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Let X;,X,,...,X, be independent Bernoulli random variables with P(X; = 1) =1 —
P(X;=0)=pjandletS,:=X; + X5 +---+X,. S, is called a Poisson binomial random
variable and it is well known that the distribution of a Poisson binomial random variable
can be approximated by the standard normal distribution. In this paper, we use Taylor’s
formula to improve the approximation by adding some correction terms. Our result is
better than before and is of order 1/n in the case p; = py = - -+ = p,.

1. Introduction and main result

Let Xi,X;,...,X, be independent Bernoulli random variables with P(X; = 1) = p; and
P(X;=0)=gqj, where 0< p;j<land pj+q; =1for j=1,2,...,n. Let S, := X; + X5 +
s+ X, ui=ESy = p1+pa+---+puand 0% :=VarS, = pigi + paqa + - - - + pugqn. In
connection with Bernoulli’s theorem, the following important question arises: when the
number of trials is large, how can one find, at least approximately, the probability

P(a<S,<b), (1.1)

where a,b = 1,2,...,n?
De Moivre [3] was the first one who successfully attacked this difficult problem in case

of py = p» = - - - = p, by using the standard normal distribution
r(F 2
— -(1/2)t
O(x) N Jlooe dt. (1.2)

After him, in essentially the same way, but using more powerful analytical tools, Laplace
[7] succeeded in establishing a simple approximation formula which is given in all books
on probability. A general bound was given by Feller [5] for independent and nonidenti-
cally distributed random variables with finite third moments and by Chen and Shao [2]
without assuming the existence of third moments. In the case when the random variables
are identically distributed, it has long been known that the best bound is of order 1/./n.
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In this paper, we investigate the approximation of S, by its asymptotic expansions. If
two terms,

1 ! 2
G(x):= Q(x)+mj;mj(m—qj‘)(l—xz)e”‘ 2, (1.3)

are used, then the accuracy of the approximation is better. The use of asymptotic expan-
sions is one of the most natural ways of refinement (see, e.g., Uspensky [12], Kolassa [6],
Petrov [11], and Bhattacharya and Rao [1]). The refinement of the central limit theorem
for sums of independent Bernoulli random variables has a long history.

In what follows, let

Ay:i=|P(a<S, <b) - (G(x2) —G(x1)) |, (1.4)
where
1 1 1 1
X1:;(Q—H—E), x2:;<b—#+§)' (1.5)
In the case when S, is a binomial random variable, that is, p; = p» = - - - = p,,, Uspensky

[12] shows that

0.26+0.36 |q —
A, < : [9=Pl et (1.6)
[0}

under the condition that
02 =25 (1.7)

and in 1955, Makabe [8] improved the result of Uspensky in the form of

0.106 4+ 0.054(g — p) +0.108(g — p)?
An < (q 0-127) (q p) + 26—(3/2)0 (1.8)
under the conditions that
1
p< 02 >25, n=100. (1.9)

In this paper, we consider the correction terms in the case when p;’s are not necessarily
equal, that is, S, is a Poisson binomial random variable. In this case, Makabe [9] shows
that

A, < a—cz (1.10)

for some constant C > 0 under the conditions that

1
0% > 25, pi<y fori=1,2,...,n (1.11)
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Mikhailov [10] calculated the constant C of Makabe and found out that

8, s 28 (1.12)
under the condition that
o2 = 100. (1.13)
In 1995, Volkova showed that
2 2 2
Ay < —(0.0584 +0.1B5 +0.08) + — (0.0585 +0.1783 84 +0.056)
g g (1.14)

2
+ (0.06p3 +0.27p4 +0.002),

where 85 and f4 are the third and fourth semi-invariants of S,, respectively. The bound
of Volkova is valid under the condition (1.13).

In the present work, we improve the bounds in (1.6), (1.8), (1.10), (1.12), and (1.14)
under the condition (1.13). Here is our main results.

TueOREM 1.1. For g% > 100,

0.1618

<
A, < =

(1.15)

In the proof of the main theorem, we use the idea of Uspensky which uses only Taylor’s for-
mula without using any high-power analytical tools.

Remarks 1.2. (1) In Theorem 1.1, we estimate A, in case of ¢2 = 100. In fact, the bound
is valid in the range 0 < 62 < 100 as well. For example, if 02 € [25,100), by using the
argument of Theorem 1.1, one can get the bound of the form

By 2220 (1.16)
In this case, Volkova [14] showed that
2(20+5)
a2 1.17
503 (1.17)

which is larger than our result.
(2) The bound in Theorem 1.1 is correct in order (see Deheuvels et al. [4]) and in the
case p; = py = - -+ = py, the order of the bound is 1/x.

2. Proof of main result

Let @1, ¢2,...,¢, and @ be the characteristic functions of X;,X,,..., X, and S,, respectively.
Hence

¢j(t)=qj+pje” for j=1,2,...,n, 1—[ q1+p] ) (2.1)
j=1
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where i = \/—1. We note that the complex number ¢(#) can be represented in the form

i (t) = pj()e®, (2.2)
where
" NG
pi(t):=19;t)| = (p]2-+q]2-+2qujcost) = (1 —4pjqjsin E) , (2.3)
(1) := tof ;(f) = arct (Lmt) (2.4)
i(t) := argument of ¢;(t) = arctan g+ prcost)’ .
Hence
(1) = p(1)e®, (2.5)
where p(t) = H;;lpj(t) and O(t) = Z;Ll@j(t)(modZﬂ).
Let
a(t) == O(t) —ut,
p (t)sin (oxt — a(t)) (2.6)
R(x):= 27r sin(t/2) dt.
From Uspensky [12], we know that
P(a<S,<b)=R(xz) —R(x1), (2.7)
where x; and x; are defined in (1.5).
LemMma 2.1. For j =1,2,...,n,
(1) pj(t) < e~ (@m)pjq;t? fort e [0,m),
(2) pj(t) < e (V2piai+(1240pi0it" for t € [0, 71),
(3) pj(t) = e~ V2P~ WORGE for ¢ € [0,7/2].
Proof. (1) By (2.3) and the fact that |4p;q;sin*(t/2)| < 1, we have
1 .ot
Inp;(t) = Eln (1 —4p;q;jsin 5) (2.8)
_ 151 .,-zt)"
= 2,; p (4p1q] sin” 5 (2.9)
ot
< -2p;qjsin 3 (2.10)
2
-2 it (2.11)
where we have used the fact that
sin é % n [0,7) (2.12)

in the last inequality. Hence we have (1).
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(2) By Taylor’s formula, we know that sin®(#/2) = t2/4 — t*/48. So (2) follows by this
fact and (2.10).

(3) Let t € [0,72/2]. Using Taylor’s formula for f(t) = (1/3)sin*(#/2) + sin*(t/2), we
can show that

(2.13)
Hence, by (2.9), (2.13) and the fact that 0 < sin(#/2) < t/2, we have
1 1 2. g4t 2t
Inp;(t) = { = 2piq;t = 7 (4p;q;)"sin’ 5} +2Pj‘1j{z —sin 5}
0 5 t k
; (4PJCIJ sin 5

1 2 4t 1 = 2 t ¢
2 2,244 E i
> _Equjt —ijq] +§p1q]sm E—gk:3 <4qujsm E)

)

{ |
~{-3pr - griar]
{ |
|

2 t (1/6) (4quj)asin6(t/2) (2.14)
+ 5 pjqjsin )
3 1—4pjq;sin”(t/2)
1 1 2 1 3. ¢t
=1 = 5Pigit’ = g Piaitt [+ 3piqisin’ S — 5 (4pjq;) sin® S
2 st
:{ ijq]tz__p]q] +§P1q151n _<1_32P1q1 sin 5)

1 2
Z_Ep]qjt p]q]

which implies that p;(t) > e~ (/2P = (/0piait" O

We are now ready to prove the main result of this section. For convenience, we assume
02 > 100 and divide the proof into 5 steps as follows.

Step 1. We will show that [p(t) — e~ (V27| < (1/16)a2t*e~ (V2" for t € [0,/3/0].
From Lemma 2.1(2), we have

n
P(t) _ Hp](t) < 67(1/2)02t2+(1/24)02t4) (2.15)
j=1
which implies that
1
p(t) _ 67(1/2)0%2 < e—(l/z)aztz(6(1/24)02:4 _ 1) < ﬂ02t4e’(1/2)”2t2+(1/24)“2t4, (2.16)

where we have used the fact that e* — 1 < xe* for x > 0 in the last inequality.
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By Lemma 2.1(3) and the fact that 0 < p;q; < 1/4, we have

P(t) —e (1/2)02t? >e —(1/2)0%t? (67(1/4)2?:11)?&1]%4 _ 1)

> e—(1/2)02t2 (e—(1/16)¢72t4 _ 1)

L 5u —amee
> ——g’te o
16

where we have used the fact that e™* — 1 > —x for x > 0 in the last inequality.
From (2.16), (2.17) and the fact that ¢(/299°t" < 3/2 for t € [0,+/3/0], we have

1 3
|p(t) _ e—(1/2)02t2| < BC721‘467(1/2)17%2 on [O,\/:}.

Step 2. We will show that

sin (oxt — a(t)) = sin(oxt) — Z p,q] 2 cos(oxt) + Ay,

where |A;| < 0.0285¢° +0.0035¢° and t € [0,+/3/7].
From Uspensky [12, page 124], we see that

@5.1)(0) =p, @;2)(0) =0, (95-3)(0) = piq;(pj—4;)

and for t € [0,71/2],
9 AN
0P ()] < gPidilpi—ajl (1—4ijf‘51n2§) ;
AN
10(t)| <2p;q;|p; - q;] (1—4ijf‘51n2§) t.

Hence, for t € [0,+/3/0] and ¢ = 100, we have

3) 9p;qj
1071 < 8= 3/40) i 7 = 14215p;9;,
2pjq;t
@) i4j
|07 (1] < 1= 3/40)t <2.7319p;q;t.
Hence
1 n
EZPMJ —q;)t + M (0P,

alt) = My (1P,

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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where |M;(t)| < 0.0285 and |M,(t)| < 0.0593. So

sin (oxt — «(t))

= sin(oxt) cos (a(t)) — sin («(t)) cos(oxt)

= sin(oxt) (1 - %cos (to)ocz(t))

| (2.24)
- ((x(t) -5 sin (tl)ocz(t)> cos(oxt), forsome tyand t,
1 n
= sin(oxt) - > piqj(pj —q;j)t cos(oxt) + Ay,
j=1
where | A < IMi(8)|£2 + |a?(t)] < 0.0285¢> +0.0035¢°.
Step 3. We will show that
V3/a :
e e (oxt ot 4y, (2.25)
mJo t
where |A,| < 0.0713/02.
By Lemma 2.1(1) and (2.12), we have
1 J” p(t)sin.(oxt —a(t)) gt < 1 r" o~ (Un)ot? 5
21 ) /Glao)n Sll’l(l’/Z) 2 (3/40)m t
1(® e
T2 Jm Tt
® , 2.26
<L J te " dt (2:26)
30 ). 362
— i —30/2
B 606
<0.0167¢732,
By (2.12) and the fact that p(¢) is decreasing on [0,7/2], we have
1 JV (374007 5(t) sin (oxt — a(t)) it
21 )37 sin(t/2)
1 1/(3/40’)7‘[ t
< 7J &dt
2 )37 t
1 \/? (/o) | (2.27)
<= = —dt which by Lemma 2.1(2
2p< 0) L% t v @
3
< Ze’“/z)"ln%

=0.3383¢ (/29
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From (2.26), (2.27) and the fact that

10
e(3/2)0 L (éa) > 15890% for 0% = 100
“1w00\2°) S

we have

dt+ Ny,

1 V3/a p(t)sin (oxt — a(t))
R(x) = 27 Jo sin(t/2)

where | Ay | < 0.00024/02.
Since sinx = x — cos(x)(x*/6) for some x,, we have

2

1 3 1 sinx — x X
sinx x| | xsinx |~ 6sinx’
which implies that
ijp(t)sin.(axt—a(t)) . lJmp(t)sin(axt—oc(t))dt+A22’
27 Jo sin(t/2) 7w Jo t
where
1 | (Y3 p(t)sin (oxt — a(t)) 12
NAp| < — dt hich by (2.12
| 8] = 487 Jo sin(t/2) which by ( )
1 V3/o
< 15 tp(t)dt which by Lemma 2.1(2)
0
1 d 242
i —(1/2)0t ¢
< % Jo te d
1
3202

By Step 1, we see that

1 (V37 p(t)sin (oxt — a(t)) 1 (V37 e W2F sin (oxt — at))
e

T Jo t T Jo t

where

2 3o
| A3 | < A J e (VDF gy
167 Jo

< o (7 PBe- (/208 g4
“ 16w Jo
0.0398

o2

Hence, by (2.29)—(2.34), we have the conclusion of Step 3.

dt+ N\js,

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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Step 4. We will show that

1 (Ve 22 sin(oxt) 1 r‘ 2
- —(1/2)0°t _ —(1/2)t
e dt = e dt+ A3, (2.35)
T Jo t V21 Jo ?
where |A3| < (6.68 x 107°)/02.
Note that
1 Ime_(l/z)gztz sin(oxt) gt < 1 Jm A sin(oxt) di+ As, (2.36)
T Jo t mJo t
where

o0 67(1/2)0%2

1
N —j dt
T J.\/3/0 t
<Z Jw te (/20 gy
3m J s (2.37)
= %:)61((3/2)“ which by (2.28)
6.68 X 107°
< — .
0—2

Let L(x) = [ e~ /27 (sin(xt)/t)dt. From the well-known integral

J e cos(bt)dt = 1\/?6472/4” fora >0, (2.38)
0 2N a
we have
L'(x)= Jwe*“mfz cos(xt)dt = Y2 2.39
(x) . (xt) NG (2.39)
which implies that
\/ﬁr ~(1/2)2
Lix)=—=1 e dt. 2.40
() =5 (2.40)
Hence

lJme‘(l/z)Jth sin(oxt)dt: ljme‘(m)tz sin(xt)dt
T Jo t 7 Jo t

1 * 2
_ —(1/2)t dt.
V21 ,[0 ¢

(2.41)

From (2.36) and (2.41), Step 4 is proved.
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Step 5. We will show that

lJ\/S/—Ge_(I/Z)UZtZSin(Gxt_ a(t)) gt = J
0 t V2n

4
where |A4| < 0.0218/02.
Differentiating (2.38) twice with respect to b, we have

“U2D2dp — G(x) + Ay, (2.42)

® 2 —at? 1 T b —-b*/4a
tee” " cos(bt)dt = —.,/—(1—=—|e . (2.43)
0 4a\ a 2a

Putting a = 1/2 and b = x, we have

J e~ WD cos(xt)dt = \/g(l —x?)e 72, (2.44)
0
Hence
1< V3la 2
o - Zp]q] (pj- qj)f t2e~ /20 cos(oxt)dt
r} 0
n [
67[0 Zp]q] J 2e~ /2 cos(xt)dt
o . (2.45)
£2 —(1/2)8 dt
ot > o (p Jm 2 cos(x)
n
- wﬁfs Zp]q; T B,
where
|A41| < L Jw tze*(l/z)tzdt
6m0o J.30
1 Iw 3 —(1/2)t
< —F t’e dt
3/2
Wg;" V3o (2.46)
= W67(3/2)0 which by (228)
2.4%x107°
<=
< 2
From (2.45), Steps 2 and 4,
1 Jme(m)"ztz sin (oxt — a(t)) it
T Jo t
(2.47)

~(1/2)t 1 (1-2) S —x2/2
> piai(pi—qj)e + Ay,
NG J 62703 a
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where
V3/o 2 ) 1076 2.4x107°
P —J (0.0285¢ +0.0035¢%) e~ (V20 gy o, ©-68 X 1077 | 2410
7 Jo 2 o? (2.48)
0.0095 3.068x 107> 0.0096
< + < .
02 o? o?
From Steps 3 and 5,
1 (* )
R(x) = —= J e UDP 4t Gx)+ As, (2.49)
0

where |As| < |Az] + | A4l <0.0809/02. Hence, by (2.7), we have Theorem 1.1.

3. Example

We will demonstrate a possible application of approximation in Theorem 1.1 with the
problem of estimating the distribution function of the number of empty cells in an
equiprobable scheme for group allocation of particles introduced by Vatutin and
Mikhailov [13] as follows.

Suppose that n groups of s particles are allocated independently in N cells labelled by
the numbers 1,2,...,N. It is assumed that these particles are allocated one to a cell. Let

Sn := number of cells remaining empty after n groups are allocated. (3.1)

Vatutin and Mikhailov [13] showed that the distribution function of S,, coincides with
that for a sum of independent Bernoulli random variables with

S n
= 1-=),
“ N( N)

s\" s\" s\ (3.2)
2= 1——) 1- (1——) —1(1— ) )
0N<N N1-S) sv-n(1-

From Theorem 1.1, we see that
A, < 0.16218) (33)
o

where ¢? is defined in (3.2). We note that our bound is simpler than that in Volkova [14]
and easy to evaluate.
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