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Let 7 be a hereditary torsion theory on the category R-Mod of left R-modules over an
associative unitary ring R. We introduce the notion of 7-natural class as a class of mod-
ules closed under 7-dense submodules, direct sums, and 7-injective hulls. We study con-
nections between certain conditions involving 7-(quasi-)injectivity in the context of 7-
natural classes, generalizing results established by S. S. Page and Y. Q. Zhou (1994) for
natural classes.

1. Introduction and preliminaries

The language of natural classes of modules appeared in the early 1990s, allowing to unify
similar results that hold for some important classes of modules, such as the category R-
Mod of left R-modules, any hereditary torsion-free class of modules, or any stable hered-
itary torsion class of modules. First, Dauns [2, 3] introduced and studied natural classes
for nonsingular modules under the name of saturated classes and, afterwards, Page and
Zhou [5, 6] began the study of arbitrary natural classes.

In this paper, we are interested in relativizing the notion of a natural class to the
torsion-theoretic framework and discussing connections between conditions on 7-
injectivity and 7-quasi-injectivity in the context of 7-natural classes, where 7 is an ar-
bitrary hereditary torsion theory on R-Mod.

Now we set the notation and terminology. The reference for general module theory is
[8], whereas [1] and [4] will be mainly followed for torsion theories topics. Throughout,
R will be an associative ring with nonzero identity and all modules will be left unital R-
modules. We will denote by 7 a hereditary torsion theory on the category R-Mod of left
R-modules.

If 7 and o are two hereditary torsion theories such that every r-torsion module is
o-torsion, then it is said that o is a generalization of T and it is denoted by 7 < 0. A
submodule B of a module A is called 7-dense in A if A/B is T-torsion. A torsion theory
7 is called noetherian if for every ascending chain I} € I, < - - - of left ideals of R, the
union of which is 7-dense in R, there exists a positive integer k such that Ii is 7-dense in
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R. A nonzero module A is called 7-cocritical if A is T-torsion-free and each of its nonzero
submodules is 7-dense in A.

having a 7-torsion cokernel. For any module A, E(A) and E;(A) denote the injective hull
of A and the 7-injective hull of A, respectively. A module A is said to be T-quasi-injective
if whenever B is a 7-dense submodule of A, every homomorphism B — A extends to an
endomorphism of A. A module is 7-quasi-injective module if and only if it is a fully in-
variant submodule of its 7-injective hull [7, Theorem 4.4]. A t-quasi-injective hull of a
module B is defined as a 7-quasi-injective module A such that B is a 7-dense essential
submodule of A. Every module A has a 7-quasi-injective hull, unique up to an isomor-
phism [1, Propositions 5.1.8]. A module A is called >’-7-(quasi-)injective if every direct
sum of copies of A is 7-(quasi-)injective.

A nonempty class K of modules is called a natural class if ¥ is closed under isomorphic
copies, submodules, direct sums, and injective hulls [5, page 2912]. Motivated by the
torsion-theoretic context, a nonzero module A is said to be J{-cocritical if A € ¥ and for
every nonzero proper submodule B of A, A/B ¢ X [5, page 2913].

2. 7-(quasi)-injectivity conditions for r-natural classes

Throughout we will denote by J{ a nonempty class of modules closed under isomorphic
copies. We will give the following definition.

Definition 2.1. The class K is called a 7-natural class if I is closed under 7-dense sub-
modules, direct sums, and 7-injective hulls.

Clearly, every natural class is a T-natural class.

Example 2.2. (i) The category R-Mod, any hereditary torsion-free class of modules and
any stable hereditary torsion class of modules are natural classes, hence 7-natural classes.

(ii) Let o be a hereditary torsion theory such that 7 < ¢. Then the class of all o-torsion
modules is a 7-natural class, that is, a natural class if and only if ¢ is stable.

First we establish some necessary or sufficient conditions under which every direct
sum of 7-injective modules in J{ is T-injective.

THEOREM 2.3. Let K be a t-natural class and suppose that every direct sum of T-injective
modules in K is T-injective. Then every ascending chain Iy € I, < - - - of T-dense left ideals
of R such that each I;,1/1; € X terminates.

Proof. Suppose that I, C I, C - - - is a strictly ascending chain of 7-dense left ideals of
R such that each I;;1/I; € K. By hypothesis, E = @jET(Ij+1/Ij) € K is r-injective. Let
I= U;ozllj, let p; : I;4; — Ij+1/I; be the natural homomorphism, and let «; : I;11/I; —
E;(I}+1/1;) be the inclusion homomorphism for each j. Since I, is 7-dense in R, the
7-injectivity of E;(I;;1/I;) assures the existence of a homomorphism f8; : R — E;(Ij;1/I;)
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that extends «; p;. Hence we have the following commutative diagram:
0 I R

I
P;i 1 Bj (2.1)

¥
Ij1/1; — E:(Ijn1/1))

We may define f : I — E by f(x) = (Bj(x)); for every x € I. It is easy to check that f is a
well-defined homomorphism. Since I is 7-dense in R and E is 7-injective, there exists a
homomorphism g : R — E that extends f. Since g(1) € Z;?:l E(Ij+1/1I;) for some positive
integer n, we have

fD=gnes E(24) (22)

It follows that 3;(x) = 0 for every x € I and every j >n. If x € I,;1, then 0 = 8,41 (x) =
x+1,. Hence I,,;1 = I,,, a contradiction. O

Remark 2.4. Note that in the proof of Theorem 2.3, each Ij;,/I; is 7-torsion. Hence we
have used only the fact that every direct sum of 7-torsion 7-injective modules in J{ is
T-injective.

PropositioN 2.5. Let K be a T-natural class and suppose that every ascending chain I, <
I, < - - - of left ideals of R whose union is T-dense in R such that each I;y,/1; € J terminates.
Then every direct sum of T-injective modules in X is T-injective.

Proof. Ttis sufficient to prove that every countable direct sum of 7-injective modules in
is 7-injective (see [4, page 384]). Let A = ;> A; be a countable direct sum of T-injective
modules in J{. Also let I be a 7-dense left ideal of Rand let f : I — A be a homomorphism.
For each n, denote

I, = {x ellf(x)e éA,}. (2.3)
i=1

Clearly, €I, < --- and U]°-°:1 I; = I. We may consider the monomorphism

n+l1
(©4)
In+l i=1

T (2.4)
(@
i=1

defined by a,(x +I,,) = f(x) + (P}, A;) for every x € I,;4;. Since the codomain of a,, is
isomorphic to A,+1 € I, we have I,41/1, € K. By hypothesis, there is a positive integer
k such that I, ; = I for each j. Then f(I) = Pr | A;. Since DX, A; is T-injective, there
exists a homomorphism g : R — @f:l A; € A that extends f. Thus A is 7-injective. O

oy
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COROLLARY 2.6. Let T be noetherian and 3 a t-natural class. Then the following statements
are equivalent.

(i) Every direct sum of T-injective modules in J is T-injective.

(ii) Every ascending chain I, € I, < - -- of t-dense left ideals of R such that each
Ij11/1; € I terminates.

Proof. (i)=(ii) by Theorem 2.3.

(ii)=(i). LetI; € I, < - - - be an ascending chain of left ideals of R whose union is 7-
dense in R such that each I;;,/I; € J. Since 7 is noetherian, there exists a positive integer
k such that I is 7-dense in R. Then I, is 7-dense in R for every n > k. By hypothesis, the
chain Iy € Ix;; S - - - terminates, hencethechainl; €I, € - - - Iy € Iy S - - - terminates.
Now use Proposition 2.5. |

Following [5], denote by Hy (R) the set of left ideals I of R such that R/I € H.

THEOREM 2.7. Let K be a t-natural class and suppose that every ascending chain I, < I, <
- of 7-dense left ideals of R such that each I;;,/1; € J terminates. Then Hy (R) has ACC
on t-dense left ideals.

Proof. Letl; €I, < - - - be an ascending chain of 7-dense left ideals in Hy (R). Then each
R/I; € J. Since H is closed under 7-dense submodules, each I;,,/I; € H. By hypothesis,
the above chain terminates. O

In what follows, we will establish connections between some conditions involving 7-
quasi-injective modules in the context of T-natural classes.

We need the following lemma, that generalizes a classical result for quasi-injective
modules.

LEMMA 2.8. A module A is T-injective if and only if A ® E,(A) is T-quasi-injective.

Proof. The direct implication is obvious. Suppose now that A @ E;(A) is T-quasi-injective.

Consider the exact sequence 0 — A - E,(A) LA E.(A)/A — 0, where i is the inclusion ho-
momorphism and p is the natural homomorphism. Denote j = 1, @i and let a; : A —
A®E.(A)anda, : E.(A) — A® E.(A) be the inclusions into A and E.(A), respectively, let
B :A — A& A be the inclusion into the second summand and letc: A® A -~ A® E(A)
be defined by o(a,a,) = (az,a1) for every (a;,a,) € A @ A. Now consider the following
commutative diagram:

all g -7 (2.5)
A®E.(A)
Since A ® A is 7-dense in E.(A® A) = E.(A) ® E,(A), it follows that A ® A is 7-dense

in A® E;(A). But A® E;(A) is T-quasi-injective, hence there exists a homomorphism
y:A®E (A) - A® E.(A) such that yj = 0. Now let m: A ® E;(A) — A be the projection
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and take & = mya,. Then we have i = mya,i = nyjf = moff = ma; = 14, hence A is a
direct summand of E;(A). But A is essential in E;(A), hence we must have A = E;(A),
showing that A is T-injective. O

THEOREM 2.9. Let K be a t-natural class. The following statements are equivalent.
(i) Every direct sum of T-quasi-injective modules in J is T-quasi-injective.
(ii) Every direct sum of T-injective modules in I is T-injective and every T-quasi-injective
module in K is T-injective.

Proof. (i)=(ii). Let A € ¥ be a 7-quasi-injective module. Since KX is a T-natural class,
E.(A) € J. By hypothesis, A ® E.(A) is T-quasi-injective. Now by Lemma 2.8, A is 7-
injective. Therefore every T-quasi-injective module in J{ is 7-injective.

Now let A = @, A, where each A; is a 7-injective module in K. Hence each A; is a
T-quasi-injective module in J{. By hypothesis, A is a T-quasi-injective module in J. By
the first part, A is a T-injective module in J{. Therefore every direct sum of 7-injective
modules in J{ is 7-injective.

(ii)=(i). Let A = ,c; A;, where each A; is a 7-quasi-injective module in J{. By hy-
pothesis, each A; is a 7-injective module in J and A is a 7-injective module in K. Hence
A is a T-quasi-injective module in J. O

Now consider the following condition.

(C) For every ascending chainI; € I, < - - - of left ideals of Hy (R), U;‘;llj € Hy(R) [5].

For the reader’s convenience, we recall some preliminary lemmas. We will consider the
same definition of a K -cocritical module for a T-natural class K as in the case of a natural
class K.

LeMMA 2.10 (see [5, Lemma4]). Let I be a natural class and let A be a K -cocritical module.
Then A is uniform and any nonzero homomorphism from a submodule of A to a module of X
is a monomorphism. In particular, the class of ¥ -cocritical modules is closed under nonzero
submodules.

LemMa 2.11 (see [5, Lemma 6]). Let 3 be a natural class. If condition (C) holds, then every
cyclic module in . has a K -cocritical homomorphic image.

LEmMMA 2.12 (see [5, Lemma 7]). Let A be a module and let ay,...,a, € A. If all homomor-
phic images of Ray,...,Ra, which are submodules of E(A) have finite uniform dimension,
then E(Ray) + - - - + E(Ray) has finite uniform dimension.

Now we are able to prove the following result, but for a natural class .

THEOREM 2.13. Let K be a natural class and suppose that condition (C) holds and every
T-quasi-injective module in J is T-injective. Then Hy(R) has ACC on t-dense left ideals.

Proof. Suppose that I, C I, C - - - is a strictly ascending chain of 7-dense left ideals of
Hy (R). Then I;4,/1; € J{ for each j. By Lemma 2.11, there exist U; and V;; such that I; =
U; C Vi1 € Ijyy and V1 /Uj is a cyclic H-cocritical module. Since I; is 7-dense in R, V14
is 7-dense in R, so that V;;,/U; is 7-dense in R/U;. Now let & : V11/U; — E-(V31/Uj)
be the inclusion homomorphism for each j. By the 7-injectivity of E;(V;;,/Uj), there
exists a homomorphism ,8]- :R/Uj — E;(Vj;1/U;) that extends «;. Denote I = U;c;l I and
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A = @;E(Vjn1/Uj). Since E;(V;+1/Uj) € J, we have A € J{. We may define f:1 — A
by f(x) = (Bj(x+ Uj)); for every x € I. It is easy to check that f is a well-defined homo-
morphism. Let

Q= > {h(A) | h € Endg (E-(A))} (2.6)

be the 7-quasi-injective hull of A (see [1, Proposition 5.1.7]). We have E,(A) € J{, hence
Q € K. Then Q is t-injective. Since I is 7-dense in R, there exists a homomorphism
g : R — Q such that the following diagram, where the unspecified homomorphisms are
inclusions, is commutative:

0——1—>R

!
fl 18 (2.7)

v
A——=Q

Then we have g(1) e N = Z,t@l Z;=1 hi(E:(V;j+1/U;)) for some positive integers t and s,
whence it follows that f(I) = N. By Lemma 2.10, hi(V;41/U;) = V;41/U; is a cyclic J-
cocritical module. Moreover, E;(hi(V;j+1/U;)) = hx(E;(V;4+1/U;)). By Lemma 2.12 and
again by Lemma 2.10, N has a finite uniform dimension.

On the other hand, Er(f(VZ)) = E.(V,/U;) and f(Vz) c f(V3) C E.(V,/Uy) ® V3/U,.
Since f(V3) € E-(f(V3)) and all Vj;,/U; are uniform, it follows that E.(f(V3)) =
E.(V2/Uy) @ E;(V3/U,). Similarly, for each positive integer n, we have

V, Vs

E(F(v) =B g2) o B (2 o o B (2. (2.8)

But this means that E(f(I)) and, consequently, f(I) have infinite uniform dimension,
a contradiction. O

ProPOSITION 2.14. Let 0 be a hereditary torsion theory such that T < ¢ and let X be the class
of all o-torsion modules. Suppose also that every T-quasi-injective module in J{ is T-injective.
Then Hy(R) has ACC on t-dense left ideals.

Proof. Clearly, J{ is a T-natural class. Note also that the set of all o-dense left ideals of
R is exactly Hx(R), hence condition (C) holds for K. Let A be a J{-cocritical module.
If there exists a nonzero submodule B of A, then A/B is o-torsion, that is, A/B € ¥, a
contradiction. Hence A is simple and thus uniform. Therefore every ¥ -cocritical module
is simple.

We mention that Lemma 2.11 holds for this particular T-natural class J, the proofs
being identical. Note also that since every 7-torsion module is o-torsion, the set of 7-
dense left ideals of R is contained in Hy; (R). Now the result follows by the same arguments
as in the proof of Theorem 2.13. O

The following result on 7-quasi-injective modules will be useful.

LEMMA 2.15. Let A be a t-quasi-injective module. If (E.(A))Y) is t-injective, then A\D is
T-quasi-injective for every set I.
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Proof. The proof is immediate, using the fact that if C is a fully invariant submodule of a
module B, then C7 is a fully invariant submodule of B for every set I. O

THEOREM 2.16. Let J{ be a T-natural class and suppose that every T-quasi-injective module
in K is > -t-quasi-injective. Then Hy (R) has ACC on 1-dense left ideals.

Proof. LetI; € I, < - - - be an ascending chain of 7-dense left ideals of R such that each
I € 35 (R). Denote E; = E;(R/I;) and A = @;021 E;. Clearly each E; € ¥, hence A € K.
Let p; : A — E; be the projection and consider the following diagram, where the unspec-
ified homomorphisms are inclusions:

0 Ej A E.(A)
_ (2.9)

Since A is 7-dense in E;(A) and E; is 7-injective, there exists a homomorphism g; :
E;(A) — Ej that extends p;. Then E; is a direct summand of E; (A), hence E;(A) = E; ® C;
for some submodule C; of E;(A). We have

(E-(4)) zéE@c] (@E)e(@%cj):ma(@cj). (2.10)

By hypothesis, (E;(A))™N) is 7-quasi-injective, hence A is T-quasi-injective by Lemma 2.15.
Denote I = {J;Z,I;. For each j, define a homomorphism f; : I/I, — E;j by fij(x+1,) =
x+1; for every x € I. Then we may define a homomorphism f : I/I; — Aby f(x+1;) =
(fi(x)); for every x € I. It is easy to check that f is well defined. Consider the following
diagram, where the unspecified homomorphisms are inclusions:

0 I/I] R/Il El
fl l (2.11)
A<-——————A

Note that I is 7-dense in R, hence I/ is 7-dense in R/I;. Clearly, R/I; is T-dense in E;.
Further, A/E; = @‘;’:2 Ej is T-torsion because each E; = E;(R/I;) is 7-torsion. Hence E; is
7-dense in A. It follows that I/I; is 7-dense in A. Now since A is T-quasi-injective, there
exists a homomorphism g : A — A that extends f. It follows that f(I/I;) < g(R/I;) € A.
Sincea =g(1+1;) € A,wehave f(I/I;) SRa c @?:1 E; for some positive integer 7. Then
In+1:n+2:"':I- ]

TaeOREM 2.17. Let J be a t-natural class and suppose that every T-injective module in J
is D.-T-injective. Then every T-quasi-injective module in J is > -T-quasi-injective.

Proof. Let A bea r-quasi-injective module in % and let I be a set. By hypothesis, (E,(A))!
is 7-injective. Then by Lemma 2.15, AY) is 7-quasi-injective. Hence A is > -7-quasi-
injective. 0
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THEOREM 2.18. Let X be a natural class. The following statements are equivalent.
(i) Every t-injective module in I is injective.
(ii) Every T-quasi-injective module in X is quasi-injective.

Proof. (i)=(ii). Let A be a 7-quasi-injective module in J¥. Then A is a fully invariant
submodule of E;(A). But E;(A) = E(A). Hence A is a fully invariant submodule of E(A),
that is, A is quasi-injective.

(ii)=(i). Let A be a 7-injective module in J{. Then A is a 7-quasi-injective module in
I, hence A is quasi-injective by hypothesis. Clearly, A @ E(A) € H{. Moreover, A & E(A)
is 7-injective, hence 7-quasi-injective. By hypothesis, A @ E(A) is quasi-injective. Now by
Lemma 2.8 applied for the improper torsion theory (i.e., the torsion theory whose torsion
class consists of all modules), it follows that A is injective. O

Remark 2.19. If I is a natural class and 7 is the improper torsion theory, Theorems 2.3,
2.7,2.9,2.13, 2.16 yield results of Page and Zhou [5, 6].
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