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A fixed point theorem concerning probabilistic contractions satisfying an implicit rela-
tion, which generalizes a well-known result of Hadžić, is proved.

1. Preliminaries

In this section we recall some useful facts from the probabilistic metric spaces theory. For
more details concerning this problematic we refer the reader to the books [1, 3, 9].

1.1. t-norms. A triangular norm (shortly t-norm) is a binary operationT : [0,1]×[0,1]→
[0,1] := I which is commutative, associative, monotone in each place, and has 1 as the
unit element.

Basic examples are TL : I × I → I , TL(a,b) =Max(a+ b− 1,0) (Łukasiewicz t-norm),
TP(a,b) = ab, and TM(a,b) = Min{a,b}. We also mention the following families of t-
norms:

(i) Sugeno-Weber family (TSW
λ )λ∈(−1,∞), defined by TSW

λ =max(0,(x + y− 1 + λxy)/
(1 + λ)),

(ii) Domby family (TD
λ )λ∈(0,∞), defined by TD

λ = (1 + (((1 − x)/x)λ + ((1 − y)/
y)λ)1/λ)−1,

(iii) Aczel-Alsina family (TAA
λ )λ∈(0,∞), defined by TAA

λ = e−(|logx|λ+|log y|λ)1/λ
.

Definition 1.1 [2, 3]. It is said that the t-norm T is of Hadžić-type (H-type for short) and
T ∈� if the family {Tn}n∈N of its iterates defined, for each x in [0,1], by

T0(x)= 1, Tn+1(x)= T
(
Tn(x),x

)
, ∀n≥ 0, (1.1)

is equicontinuous at x = 1, that is,

∀ε ∈ (0,1) ∃δ ∈ (0,1) such that x > 1− δ =⇒ Tn(x) > 1− ε, ∀n≥ 1. (1.2)

There is a nice characterization of continuous t-norms T of the class � [8].
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(i) If there exists a strictly increasing sequence (bn)n∈N in [0,1] such that limn→∞ bn=
1 and T(bn,bn)= bn ∀n∈N , then T is of Hadžić-type.

(ii) If T is continuous and T ∈�, then there exists a sequence (bn)n∈N as in (i).
The t-norm TM is an trivial example of a t-norm of H-type, but there are t-norms T

of Hadžić-type with T �= TM (see, e.g., [3]).

Definition 1.2 [3]. If T is a t-norm and (x1,x2, . . . ,xn) ∈ [0,1]n (n ∈ N), then Tn
i=1xi is

defined recurrently by 1, if n = 0 and Tn
i=1xi = T(Tn−1

i=1 xi,xn) for all n ≥ 1. If (xi)i∈N is a
sequence of numbers from [0,1], then T∞i=1xi is defined as limn→∞Tn

i=1xi (this limit always
exists) and T∞i=nxi as T∞i=1xn+i. In fixed point theory in probabilistic metric spaces there are
of particular interest the t-norms T and sequences (xn) ⊂ [0,1] such that limn→∞ xn = 1
and limn→∞T∞i=1xn+i = 1. Some examples of t-norms with the above property are given in
the following proposition.

Proposition 1.3 [3]. (i) For T ≥ TL the following implication holds:

lim
n→∞T

∞
i=1xn+i = 1⇐⇒

∞∑
n=1

(
1− xn

)
<∞. (1.3)

(ii) (1.3) also holds for T = TSW
λ .

(iii) If T ∈ �, then for every sequence (xn)n∈N in I such that limn→∞ xn = 1, one has
limn→∞T∞i=1xn+i = 1.

(iv) If T ∈ {TD
λ , TAA

λ }, then limn→∞T∞i=1xn+i = 1⇔∑∞
n=1(1− xn)λ <∞.

Note [4, Remark 13] that if T is a t-norm for which there exists a sequence (xn)⊂ [0,1]
such that limn→∞ xn = 1 and limn→∞T∞i=1xn+i = 1, then supt<1T(t, t)= 1.

1.2. Menger spaces and generalized Menger spaces. Probabilistic contractions of Sehgal
type. Let ∆+ be the class of distance distribution functions [9], that is, the class of all
functions F : [0,∞)→ [0,1] with the properties

(a) F(0)= 0;
(b) F is nondecreasing;
(c) F is left continuous on (0,∞).

D+ is the subset of ∆+ containing the functions F which also satisfy the condition
limx→∞F(x)= 1.

A special element of D+ is the function ε0, defined by

ε0(t)=

0, if t = 0,

1, if t > 0.
(1.4)

A sequence (Fn) in ∆+ is said to be weakly convergent to F ∈ ∆+ (shortly Fn
w−−→F) if

limn→∞Fn (x)= F(x) for every continuity point x of F.
If X is a nonempty set, a mapping F : X ×X → ∆+ is called a probabilistic distance on X

and F(x, y) is denoted by Fxy .
The triple (X ,F,T), where X is a nonempty set, F is a probabilistic distance on X ,

and T is a t-norm, is called a generalized Menger space (or a Menger space in the sense of
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Schweizer and Sklar) if the following conditions hold:

Fxy = ε0 ⇐⇒ x = y, (1.5)

Fxy = Fyx, ∀x, y ∈ X , (1.6)

Fxy(t+ s)≥ T
(
Fxz(t),Fzy(s)

)
, ∀x, y,z ∈ X , ∀t,s > 0. (1.7)

A Menger space is a generalized Menger space with the property Range (F)⊂D+.
If (X ,F,T) is a generalized Menger space with supt<1T(t, t)= 1, then the family

{
Uε,λ

}
ε>0,λ∈(0,1), Uε,λ =

{
(x, y)∈ X ×X : Fxy(ε) > 1− λ

}
(1.8)

is a base for a metrizable uniformity on X , named the F-uniformity and denoted by �F .
�F naturally determines a topology on X , called the F-topology:

O ∈�F ⇐⇒∀x ∈O ∃ε > 0, ∃λ∈ (0,1) such that Uε,λ(x)⊂O. (1.9)

�F is also generated by the family {Vδ}δ>0 where Vδ :=Uδ,δ . In what follows the topo-
logical notions refer to the F-topology. Thus, a sequence (xn)n∈N is F-convergent to x ∈ X
if for all ε > 0, λ∈ (0,1) there exists k ∈N such that Fxxn(ε) > 1− λ for all n≥ k.

Definition 1.4. A sequence (xn)n∈N in X is called F-Cauchy if for each ε > 0, λ ∈ (0,1)
there exists k ∈N such that Fxrxs(ε) > 1− λ for all s≥ r ≥ k.

Probabilistic contractions were first defined and studied by V. M. Sehgal in his doctoral
dissertation at Wayne State University.

Definition 1.5 [10]. Let S be a nonempty set and let F be a probabilistic distance on S.
A mapping f : S→ S is called a probabilistic contraction (or B-contraction) if there exists
k ∈ (0,1) such that

F f (p) f (q)(kt)≥ Fpq(t), ∀p,q ∈ S, ∀t > 0. (1.10)

In [10] it is showed that any contraction map on a complete Menger space in which the
triangle inequality is formulated under the strongest triangular norm TM has a unique
fixed point. In [11] Sherwood showed that one can construct a complete Menger space
under TL and a fixed-point-free contraction map on that space. Hadžić [2] introduced the
class � which have the property that Sehgal’s result can be extended to any continuous
triangular norm in that class. Completing the result of Hadžić, Radu solved the problem
of the existence of fixed points for probabilistic contractions in complete Menger spaces
(S,F,T) with T continuous. Namely, the following theorem holds.

Theorem 1.6 [7]. Every B-contraction in a complete Menger space (S,F,T) with T contin-
uous has a (unique) fixed point if and only if T is of Hadžić-type.

However, under some additional growth conditions on the probabilistic metric F one
may replace the t-norm of H-type in the above theorem, as in Tardiff ’s paper [13].
Corollary 2.6 in our paper gives another result in this respect.
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2. Main results

The main result of this paper is Theorem 2.4 concerning contractive mappings satisfying
an implicit relation similar to that in [6, 12]. This theorem generalizes the mentioned
result of Hadžić (see Corollary 2.7). Note that we work in generalized Menger spaces.

We begin with an auxiliary result, which is formulated as follows.

Lemma 2.1. Let (X ,F,T) be a generalized Menger space and let (xn)n∈N be a sequence in X
such that, for some k ∈ (0,1),

Fxnxn+1 (kt)≥ Fxn−1xn(t), ∀n≥ 1, ∀t > 0. (2.1)

If there exists γ > 1 such that

lim
n→∞T

∞
i=nFx0x1

(
γi
)= 1, (2.2)

then (xn)n∈N is an F-Cauchy sequence.

Proof. First note [4] that if the condition limn→∞T∞i=nFx0x1 (γi) = 1 holds for some γ =
γ0 > 1, then it is satisfied for all γ > 1. Indeed, if limn→∞T∞i=nFx0x1 (γi0)= 1 and γ ≥ γ0, then
limn→∞T∞i=nFx0x1 (γi) ≥ limn→∞T∞i=nFx0x1 (γi0) = 1 and therefore limn→∞T∞i=nFx0x1 (γi) = 1,
while if γ < γ0, then γs > γ0, for some s ∈ N , and now limn→∞T∞i=n+sFx0x1 (γi) ≥
limn→∞T∞i=nFx0x1 (γi0)= 1.

We will prove that

∀ε > 0, ∃n0 = n0(ε) : Fxnxn+m(ε) > 1− ε, ∀n≥ n0, ∀m∈N. (2.3)

Let µ∈ (k,1) and let δ = k/µ. From the above remark it follows that

lim
n→∞T

∞
i=nFx0x1

(
1
µi

)
= 1. (2.4)

Let ε > 0 be given and yi := Fx0x1 (1/µi). From limn→∞T∞i=1yn+i = 1 it follows that there
exists n1 ∈N such that Tm

i=1yn+i−1 > 1− ε, for all n≥ n1, for all m∈N .
Since the series

∑∞
n=1 δ

n is convergent, there exists n2 ∈N such that
∑∞

n=n2
δn < ε.

Let n0 =max{n1,n2}. Then, for all n≥ n0 and m∈N , we have

Fxnxn+m(ε)≥ Fxnxn+m

(n+m−1∑
i=n

δi
)

≥ Tm−1
i=0 Fxn+ixn+i+1

(
δn+i)≥ Tm−1

i=0 yn+i > 1− ε,

(2.5)

where the last “≥” inequality follows from Fxsxs+1 (δs) = Fxsxs+1 (k/µ)s ≥ Fx0x1 (1/µs) for all
s≥ 1, which immediately can be proved by induction. �

In the following we deal with the class Φ of all continuous functions ϕ : [0,1]4 → R
with the property:

ϕ(u,v,v,u)≥ 0=⇒ u≥ v. (2.6)

Next we give some examples of functions in Φ.
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Example 2.2. If a,b,c,d ∈ R and a+ b + c + d = 0, then ϕ(t1, t2, t3, t4) := at1 + bt2 + ct3 +
dt4 ∈Φ if and only if a+d > 0.

Indeed, a+ d ≤ 0⇒ b+ c ≥ 0. Choosing u= 0, v = 1 we have u < v and ϕ(u,v,v,u) =
(a+d)u+ (b+ c)v = b+ c ≥ 0.

Conversely, if a + d > 0 and ϕ(u,v,v,u) ≥ 0, then (a + d)u ≥ −(b + c)v, that is (a +
d)u≥ (a+d)v, which implies that u≥ v.

Thus, the functions ϕ1, ϕ2,

ϕ1
(
t1, t2, t3, t4

)= t1− t2,

ϕ2
(
t1, t2, t3, t4

)= t1− t3,
(2.7)

are in Φ.
Also, the function ϕ defined by ϕ(t1, t2, t3, t4) = t2

1 − t2t3 and, more generally, ϕ(t1, t2,
t3, t4)= t2

1 − (at2
2 + bt2

3)− t2t3 with a+ b= 0 are in Φ.

In the proof of Theorem 2.4 we need the following lemma, which is the analog of
uniform continuity of a metric (note that ([0,1],T) is rather a semigroup than a group).

Lemma 2.3. Let (S,F,T) be a generalized Menger space with T continuous in (a,1) for all
a∈ (0,1), that is,

lim
n→∞an = a, lim

n→∞bn = 1=⇒ lim
n→∞T

(
an,bn

)= a. (2.8)

If p,q ∈ S and (pn) is a sequence in S such that pn→ p, then Fpnq
w−−→Fpq.

Proof. Let p,q ∈ S, pn → p and t be a continuity point of Fpq. By (1.7) it follows that for
all 0 < ε < t,

Fpnq(t)≥ T
(
Fpnp(ε),Fpq(t− ε)

)
,

Fpq(t+ ε)≥ T
(
Fpnp(ε),Fpnq(t)

)
.

(2.9)

Therefore, limn inf Fpnq(t)≥ Fpq(t− ε) and Fpq(t + ε)≥ limn supFpnq(t). Letting ε→ 0
we obtain limn supFpnq(t) ≤ Fpq(t) ≤ limn inf Fpnq(t), and thus limn→∞Fpnq(t) = Fpq(t).

�

Theorem 2.4. Let (X ,F,T) be an F-complete generalized Menger space under a t-norm
T which is continuous in (a,1) for all a ∈ (0,1), k ∈ (0,1), and ϕ ∈ Φ. If f : X → X is a
mapping such that

(
ϕf
)

: ϕ
(
F f (x) f (y)(kt),Fxy(t),Fx f (x)(t),Fy f (y)(kt)

)≥ 0, ∀x, y ∈ X , ∀t > 0 (2.10)

and there exist x0 ∈ X and γ > 1 for which limn→∞T∞i=nFx0 f (x0)(γi) = 1, then f has a fixed
point.

Proof. Let x0 ∈ X be such that limn→∞T∞i=nFx0 f (x0)(γi)= 1 and, for all n≥ 1, xn = f (xn−1).
Note that (ϕf ) implies that

F f (x) f 2(x)(kt)≥ Fx f (x)(t), ∀x ∈ X , ∀t > 0. (2.11)
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On taking in this relation x = xn we obtain

ϕ
(
Fxn+1xn+2 (kt),Fxnxn+1 (t),Fxnxn+1 (t),Fxn+1xn+2 (kt)

)≥ 0, ∀n∈N , ∀t > 0. (2.12)

It follows that Fxn+1xn+2 (kt) ≥ Fxnxn+1 (t), for all n ∈ N , for all t > 0 and therefore, by
Lemma 2.1, (xn) is a Cauchy sequence.

By the F-completeness ofX it follows that there exists u∈ X such that limn→∞Fuxn(t)=
1, for all t > 0.

Notice that from Fxn+1xn+2 (kt) ≥ Fxnxn+1 (t), for all n ∈ N , for all t > 0 it follows that
limn→∞Fxnxn+1 (t) = 1, for all t > 0, for limn→∞T∞i=nFx0 f (x0)(γi) = 1 implies that
limn→∞Fx0 f (x0)(γn)= 1 (therefore Fx0 f (x0) ∈D+) and Fxnxn+1 (t)≥ Fx0x1 (t/kn), for all n∈N ,
for all t > 0.

Next, on taking x = xn, y = u in (ϕf ) one obtains

ϕ
(
Fxn+1 f (u)(kt),Fxnu(t),Fxnxn+1 (t),Fu f (u)(kt)

)≥ 0, ∀n∈N , ∀t > 0. (2.13)

If kt is a continuity point of Fu f (u), then, on taking n→∞ in the above inequality and
using Lemma 2.3, we get

ϕ
(
Fu f (u)(kt),1,1,Fu f (u)(kt)

)≥ 0. (2.14)

Thus Fu f (u)(kt)= 1. Since Fu f (u) is increasing, the set of its discontinuity points is at most
countable. Hence Fu f (u)(kt)= 1 for all t > 0, from which (using (1.5)) we obtain u= f (u).
This completes the proof. �

Corollary 2.5 [5, Theorem 2.1]. Let (X ,F,T) be an F-complete generalized Menger space
under a continuous t-norm T ∈�, k ∈ (0,1), and ϕ ∈Φ. If f : X → X is a mapping such
that

ϕ
(
F f (x) f (y)(kt),Fxy(t),Fx f (x)(t),Fy f (y)(kt)

)≥ 0, ∀x, y ∈ X , ∀t > 0 (2.15)

and there exists x0 ∈ X for which Fx0 f (x0) ∈D+, then f has a fixed point.

Proof. Choose a µ > 1. Since limn→∞µn = ∞ and Fx0x1 ∈ D+, it follows that
limn→∞Fx0 f (x0)(µn)= 1. Therefore, by Proposition 1.3(iii),

lim
n→∞T

∞
i=nFx0 f (x0)

(
µi
)= 1. (2.16)

Now apply Theorem 2.4. �

Corollary 2.6. Let (X ,F,TL) be an F-complete generalized Menger space and ϕ ∈Φ. If
f : X → X is a mapping such that

ϕ
(
F f (x) f (y)(kt),Fxy(t),Fx f (x)(t),Fy f (y)(kt)

)≥ 0, ∀x, y ∈ X , ∀t > 0, (2.17)

and
∑∞

n=1(1−Fx0 f (x0)(γn)) <∞ for some x0 ∈ X and γ > 1, then f has a fixed point.

For the proof see Proposition 1.3.
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Corollary 2.7. Let (X ,F,T) be an F-complete generalized Menger space under T ∈
{TD

λ ,TAA
λ }, k ∈ (0,1), and ϕ∈Φ. If f : X → X is a mapping such that

ϕ
(
F f (x) f (y)(kt),Fxy(t),Fx f (x)(t),Fy f (y)(kt)

)≥ 0, ∀x, y ∈ X , ∀t > 0 (2.18)

and
∑∞

n=1(1−Fx0 f (x0)(γn))λ <∞ for some x0 ∈ X and γ > 1, then f has a fixed point.

Corollary 2.8. Let (X ,F,T) be an F-complete generalized Menger space under a continu-
ous t-norm T ∈� and k ∈ (0,1). If f : X → X is a mapping satisfying one of the following
conditions:

F f (x) f (y)(kt)≥ Fxy(t), ∀x, y ∈ X , ∀t > 0, (2.19)

F2
f (x) f (y)(kt)≥ Fxy(t)Fx f (x)(t), ∀x, y ∈ X , ∀t > 0, (2.20)

F f (x) f (y)(kt)≥ 2Fxy(t)−Fx f (x)(t), ∀x, y ∈ X , ∀t > 0 (2.21)

and there exists x0 ∈ X for which Fx0 f (x0) ∈D+, then f has a fixed point.

As a final result for this section, we consider an example to see the generality of
Theorem 2.4.

Example 2.9. Let X be a set containing at least two elements and the mapping F from
X ×X to ∆+, defined by

Fxy(t)=



0, if t ≤ 1
1
2

, if t > 1
for x, y ∈ X , x �= y, Fxx = ε0, ∀x ∈ X. (2.22)

It is easy to show (see [14]) that (X ,F,TM) is a complete Menger space.
We are going to prove that the mapping f : X → X , f (x) = x satisfies the contrac-

tivity condition (2.21) from the above corollary with b = 2, c = −1, however it is not a
B-contraction (here we took advantage of working in ∆+ rather than in D+).

First, we show that

Fxy(kt) + 1≥ 2Fxy(t), ∀x, y ∈ X , ∀t > 0. (2.23)

Indeed, the above inequality holds with equality if x = y, while if x �= y then the right-
hand member is at most 1.

Next, for every t ∈ (1,1/k], Fxy(kt)= 0, while Fxy(t)= 1/2, which means that f is not
a Sehgal contraction.
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Ştiinţ. Univ. Baia Mare Ser. B Fasc. Mat.-Inform. 18 (2002), no. 1, 105–108.

[7] V. Radu, Some fixed point theorems in probabilistic metric spaces, Stability Problems for Stochas-
tic Models (Varna, 1985), Lecture Notes in Math., vol. 1233, Springer-Verlag, Berlin, 1987,
pp. 125–133.

[8] , Lectures on Probabilistic Analysis, Surveys, Lecture Notes and Monographs. Series
on Probability, Statistics and Applied Mathematics, vol. 2, Universitatea din Timişoara,
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