefore

πα
(
k(ν)

)⊆ πα
(⊕

α∈I
µα

)
. (3.4)
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Now for xα ∈Qα (α∈ I),(
πα

(⊕
α∈I

µα

))(
xα
)

=∨
{⊕

α∈I
µα(y) : y ∈

⊕
α∈I

Qα; πα(y)= xα
}

= µα
(
xα
) (

since the supremum is attained for y = (0, . . . ,0,xα,0, . . . ,0
))
.

(3.5)

Thus πα(
⊕

α∈I µα) = µα, and so from (3.4), we get (παk)(ν) ⊆ µα. That is, hα(ν) ⊆ µα as
required.

Conversely, suppose that µα is injective for all α∈ I . We prove that
⊕

α∈I µα is injective,

0 A

f

πα f

g
B

kα

kQα

iα

⊕
Qα

πα

(3.6)

SinceQα is injective for all α∈ I , we have that
⊕

α∈I Qα is injective. LetA, B be R-modules,
η ∈ L(A), ν∈ L(B), g any monomorphism from A to B such that g(η)= ν on g(A), and
suppose that f : A→⊕

α∈I Qα is a module homomorphism satisfying f (η) =⊕α∈I µα
on f (A). Since f (η) =⊕α∈I µα on f (A), we get that (πα f )(η) = πα(

⊕
α∈I µα) = µα on

(πα f )(A). This together with the fact that each µα is injective imply that each πα f : A→
Qα admits an extension kα : B → Qα such that πα f = kαg. These homomorphisms kα
give k : B →⊕

α∈I Qα such that παk = kα and for each x ∈ A, (παk)(g(x)) = kα(g(x)) =
(πα f )(x) for all α∈ I . Therefore k(g(x))= f (x) for all x ∈A. Therefore k is an extension
of f such that kg = f and also kα(ν)⊆ µα. Now

kα(ν)⊆ µα =⇒
(
παk

)
(ν)⊆ µα =⇒ πα

(
k(ν)

)⊆ µα = πα(⊕
α∈I

µα
)
. (3.7)

Since this is true for every α∈ I , it follows that k(ν)⊆⊕α∈I µα. This completes the proof.
�
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