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We consider log-convex sequences that satisfy an additional constraint imposed on their
rate of growth. We call such sequences log-balanced. It is shown that all such sequences
satisfy a pair of double inequalities. Sufficient conditions for log-balancedness are given
for the case when the sequence satisfies a two- (or more-) term linear recurrence. It is
shown that many combinatorially interesting sequences belong to this class, and, as a
consequence, that the above-mentioned double inequalities are valid for all of them.

1. Introduction

One of the most common tasks in combinatorics is to find explicitly the size of a certain
finite set, depending on an integer parameter n and defined in an intricate way. Then the
next question usually asks how the sequence of numbers describing this size behaves for
large values of n. Of particular interest is logarithmic behavior of the sequence (i.e., its
log-convexity or log-concavity), since it is often instrumental in obtaining its growth rate
and asymptotic behavior. Also, log-behavior may qualify (or disqualify) a sequence as a
candidate for use in certain models. A good example is the recent use of log-convex se-
quences in quantum physics for constructing generalized coherent states associated with
models having discrete nonlinear spectra [12].

The literature on log-behavior of combinatorial sequences is vast; we refer the reader
to the book [10], and also to [5, 14, 16].

In this paper, we quantitatively refine the concept of log-convexity by introducing
and considering the class of log-balanced combinatorial sequences and showing that the
terms of such sequences satisfy certain double inequalities. We further proceed by deriv-
ing sufficient conditions for a (combinatorial) sequence given by a two-term linear ho-
mogeneous recurrence to be log-convex and log-balanced. We also indicate how to extend
this approach to longer recurrences and how to treat the case of nonhomogeneous recur-
rences. Finally, we demonstrate that the class of log-balanced sequences is rich enough to
include many cases of special combinatorial interest. As a consequence, we obtain new
pairs of inequalities for many classical sequences.
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2. Log-balanced sequences

A sequence (an)n≥0 of positive real numbers is log-convex if a2
n ≤ an−1an+1 for all n ≥ 1.

If the opposite inequality a2
n ≥ an−1an+1 is valid for all n ≥ 1, we say that the sequence

(an)n≥0 is log-concave. In case of equality, a2
n = an−1an+1, n ≥ 1, we call the sequence

(an)n≥0 geometric or log-straight. Another type of logarithmic behavior is that of the Fi-
bonacci sequence, where the direction of the inequality depends on the parity of n. We
call such sequences log-Fibonacci.

An alternative way of characterizing the log-behavior of a sequence is via the sequence
of quotients of its successive terms. We call the sequence (xn)n≥1, xn = an/an−1 the quotient
sequence of the sequence (an)n≥0. Obviously, the sequence (an)n≥0 is log-convex if and
only if its quotient sequence is nondecreasing. Similarly, (an)n≥0 is log-concave if and
only if its quotient sequence is nonincreasing, and log-Fibonacci if and only if no three
successive elements of the quotient sequence form a monotone subsequence.

In what follows, we consider log-convex sequences whose quotient sequence does not
grow too fast. We will also assume that a0 = 1, unless explicitly stated otherwise. This
restriction is not too severe, since in many combinatorially interesting cases we put a0 = 1
by convention.

A sequence (an)n≥0 of positive real numbers is log-balanced if (an)n≥0 is log-convex and
the sequence (an/n!)n≥0 is log-concave. In terms of quotient sequences, this means that
xn ≤ xn+1 ≤ ((n+ 1)/n)xn, for all n≥ 1.

The motivation for considering such sequences comes from the recent paper [2], where
it was shown that the sequences of Bell numbers of any order are of this type. Since this
property makes them suitable for providing important examples in white noise theory
[11], it is of interest to see whether there are some other such sequences and to character-
ize them.

We start by stating in terms of log-balanced sequences the following observation, made
in [2]. The proof is reproduced here for the reader’s convenience.

Proposition 2.1. Let (an)n≥0 be a log-balanced sequence. Then

(a) a2
n ≤ an−1an+1 ≤ (1 + 1/n)a2

n, n≥ 1;

(b) anam ≤ an+m ≤
(
n+m
n

)
anam, n,m≥ 0.

Proof. The double inequality (a) is just another way of stating the fact that the sequence
(an)n≥0 is log-balanced.

The left inequality of (b) follows easily (by induction) from the log-convexity of
(an)n≥0. To prove the right inequality, start from xn ≥ (n/(n+ 1))xn+1. By using this in-
equality repeatedly, we get

a1

a0
≥ 1

2
a2

a1
≥ 1

3
a3

a2
≥ ··· ≥ 1

m+n

am+n

am+n−1
, (2.1)

for all n≥ 0, m≥ 1.
Hence, for any 0≤ j ≤m− 1, we have

aj+1

aj
≥ j + 1

m+n

am+n

am+n−1
. (2.2)
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From this we get

a1

a0

a2

a1

a3

a2
··· am

am−1
≥
(

1
n+ 1

an+1

an

)(
2

n+ 2
an+2

an+1

)
···

(
m

m+n

am+n

an

)
. (2.3)

After the cancellations we get

am
a0
≥ n!m!

(m+n)!
am+n

an
, (2.4)

and, taking into account the fact that a0 = 1, we finally get

am+n ≤
(
m+n
n

)
anam. (2.5)

The case m= 0 is trivially valid for all n≥ 0. �

3. Sufficient conditions

For most sequences of combinatorial interest there are no explicit, closed form expres-
sions for their elements. On the other hand, one can often find recurrences and/or gen-
erating functions for them. So, direct ways of establishing the log-behavior of a given se-
quence (i.e., of proving inequalities of the type (a) from Proposition 2.1) are only rarely
at our disposal. Combinatorial proofs, which are the most desirable, often turn out to
be rather involved and/or tricky. (A nice survey of inductive and injective proofs of log-
concavity is given in [13].) Hence, it makes sense to seek analytical methods sufficiently
robust and easy to apply, and that will work for a reasonably broad class of sequences.
Here we present one such method that works almost automatically for sequences given
by recurrence relations. We start by explaining the method for the case of linear homoge-
neous recurrences of second order, and later we indicate how to modify this so that it can
be applied also on longer and/or nonhomogeneous recurrences.

Let (an)n≥0 be a sequence of positive real numbers, given by the two-term recurrence

an = R(n)an−1 + S(n)an−2, n≥ 2, (3.1)

with given initial conditions a0, a1. The quotient sequence (xn)n≥1 satisfies the nonlinear
recurrence

xn = R(n) +
S(n)
xn−1

, n≥ 2, (3.2)

with the initial condition x1 = a1/a0. We assume that the sequence (xn) is bounded by two
known sequences, that is, that there are sequences (mn) and (Mn) such that 0 <mn ≤ xn ≤
Mn, for all n∈N. The sequences (mn) and (Mn) can usually be rather easily inferred from
recurrence (3.2), or guessed from the initial behavior of the sequence (xn), and then the
bounding relations are verified by induction. In many cases even the constant sequences
mn =m and Mn =M will be sufficiently good lower and upper bounds for xn.

As the log-convexity is of considerable interest on its own, we first establish sufficient
conditions for a sequence (an) given by (3.1) to be log-convex. We assume that R(n)≥ 0
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and treat the cases S(n)≤ 0 and S(n)≥ 0 separately. The case S(n)≤ 0 is simpler and we
consider it first.

Assume, inductively, that xn0 ≤ xn0+1 ≤ ··· ≤ xn for some n0 ∈ N. Expressing xn+1

from (3.2) and taking into account that S(n+ 1)/xn ≥ S(n+ 1)/xn−1, we obtain

xn+1 = R(n+ 1) +
S(n+ 1)

xn
≥ R(n+ 1) +

S(n+ 1)
xn−1

. (3.3)

We want to prove that xn+1 ≥ xn. But this will follow if we prove the stronger inequality
in which xn+1 is replaced by the right-hand side in the above inequality. Hence, consider
the circumstance

R(n+ 1) +
S(n+ 1)
xn−1

≥ xn = R(n) +
S(n)
xn−1

, (3.4)

or, equivalently,

[
R(n+ 1)−R(n)

]
xn−1 + S(n+ 1)− S(n)≥ 0. (3.5)

By denoting R(n + 1)− R(n) = ∇R(n) and S(n + 1)− S(n) = ∇S(n), we get a compact
expression for the sufficient condition for the sequence (an) to be log-convex:

∇R(n)xn−1 +∇S(n)≥ 0, n≥ n0, (3.6)

for some n0 ∈N. Hence, we have established the following result.

Proposition 3.1. Let (an)n≥0 be a sequence of positive real numbers given by the two-term
recurrence (3.1), and (xn)n≥1 its quotient sequence, given by (3.2). If there is an n0 ∈N such
that xn0 ≤ xn0+1, R(n)≥ 0, S(n)≤ 0, and

∇R(n)xn−1 +∇S(n)≥ 0, (3.7)

for all n≥ n0, then the sequence (an)n≥n0 is log-convex.

When (as is a common case) the function R(n) is nondecreasing, the condition (3.6)
can be further simplified without significant loss of generality by assuming ∇R(n) ≥ 0
and replacing xn−1 by mn−1, or even by a constant m:

∇R(n)m+∇S(n)≥ 0, n≥ n0. (3.8)

The case S(n)≥ 0 is a bit more complicated. Again, we start from the inductive assump-
tion xn0 ≤ xn0+1 ≤ ··· ≤ xn and want to show that xn+1 ≥ xn. By expressing both sides of
this inequality via (3.2), we obtain

R(n+ 1) +
S(n+ 1)

xn
≥ R(n) +

S(n)
xn−1

. (3.9)
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This is equivalent to

xnxn−1∇R(n) + S(n+ 1)xn−1− S(n)xn ≥ 0. (3.10)

By adding the term S(n)xn−1− S(n)xn−1 to the left-hand side of the above inequality and
rearranging it, we obtain

∇R(n)xnxn−1 +∇S(n)xn−1 ≥ S(n)
(
xn− xn−1

)
. (3.11)

Expressing the term xn− xn−1 via (3.2) now yields

xn−1
[∇R(n)xn +∇S(n)

]≥ S(n)
[
∇R(n− 1) +

S(n)
xn−1

− S(n− 1)
xn−2

]
. (3.12)

Now, replacing S(n)/xn−1 with S(n)/xn−2 in the right-hand side square brackets, we get a
stronger inequality which can be written as

xn−1xn−2
[∇R(n)xn +∇S(n)

]≥ S(n)
[∇R(n− 1)xn−2 +∇S(n− 1)

]
. (3.13)

Obviously, this inequality implies xn+1 ≥ xn, and it can serve as a sufficient condition of
log-convexity for the sequence (an).

Proposition 3.2. Let (an)n≥0 be a sequence of positive real numbers given by the two-term
recurrence (3.1), and (xn)n≥1 its quotient sequence, given by (3.2). If there is an n0 ∈N such
that xn0 ≤ xn0+1, R(n)≥ 0, S(n)≥ 0, and the inequality

xn−1xn−2
[∇R(n)xn +∇S(n)

]≥ S(n)
[∇R(n− 1)xn−2 +∇S(n− 1)

]
(3.14)

is valid for all n≥ n0, then the sequence (an)n≥n0 is log-convex.

Again, in many combinatorially relevant cases where ∇R(n)≥ 0 and m≤ xn ≤M, the
sufficient condition of Proposition 3.2 can be simplified to

m2[m∇R(n) +∇S(n)
]≥ S(n)

[
M∇R(n− 1) +∇S(n− 1)

]
. (3.15)

Typically, Propositions 2.1 and/or 3.1 are applied so that the respective inequalities are
verified inductively for all n∈N greater than some n0, and the remaining cases are then
checked by hand or using some computer algebra system.

Now we turn our attention to the inequality xn+1 ≤ ((n+ 1)/n)xn. Again, we assume
R(n) ≥ 0 and treat the cases S(n) ≤ 0 and S(n) ≥ 0 separately. Also, we assume that the
log-convexity of the sequence (an) is already established, that is, that the sequence (xn) is
increasing.

We first consider the simpler case R(n)≥ 0, S(n)≥ 0 and find the sufficient conditions
for xn+1 ≤ ((n+ 1)/n)xn as follows. From the recurrence (3.2) we have

xn+1 = R(n+ 1) +
S(n+ 1)

xn
. (3.16)
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Since the sequence (xn)n≥1 is nondecreasing, we have

xn+1 ≤ R(n+ 1) +
S(n+ 1)
xn−1

. (3.17)

The condition that the right-hand side does not exceed ((n+ 1)/n)xn is given by

R(n+ 1) +
S(n+ 1)
xn−1

≤ n+ 1
n

(
R(n) +

S(n)
xn−1

)
, (3.18)

and this is equivalent to

nR(n+ 1)xn−1 +nS(n+ 1)≤ (n+ 1)R(n)xn−1 + (n+ 1)S(n). (3.19)

Denoting

∆R(n)=
∣∣∣∣∣ R(n) n
R(n+ 1) n+ 1

∣∣∣∣∣ , ∆S(n)=
∣∣∣∣∣ S(n) n
S(n+ 1) n+ 1

∣∣∣∣∣ , (3.20)

we get our sufficient conditions in the form

∆R(n)xn−1 +∆S(n)≥ 0. (3.21)

Hence, we have established the following result.

Proposition 3.3. Let (an)n≥0 be a log-convex sequence of positive real numbers given by
the two-term recurrence (3.1). If there is an n0 ∈ N such that xn0+1 ≤ ((n0 + 1)/n0) xn0 ,
R(n)≥ 0, S(n)≥ 0, and

∆R(n)xn−1 +∆S(n)≥ 0, (3.22)

for all n≥ n0, then the sequence (an)n≥0 is log-balanced.

The case S(n) ≤ 0 is a bit more complicated. We proceed by induction on n. First we
check that xn0+1≤ ((n0 + 1)/n0)xn0 for some n0 ∈N, and suppose that xk ≤ (k/(k− 1))xk−1

for all n0 ≤ k ≤ n. Denoting −S(n)= S̃(n), we get

xn+1 = R(n+ 1)− S̃(n+ 1)
xn

, S̃(n+ 1)≥ 0. (3.23)

From the induction hypothesis, xn ≤ (n/(n− 1))xn−1, it follows that 1/xn ≥ ((n− 1)/
n)(1/xn−1), and hence −1/xn ≤−((n− 1)/n)(1/xn−1). Now we have

xn+1 = R(n+ 1)− S̃(n+ 1)
xn

≤ R(n+ 1)− n− 1
n

S̃(n+ 1)
xn−1

. (3.24)
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The right-hand side does not exceed ((n+ 1)/n)xn if

R(n+ 1)− n− 1
n

S̃(n+ 1)
xn−1

≤ n+ 1
n

(
R(n)− S̃(n)

xn−1

)
, (3.25)

and this is, in turn, equivalent to

[
(n+ 1)R(n)−nR(n+ 1)

]
xn−1 + (n− 1)S̃(n+ 1)− (n+ 1)S̃(n)≥ 0. (3.26)

The coefficient of xn−1 is ∆R(n), and the rest can be written as

∣∣∣∣∣n− 1 S̃(n)
n+ 1 S̃(n+ 1)

∣∣∣∣∣=
∣∣∣∣∣ S(n) n− 1
S(n+ 1) n+ 1

∣∣∣∣∣ . (3.27)

Denoting the right-hand side determinant by ∆S(n), we get the desired sufficient condi-
tions:

∆R(n)xn−1 +∆S(n)≥ 0. (3.28)

We can summarize.

Proposition 3.4. Let (an)n≥0 be a log-convex sequence of positive real numbers given by
the two-term recurrence (3.1) with R(n) ≥ 0, S(n) ≤ 0. If there is an integer n0 such that
xn0+1 ≤ ((n0 + 1)/n0)xn0 , and if the inequality

∆R(n)xn−1 +∆S(n)≥ 0 (3.29)

holds for all n≥ n0, then the sequence (an)n≥n0 is log-balanced.

4. Examples

We now justify our introduction of log-balanced sequences by demonstrating that the
class is wide enough and that it includes many sequences of combinatorial relevance.
As a consequence, for all our examples we establish the validity of inequalities from
Proposition 2.1. The left inequalities for some of the considered sequences were estab-
lished earlier [1, 9], but the right inequalities are, with one exception [8], to the best of
our knowledge, new. For more details on all the considered sequences, we refer the reader
to the book [15] and to the references therein.

Our first example is the sequence of Motzkin numbers (see, e.g., [15, Exercise 6.38] for
its combinatorial interpretations).

Corollary 4.1. The sequence Mn of Motzkin numbers is log-balanced.

Proof. The log-convexity of Mn was first established algebraically in [1], and a combi-
natorial proof appeared soon afterwards [6]. By our method it follows easily by starting



514 Log-balanced combinatorial sequences

from the recurrence

Mn = 2n+ 1
n+ 2

Mn−1 +
3(n− 1)
n+ 2

Mn−2, n≥ 2, (4.1)

with M0 =M1 = 1. Here R(n) = (2n+ 1)/(n+ 2) ≥ 0, S(n) = 3(n− 1)/(n+ 2) ≥ 0. It is
easy to prove by induction on n that 2 ≤Mn/Mn−1 ≤ 7/2 for all n ≥ 2, and the log-
convexity follows by computing ∇R(n), ∇S(n), ∇R(n− 1), and ∇S(n− 1) and then ver-
ifying the inequality (3.15). From the fact that ∆R(n)= (2n2 + 4n+ 3)/(n+ 2)(n+ 3)≥ 0,
∆S(n) = (n2−n− 3)/(n+ 2)(n+ 3) ≥ 0, and xn−1 ≥ 0 for all n ≥ 3, it follows that
∆R(n)xn−1 + ∆S(n) ≥ 0 for all n ≥ 3. The log-balancedness of (Mn) now follows from
Proposition 3.3, after direct verification of the defining inequality for the remaining val-
ues of n. �

Our next example is the sequence of Fine numbers. The reader may consult the recent
survey [7] for more details on Fine numbers and on their combinatorial interpretations.

Corollary 4.2. The sequence Bn of Fine numbers is log-balanced for n≥ 2.

Proof. We start from the recurrence

Bn = 7n− 5
2n+ 2

Bn−1 +
2n− 1
n+ 1

Bn−2, n≥ 2, (4.2)

with initial conditions B0 = 1 and B1 = 0. The quotient sequence, xn = Bn/Bn−1, is de-
fined for n≥ 3. It is easy to show, by induction on n, that 3≤ xn ≤ 6 for all n≥ 3. In fact,
3≤ xn−1 ≤ 6 implies 3≤ xn ≤ 6 via the above recurrence for n≥ 7, and xn is obviously be-
tween 3 and 6 for n= 3,4,5, and 6. We proceed by computing ∇R(n)= 6/(n+ 1)(n+ 2),
∇S(n)= 4/(n+ 1)(n+ 2),∇R(n− 1)=6/n(n+ 1), and∇S(n− 1)=4/n(n+ 1). After plug-
ging in these expressions, condition (3.15) becomes

10n2− 30n+ 80≥ 0, (4.3)

and this is true for all n ∈ N. Hence, the sequence (Bn)n≥2 is log-convex. The log-
balancedness now follows by computing ∆R(n) = (7n− 10)/2(n+ 2), ∆S(n) = 2((n− 1)/
(n+ 2)), and applying Proposition 3.3. �

The Franel numbers of order r are defined by

F(r)
n =

n∑
k=0

(
n
k

)r

. (4.4)

Corollary 4.3. The sequences of Franel numbers of order 3 and 4 are log-balanced.

Proof. It is known that Franel numbers of order r satisfy a homogeneous linear recur-
rence of order �(r + 1)/2� with polynomial coefficients (see [15, pages 245-246 and page
278]). We have

F(r)
n = R(r)(n)F(r)

n−1 + S(r)(n)F(r)
n−2, r = 3,4, n≥ 2, (4.5)
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with F(3)
0 = F(4)

0 = 1, F(3)
1 = F(4)

1 = 2. Here

R(3)(n)= 7n2− 7n+ 2
n2

, S(3)(n)= 8(n− 1)2

n2
,

R(4)(n)= 2
6n3− 9n2 + 5n− 1

n3
, S(4)(n)= (4n− 3)(4n− 4)(4n− 5)

n3
.

(4.6)

Obviously, all coefficient functions are nonnegative. We work out the case r = 3 and leave
the details for r = 4 to the interested reader. By examining first few values of xn, one can
note that they are slowly increasing, starting from x2 = 5. Indeed, the bounds 5≤ xn ≤ 9
are readily established by induction on n for n ≥ 3. The log-convexity now follows by
computing∇R(n),∇S(n),∇R(n− 1),∇S(n− 1), and verifying the inequality (3.15) with

m= 5, M = 9. To prove the log-balancedness of (F(3)
n ), we start by computing

∆R(3) (n)= (n− 1)
(
7n3 + 7n2−n− 2

)
n2(n+ 1)2

, ∆S(3) (n)= 8
(
n4− 2n3− 2n2 +n+ 1

)
n2(n+ 1)2

.

(4.7)

It is easy to check that these determinants are positive for n≥ 3, and that the conditions
of Proposition 3.3 are valid for n= 2.

Proof of the case r = 4 is a bit more technical, but it flows along the same lines, and
does not present any conceptual difficulties. �

We now turn our attention to the recurrences with S(n) ≤ 0. Such examples include,
among others, Schröder numbers, Delannoy numbers and, more generally, sequences of
values of Legendre polynomials. We start with a sequence closely connected with Franel
numbers of order 3.

The Apéry numbers, (An)n≥0, given by the formula

An =
n∑

k=0

(
n
k

)2(
n+ k
k

)2

=
n∑

k=0

[
(n+ k)!

]2

(k!)4
[
(n− k)!

]2 , (4.8)

arose in Apéry’s proof of irrationality of ζ(2) and ζ(3). They are connected with Franel
numbers of order 3 via the identity

An =
n∑

k=0

(
n
k

)(
n+ k
k

)
F(3)
k , n≥ 0 (4.9)

(see [17] for history of this result). The first few Apéry numbers are 1,5,73,1445,33001,
819005, . . . .

Corollary 4.4. The sequence An of Apéry numbers is log-balanced.

Proof. We start from the recurrence

An = 34n3− 51n2 + 27n− 5
n3

An−1− (n− 1)3

n3
An−2, n≥ 2, (4.10)
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with initial conditions A0 = 1, A1 = 5 (see [4]). It is easy to prove by induction on n that
xn ≥ 1, that is, that the sequence of Apéry numbers is increasing. Hence we may take
m= 1 as the lower bound for xn. Now the expression∇R(n) +∇S(n) can serve as a lower
bound for the expression (3.8), and the log-convexity of Apéry numbers follows from the
inequality

∇R(n) +∇S(n)= 1
n3(n+ 1)3

[
50n4 + 52n3− 10n2− 12n+ 4

]≥ 0, (4.11)

valid for all n ≥ 0. For the rest, first note that x3 = 1445/73 ≤ (3/2)x2, so we can take
n0 = 2. After computing ∆R(n) and ∆S(n), we get

∆R(n)= 34n6− 72n4− 28n3 + 27n2 + 7n− 5
n3(n+ 1)3

,

∆S(n)= (n− 1)
(
n2−n− 1

)(
2n3 +n2−n− 1

)
n3(n+ 1)3

.

(4.12)

Both determinants are positive for n≥ 2, and the claim follows from Proposition 3.2. �

Corollary 4.5. The sequence rn of large Schröder numbers is log-balanced.

Proof. Start from the recurrence

rn = 3(2n− 1)
n+ 1

rn−1− n− 2
n+ 1

rn−2, n≥ 2, (4.13)

with initial conditions r0 = 1, r1 = 2 (see [15]). By computing the first few values of xn =
rn/rn−1, we guess the bounds 3 ≤ xn ≤ 6 and verify them by induction for all n ≥ 2. The
log-convexity of (rn) follows now by plugging the expressions ∇R(n) = 9/(n+ 1)(n+ 2)
and∇S(n)=−3/(n+ 1)(n+ 2) in formula (3.8), together with xn−1 ≥ 3. To prove the rest,
we compute

∆R(n)= 6
n− 1
n+ 2

, ∆S(n)= 5− 2n
n+ 2

(4.14)

and note that ∆R(n)xn−1 + ∆S(n) ≥ 3∆R(n)xn−1 + ∆S(n) ≥ 0 for all n ≥ 1. Hence, by
Proposition 3.4, the sequence (rn) is log-balanced. �

For combinatorial interpretations of rn, the reader may wish to consult [15, Exercise
6.39].

Our next example is the sequence of values of Legendre polynomials in some fixed real
t ≥ 1.

Corollary 4.6. The sequence of values of Legendre polynomials (Pn(t))n≥0 is log-balanced
for all real t ≥ 1.
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Proof. We start from Bonnet recurrence:

Pn(t)= 2n− 1
n

tPn−1(t)− n− 1
n

Pn−2(t), n≥ 2, (4.15)

with the initial conditions P0(t) = 1, P1(t) = t. Passing to the recursion for the quotient
sequence xn(t) = Pn(t)/Pn−1(t), we can easily establish the lower bound xn(t) ≥ t. By
putting this lower bound, together with the expressions∇R(n)= 2/n(n+ 1) and∇S(n)=
−1/n(n+ 1) in formula (3.8), we obtain the log-convexity of the sequence (Pn(t))n≥0. Fur-
ther, by computing ∆R(n) and ∆S(n), we get

∆R(n)= 2n2− 1
n(n+ 1)

, ∆S(n)= −2n2 +n+ 1
n(n+ 1)

. (4.16)

If we suppose that ∆R(n)xn−1(t) +∆S(n) < 0 for some n≥ 2, we get xn−1(t) < (1/t)((2n2−
n− 1)/(2n2− 1)) < 1/t < t, in contradiction with xn−1(t)≥ x1(t)= t. Hence, the inequal-
ity∆R(n)xn−1(t) +∆S(n)≥ 0 holds for all n≥ 2, and the claim again follows from Proposi-
tion 3.4. �

By specializing the value of t = 3, we get the sequence of central Delannoy numbers,
Dn = Pn(3) [15].

Corollary 4.7. The sequence Dn of central Delannoy numbers is log-balanced.

The sequence Dn counts the lattice paths from (0,0) to (n,n) using only the steps (1,0),
(0,1), and (1,1). Equivalently, it counts king paths from the lower left to the upper right
corner of an (n+ 1)× (n+ 1) chess board.

In all examples considered so far, the sequence (xn) was increasing, but remained
bounded. Our final example in this section shows that the same reasoning can be ap-
plied to the sequences whose quotient sequence increases unboundedly.

Corollary 4.8. Let (an) be the sequence counting directed column-convex polyominoes of
height n. (See [3] for the definition of these objects.) The sequence (an) is log-balanced.

Proof. From the recurrence

an+1 = (n+ 1)an + a1 + a2 + ···+ an, n≥ 3, (4.17)

with initial conditions a1 = 1, a2 = 3, given in [3], one can easily obtain the two-term
recurrence

an = (n+ 2)an−1− (n− 1)an−2, n≥ 3, (4.18)

with a1 = 1, a2 = 3. It can easily be shown by induction on n that the sequence xn =
an/an−1 is interlaced with the sequence bn = n+ 1, that is, that n+ 1≤ xn ≤ n+ 2. Hence
the sequence (xn) is increasing, and (an) is log-convex. TakingR(n)= n+ 2, S(n)=−n+ 1,
we get ∆R(n) = 2, ∆S(n) = 1− n. Suppose that ∆R(n)xn−1(t) +∆S(n) < 0 for some n ≥ 3.
It follows that xn−1 < (n− 1)/2, contradicting the interlacing of xn and bn. The claim now
follows by checking the base of induction, that is, that x3 = 13/3≤ (3/2) · 3= (3/2)x2. �



518 Log-balanced combinatorial sequences

5. Further developments

The method exposed in Section 3 can be extended to the sequences given by a three- (or
more-) term recurrence in a straightforward way. As an illustration, we treat here the case
when all coefficient functions are positive and increasing.

Let (an) be a sequence of positive real numbers given by the recurrence

an = R(n)an−1 + S(n)an−2 +T(n)an−3, n≥ 3, (5.1)

with given initial conditions a0, a1, and a2. Then the recurrence for the quotient sequence
is given by

xn = R(n) +
S(n)
xn−1

+
T(n)

xn−1xn−2
(5.2)

for n ≥ 3. We suppose inductively that xn0 ≤ xn0+1 ≤ ··· ≤ xn for some n0 ∈ N, and we
want to find sufficient conditions for xn+1 ≥ xn. This inequality can be stated as

R(n+ 1) +
S(n+ 1)

xn
+

T(n)
xnxn−1

−R(n)− S(n)
xn−1

− T(n)
xn−1xn−2

≥ 0, (5.3)

or equivalently

xnxn−1xn−2∇R(n) + xn−2
[
xn−1S(n+ 1)− xnS(n)

]
+ xn−2T(n+ 1)− xnT(n)≥ 0. (5.4)

Now we proceed by a sequence of strengthenings of this inequality, leading to a sufficient
condition that will be expressed in quantities known and reasonably easy to check. First
we replace S(n+ 1) and T(n+ 1) by S(n) and T(n), respectively. This yields

xnxn−1xn−2∇R(n) + xn−2S(n)
(
xn−1− xn

)
+T(n)

(
xn−2− xn

)≥ 0. (5.5)

By adding xn−1− xn−1 to the term xn−2− xn and grouping the terms accordingly, we ob-
tain

xnxn−1xn−2∇R(n) +
[
xn−2S(n) +T(n)

](
xn−1− xn

)
+T(n)

(
xn−2− xn−1

)≥ 0. (5.6)

We now look more closely at the term xn−1 − xn. By inductive hypothesis, it must be
nonpositive, but we do not have any information about its magnitude. Expressing xn−1

and xn via recurrence (5.2) yields

xn−1− xn =−∇R(n− 1) +
1

xn−1xn−2

[
xn−1S(n− 1)− xn−2S(n)

]
+

1
xn−1xn−2xn−3

[
xn−1T(n− 1)− xn−3T(n)

]
.

(5.7)

By replacing xn−1 in the first square brackets on the right-hand side of the above relation
by xn−2, and in the second square brackets by xn−3, one obtains the following inequality:

xn−1− xn ≥−∇R(n− 1)− 1
xn−1

∇S(n− 1)− 1
xn−1xn−2

∇T(n− 1). (5.8)
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Similarly,

xn−2− xn−1 ≥−∇R(n− 2)− 1
xn−2

∇S(n− 2)− 1
xn−2xn−3

∇T(n− 2). (5.9)

Plugging in formulae (5.8) and (5.9) in (5.6), we obtain the inequality

xnxn−1xn−2∇R(n)

≥ [xn−2S(n) +T(n)
][∇R(n− 1) +

1
xn−1

∇S(n− 1) +
1

xn−1xn−2
∇T(n− 1)

]
+T(n)

[
∇R(n− 2) +

1
xn−2

∇S(n− 2) +
1

xn−2xn−3
∇T(n− 2)

]
.

(5.10)

Finally, by replacing the values of xn, xn−1, xn−2, and xn−3 by their lower and upper
bounds, we arrive at the following inequality:

m3∇R(n)≥ [M · S(n) +T(n)
][∇R(n− 1) +

1
m
∇S(n− 1) +

1
m2
∇T(n− 1)

]
+T(n)

[
∇R(n− 2) +

1
m
∇S(n− 2) +

1
m2
∇T(n− 2)

]
.

(5.11)

Obviously, inequality (5.11) implies inequality (5.6), and this one, in turn, implies our
initial inequality xn+1 ≥ xn. Hence, inequality (5.11) provides a sufficient condition of
log-convexity for the sequence (an).

Now, assuming the log-convexity of (an), by following the same reasoning as in the
proof of Proposition 3.3, we obtain sufficient conditions of log-balancedness of (an) in
the form

∆R(n)xn−1xn−2 +∆S(n)xn−2 +∆T(n)≥ 0, (5.12)

where ∆R(n) and ∆S(n) are as before, and ∆T(n) is defined analogously.
As an illustration of this result, we prove that the sequence (Rn), counting the Baxter

permutations of size n, is log-balanced. (See [15, page 246 and pages 278-279] for more
details on Baxter permutations.) The numbers Rn satisfy a third-order linear recurrence
with the coefficient functions given by

R(n)= 2
9n3 + 3n2− 4n+ 4

(n+ 2)(n+ 3)(3n− 2)
,

S(n)= (3n− 1)(n− 2)
(
15n2− 5n− 14

)
(n+ 1)(n+ 2)(n+ 3)(3n− 2)

,

T(n)= 8
(3n+ 1)(n− 2)2(n− 3)

(n+ 1)(n+ 2)(n+ 3)(3n− 2)
.

(5.13)
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With a bit of help from a computer algebra system such as, for example, Mathematica, it
can be proved that 7≤ xn ≤ 9 for n≥ 47. Verifying the inequality (5.11) then boils down
to checking that a certain rational function of n (with the degrees of the numerator and
denominator equal to 12 and 14, resp.) is nonnegative for sufficiently large values of the
argument. By substituting n+ 3 in place of n, it becomes obvious that all the coefficients
become positive, and hence, the function cannot change the sign for n≥ 3. The increas-
ing behavior of xn for n≤ 47 is easily checked by direct computation. Hence the sequence
(Rn) is log-convex. To prove the log-balancedness, it is easy to check that all three deter-
minants

∆R(n)= 27n5 + 18n4 + 3n3 + 76n2 + 100n+ 16
(n+ 1)(n+ 2)(n+ 3)(n+ 4)(3n+ 1)(3n− 2)

,

∆S(n)= 135n5− 990n4 + 87n3 + 1036n2 + 4n− 112
(n+ 1)(n+ 2)(n+ 3)(n+ 4)(3n+ 1)(3n− 2)

,

∆T(n)= 9n5− 138n4 + 349n3− 80n2− 252n− 48
(n+ 1)(n+ 2)(n+ 3)(n+ 4)(3n+ 1)(3n− 2)

(5.14)

are positive for n ≥ 13, and the log-balancedness of (Rn) follows by directly verifying
defining inequalities in the remaining cases. All the Mathematica calculations necessary
for verifying the above inequalities were performed exactly.

The scope of our approach can also be extended in another direction, namely, to lin-
ear nonhomogeneous recurrences. Here we indicate, after the fashion of [9], how such
recursions can be transformed in a form suitable for application of our method. So, for
example, let (an) be given by a linear nonhomogeneous recurrence of the first order:

an = R(n)an−1 + S(n) (5.15)

with the initial condition a0. By writing down the recurrence (5.15) for successive in-
dices, multiplying and subtracting as to cancel the nonhomogeneous part, one obtains
the homogeneous second-order linear recurrence for an:

an =
[
R(n) +

S(n)
S(n− 1)

]
an−1− R(n− 1)S(n)

S(n− 1)
an−2. (5.16)

By denoting R∗(n) = R(n) + (S(n)/S(n− 1)), S∗(n) = −(R(n− 1)S(n)/S(n− 1)), and di-
viding through by an−1, we get a recurrence for xn of the type (3.2) and the further treat-
ment depends on the combination of signs of R∗(n) and S∗(n).

Similarly, for a second-order linear recurrence

an = R(n)an−1 + S(n)an−2 +T(n), (5.17)

we obtain

xn = R(n) +
S(n)
xn−1

+
T(n)

T(n− 1)

[
1− R(n− 1)

xn−1
− S(n− 1)
xn−1xn−2

]
. (5.18)

Then we can proceed as before.
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Finally, a word of caution. It would be hasty to conclude, from the cited examples, that
all combinatorially interesting sequences are log-balanced. For example, the sequences
an = (n!)2, an = (n− 1)!, and an =

∑n
k=0 k! are not log-balanced, since their quotient se-

quences grow too fast. It is also interesting to note that the property of log-balancedness
is not shift-invariant; one can easily see that the sequence (n+ 1)! is log-balanced, while
(n− 1)! is not.

One could, in principle, consider an alternative approach to the question of log-
balancedness, that is, in a sense dual to ours. One could take a log-concave sequence
(an) and ask for the sufficient conditions for the sequence (n!an) to be log-convex. Since
it appears that the log-convex sequences are much more common among the sequences
of combinatorial interest, we will not pursue this alternative approach here.
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