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A fixed point theorem concerning probabilistic contractions satisfying an implicit rela-
tion, which generalizes a well-known result of Hadzi¢, is proved.

1. Preliminaries

In this section we recall some useful facts from the probabilistic metric spaces theory. For
more details concerning this problematic we refer the reader to the books [1, 3, 9].

1.1.t-norms. A triangular norm (shortly t-norm) is a binary operation T': [0,1] x[0,1] —
[0,1] := I which is commutative, associative, monotone in each place, and has 1 as the
unit element.

Basic examples are Ty, : I X I — I, T(a,b) = Max(a + b — 1,0) (Eukasiewicz t-norm),
Tp(a,b) = ab, and Ty (a,b) = Min{a,b}. We also mention the following families of ¢-
norms:

(i) Sugeno-Weber family (T3" )re(-1,), defined by T3" = max(0, (x + y — 1+ Axy)/
(1+1)),

(ii) Domby family (TP )ie(,«)> defined by TP = (1 + (((1 — x)/x)* + ((1 — y)/
y)/\)l/)t)—lj

(iii) Aczel-Alsina family (T{*))c(0,0)> defined by T{A = ¢~ (IlogxI"+llogy )"

Definition 1.1 [2, 3]. It is said that the t-norm T is of HadZi¢-type (H-type for short) and
T € 3 if the family {T"},cn of its iterates defined, for each x in [0,1], by

T(x) =1, T (x) = T(T"(x),x), Vn=0, (1.1)
is equicontinuous at x = 1, that is,
Vee (0,1)38 € (0,1) suchthatx>1-06=T"(x)>1—-¢, Vn=>1. (1.2)

There is a nice characterization of continuous t-norms T of the class 7 [8].
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(i) If there exists a strictly increasing sequence (b, )nen in [0, 1] such thatlim, .. b, =
1 and T'(by,by) = b, Vn € N, then T is of Hadzi¢-type.
(ii) If T is continuous and T € ¥, then there exists a sequence (b,),en as in (i).
The t-norm Ty is an trivial example of a t-norm of H-type, but there are t-norms T
of Hadzi¢-type with T # Ty (see, e.g., [3]).

Definition 1.2 [3]. If T is a t-norm and (x1,x2,...,x,) € [0,1]" (n € N), then T/ x; is
defined recurrently by 1, if n = 0 and T/_ x; = T(T{’;llxi,x,,) forall n > 1. If (x;)jen is a
sequence of numbers from [0, 1], then T;2 x; is defined as lim,,—. . Ti-,x; (this limit always
exists) and T;2,x; as T2 X,+;. In fixed point theory in probabilistic metric spaces there are
of particular interest the t-norms T and sequences (x,) C [0,1] such that lim,_.x, =1
and limy, .« 7121 %44 = 1. Some examples of -norms with the above property are given in
the following proposition.

ProrositioN 1.3 [3]. (i) For T = Ty, the following implication holds:
%ingioilan: l = Zl(lfxn) < oo, (1.3)

(ii) (1.3) also holds for T = TASW.

(iii) If T € H, then for every sequence (Xn)nen in I such that lim,_«x, = 1, one has
limy—o T2 Xp4i = 1.

(iv) If T {Tf, TfA}, thenlim, .o T2 1 Xppi = 1 & >0 (1 —x,)* < 0.

Note [4, Remark 13] that if T'is a -norm for which there exists a sequence (x,) C [0,1]
such that lim, . x, = 1 and lim,,— T2 X44; = 1, then sup,, T(t,t) = 1.

1.2. Menger spaces and generalized Menger spaces. Probabilistic contractions of Sehgal
type. Let A. be the class of distance distribution functions [9], that is, the class of all
functions F : [0,00) — [0,1] with the properties
(a) F(0) =0;
(b) F is nondecreasing;
(c) F is left continuous on (0, c0).
Dy is the subset of A, containing the functions F which also satisfy the condition
lim,_o F(x) = 1.
A special element of D, is the function &, defined by

B 0, ift=0, (1.4)
& = .
0 1, ift>0.

A sequence (F,) in A, is said to be weakly convergent to F € A, (shortly F,—~F) if
lim, .. F, (x) = F(x) for every continuity point x of F.

If X is a nonempty set, a mapping F : X X X — A, is called a probabilistic distance on X
and F(x, y) is denoted by F,,.

The triple (X,F,T), where X is a nonempty set, F is a probabilistic distance on X,
and T is a t-norm, is called a generalized Menger space (or a Menger space in the sense of
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Schweizer and Sklar) if the following conditions hold:

Fy=¢g=x=y, (1.5)
Fyy=F), VxyeX, (1.6)
Foy(t+5s) = T(Fo(t),Fy(s)), Vx,y,z€X, Vi,5>0. (1.7)

A Menger space is a generalized Menger space with the property Range (F) C D,
If (X,F, T) is a generalized Menger space with sup,_, T(£,t) = 1, then the family

{Ueatesoncy  Uer = 1(x,y) € X X X1 Feye) >1 -} (1.8)

is a base for a metrizable uniformity on X, named the F-uniformity and denoted by Ug.
Ur naturally determines a topology on X, called the F-topology:

O0eJp<= Vxe03e>0,31€(0,1) such that U, (x) CO. (1.9)

U is also generated by the family {V5}, , where V; := Us . In what follows the topo-
logical notions refer to the F-topology. Thus, a sequence (x,,),en is F-convergent to x € X
if forall e >0, A € (0,1) there exists k € N such that Fyy, (¢) >1—A forall n > k.

Definition 1.4. A sequence (x,)nen in X is called F-Cauchy if for each € >0, A € (0,1)
there exists k € N such that F, . (¢) >1 —Aforalls>r > k.

Probabilistic contractions were first defined and studied by V. M. Sehgal in his doctoral
dissertation at Wayne State University.

Definition 1.5 [10]. Let S be a nonempty set and let F be a probabilistic distance on S.
A mapping f : S — Sis called a probabilistic contraction (or B-contraction) if there exists
k € (0,1) such that

Ff(p)f(q)(kt) > qu(t), Vp,q€eS, Vt>0. (1.10)

In [10] it is showed that any contraction map on a complete Menger space in which the
triangle inequality is formulated under the strongest triangular norm Ty has a unique
fixed point. In [11] Sherwood showed that one can construct a complete Menger space
under T, and a fixed-point-free contraction map on that space. Hadzi¢ [2] introduced the
class #€ which have the property that Sehgal’s result can be extended to any continuous
triangular norm in that class. Completing the result of HadZzi¢, Radu solved the problem
of the existence of fixed points for probabilistic contractions in complete Menger spaces
(S,F,T) with T continuous. Namely, the following theorem holds.

THEOREM 1.6 [7]. Every B-contraction in a complete Menger space (S,F,T) with T contin-
uous has a (unique) fixed point if and only if T is of Hadzi¢-type.

However, under some additional growth conditions on the probabilistic metric F one
may replace the t-norm of H-type in the above theorem, as in Tardiff’s paper [13].
Corollary 2.6 in our paper gives another result in this respect.
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2. Main results

The main result of this paper is Theorem 2.4 concerning contractive mappings satisfying

an implicit relation similar to that in [6, 12]. This theorem generalizes the mentioned

result of Hadzi¢ (see Corollary 2.7). Note that we work in generalized Menger spaces.
We begin with an auxiliary result, which is formulated as follows.

LemMA 2.1. Let (X,F,T) be a generalized Menger space and let (x,),en be a sequence in X
such that, for some k € (0,1),

Fexp(kt) = Fe 1 (1), Vnz=1, Vt>0. (2.1)
If there exists y > 1 such that

lim T:, Fyx, () = 1, (2.2)

n—oo
then (x,)nen is an F-Cauchy sequence.

Proof. First note [4] that if the condition limy—« T, Fyyx, (y') = 1 holds for some y =
yo > 1, then it is satisfied for all y > 1. Indeed, if limy,—.co T2, Fyox, (yé) =1 and Y = Yo, then
limy,—oo T52, Faoxy (¥1) = limyy o 1, Frox, (y) = 1 and therefore lim,—. T5>, Fyp, (¥1) = 1,
while if y < yo, then ¥* > y,, for some s € N, and now lim,_« T, ,MF,COJ(l (y') =
limnaoo n xoxl(yo) =L

We w111 prove that

Ve>0, Ing=np(e): Fypn,,, () >1—¢ Vn=ng, VmeN. (2.3)

Let y € (k,1) and let § = k/u. From the above remark it follows that

lim T, Fys, (i) Y (2.4)

n— o0

Let ¢ > 0 be given and y; := Fy,x, (1/p'). From limy—. T{°; ynsi = 1 it follows that there
exists n; € N such that T/ y,4i—1 > 1 —¢, forall n > n,, forall m € N.

Since the series ;" 8" is convergent, there exists n, € N such that 3" 6" <e.

Let ny = max{n;,n,}. Then, for all n = ny and m € N, we have

n+m—1
Fxnerm( xn-erm < Z 8 )

n+i m—1
> T Fayprrn (8) = Ty > 1 — 6,

(2.5)

« »

where the last “>” inequality follows from Fy ,, (0°) = Fy.,, (k/pt)° = Fyx, (1/4°) for all
s = 1, which 1mmediately can be proved by induction. O

In the following we deal with the class @ of all continuous functions ¢ : [0,1]* —
with the property:

o(uwv,v,u) 20 = u=v. (2.6)

Next we give some examples of functions in ®.
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Example 2.2. If a,b,c,d € R and a+b+c+d =0, then ¢(t1,12,13, 1) := aty + bty + ct3 +
dty, € ®ifand onlyifa+d > 0.

Indeed, a+d <0 = b+c = 0. Choosing u =0, v =1 we have u < v and ¢(u,v,v,u) =
(a+d)u+(b+c)v=b+c=0.

Conversely, if a+d >0 and ¢(u,v,v,u) = 0, then (a+d)u = —(b+c)v, that is (a+
d)u = (a+d)v, which implies that u > v.

Thus, the functions ¢, ¢2,

¢1(t,t,t3,1) = 1 — 1,

(2.7)
@2 (t, 1,13, 14) = 1 — 13,

are in O.
Also, the function ¢ defined by ¢(t1,t,,t5,t4) = ] — tat; and, more generally, ¢(t1, 1,
t3,ts) = 12 — (at3 + bt3) — trt; with a+ b = 0 are in D.

In the proof of Theorem 2.4 we need the following lemma, which is the analog of
uniform continuity of a metric (note that ([0,1],T) is rather a semigroup than a group).

LEmMA 2.3. Let (S,F,T) be a generalized Menger space with T continuous in (a, 1) for all
a € (0,1), that is,

lima, = a, limb,=1= %1_{?0 T(an,b,) = a. (2.8)

n—o n—oo

If p,q € Sand (py) is a sequence in S such that p, — p, then Fy, q——Fpg.
Proof. Let p,q € S, p, — p and t be a continuity point of F,,. By (1.7) it follows that for
allo<e<t,

Fp,q(t) = T(Fp,p(e), Fyq(t — ),

2.9
Fpg(t+€) = T(Fp,p(€), Fpg(D)). =

Therefore, lim, inf Fj, 4(t) = Fpy(t — €) and Fpy(t +¢) = lim, supFj, 4(t). Letting ¢ — 0
we obtain lim, sup Fp 4(t) < Fpy(t) < lim,infF, 4(t), and thus lim,, .« Fp,4(t) = Fp,(t).
|

TaEOREM 2.4. Let (X,F,T) be an F-complete generalized Menger space under a t-norm
T which is continuous in (a,1) for all a € (0,1), k € (0,1), and ¢ € ©. If f: X - X isa
mapping such that

((pf) : (p(Ff(x)f(y)(kt),Fx),(t),Fxf(x)(t),Fyf(y)(kt)) >0, Vx,yeX, V>0 (2.10)

and there exist xo € X and y > 1 for which lim,,_.« T;2, Fx, f(x)(y") = 1, then f has a fixed
point.

Proof. Letxy € X be such thatlim,_. T,-ian[,f(xO)(y") =land, foralln > 1,x, = f(xy-1).
Note that (¢ ) implies that

Ff(x)fZ(x)(kt) > Fxf(x)(t), VxeX, Vt>O0. (2.11)
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On taking in this relation x = x,, we obtain
@ (Frpiznes (k1)s Fr (8)s Frpxy (0, Fr i, (K1) 20, VR EN, V0. (2.12)

It follows that F,  ,.,(kt) = Fy .. (t), for all n € N, for all ¢+ >0 and therefore, by
Lemma 2.1, (x,) is a Cauchy sequence.

By the F-completeness of X it follows that there exists u € X such thatlim,, .« Fyy, () =
1, forall t > 0.

Notice that from F,, ., (kt) = Fy .., (t), for all n € N, for all t > 0 it follows that
lim, . Fy,x,,, (t) = 1, for all ¢ >0, for lim,.. T, Fy fx)(y) = 1 implies that
limy, .o Fy, f(xy) (") = 1 (therefore Fy f(x,) € D+) and Fy,,,, (t) = Fyx, (#/k"), foralln € N,
forall t > 0.

Next, on taking x = x,,, y = u in (¢ ) one obtains
@(Fp £ (kt), P (8), Froxy, (8), Fupuy (kt)) =0,  VneN, Vi>0. (2.13)

If kt is a continuity point of F,¢(,), then, on taking n — oo in the above inequality and
using Lemma 2.3, we get

(P(Fuf(u)(kt)>lal,Fuf(u)(kt)) = 0. (2.14)

Thus Fy ¢ (kt) = 1. Since F,;f(y) is increasing, the set of its discontinuity points is at most
countable. Hence F,, () (kt) = 1 for all t > 0, from which (using (1.5)) we obtain u = f(u).
This completes the proof. O

CoOROLLARY 2.5 [5, Theorem 2.1]. Let (X,F, T) be an F-complete generalized Menger space
under a continuous t-norm T € ¥, k € (0,1), and ¢ € ©. If f : X — X is a mapping such
that

(p(Ff(x)f(y)(kl‘),ny(t),Fxf(x)(t),Fyf(y)(kt)) >0, Vx,yeX,Vt>0 (2.15)

and there exists xo € X for which Fy, f(x,) € D, then f has a fixed point.

Proof. Choose a p > 1. Since lim,_ou" = o and Fy, € D, it follows that
lim,, - o Fy, f(x,) (") = 1. Therefore, by Proposition 1.3(iii),

lim T7%,, Fy, () (@) =1 (2.16)

Now apply Theorem 2.4. U

CoROLLARY 2.6. Let (X,F,Tr) be an F-complete generalized Menger space and ¢ € ®. If
f:X — X is a mapping such that

(p(Ff(x)f(y)(kt),ny(t),Fxf(x)(t),Fyf(),)(kt)) >0, Vx,yeX, Vt>0, (2.17)

and 3.7 (1 = Fx, f(x) (y")) < o for some xo € X and y > 1, then f has a fixed point.

For the proof see Proposition 1.3.
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CoroLLARY 2.7. Let (X,F,T) be an F-complete generalized Menger space under T €
{TP, T{4}, k € (0,1), and ¢ € ®. If f : X — X is a mapping such that

@(Ff)f(y) (kt), Fry (), Fegx) (), Fy 5y (kt)) = 0, Vx,y € X, VE>0 (2.18)

and Y., (1 = Fx, f(x,) (y"))* < o0 for some xo € X and y > 1, then f has a fixed point.

CoRroOLLARY 2.8. Let (X,F, T) be an F-complete generalized Menger space under a continu-
ous t-norm T € ¥ and k € (0,1). If f : X — X is a mapping satisfying one of the following
conditions:

Ff(x)f(y)(kt) > Fy(t), Vx,yeX, Vt>0, (2.19)
Ffof0)(kt) = Fo, () Expo(8),  Vx,y € X, V>0, (2.20)
Ff(x)f(y)(kt) > Zny(t) — Fxf(x)(t), Vx,yeX, Vt>0 (2.21)

and there exists xo € X for which Fy, f(x,) € D, then f has a fixed point.

As a final result for this section, we consider an example to see the generality of
Theorem 2.4.

Example 2.9. Let X be a set containing at least two elements and the mapping F from
X x X to A4, defined by

ift<1
) forx,yeX, x# y, Fio=¢, VxeX (2.22)
ift>1

0)
ny(t) =11
E)

It is easy to show (see [14]) that (X, F, Ty) is a complete Menger space.

We are going to prove that the mapping f : X — X, f(x) = x satisfies the contrac-
tivity condition (2.21) from the above corollary with b = 2, ¢ = —1, however it is not a
B-contraction (here we took advantage of working in A, rather than in D).

First, we show that

Fey(kt)+1= 2F, (), Vx,y€X, Vi>0. (2.23)

Indeed, the above inequality holds with equality if x = y, while if x # y then the right-
hand member is at most 1.

Next, for every t € (1,1/k], Fx,(kt) = 0, while Fy,(t) = 1/2, which means that f is not
a Sehgal contraction.
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