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We consider quasilinear elliptic variational-hemivariational inequalities involving the in-
dicator function of some closed convex set and a locally Lipschitz functional. We pro-
vide a generalization of the fundamental notion of sub- and supersolutions, on the basis
of which we then develop the sub-supersolution method for variational-hemivariational
inequalities, including existence, comparison, compactness, and extremality results.

1. Introduction

Let QO C RY be a bounded domain with Lipschitz boundary 9Q, and let V = W#(Q)
and Vy = Wol’P (Q), 1 < p < o0, denote the usual Sobolev spaces with their dual spaces V*
and V", respectively. In this paper, we deal with the following quasilinear variational-
hemivariational inequality:

ueK:(Au—f,v—u)-kJ j’(usv—u)dx=0 VveK, (1.1)
Q

where j°(s;7) denotes the generalized directional derivative of the locally Lipschitz func-
tion j: R — R at s in the direction r given by

jo(s;7) = limsup 1 TN =I0),

1.2
y—s5,ti0 t ( )

(cf., e.g., [6, Chapter 2]), f € V{7, and K is a closed and convex subset of V. The operator
A:V — V{ is a second-order quasilinear differential operator in divergence form:

N9 ou ou
;a— i (%, Vu(x)) w1thVu—<a—xl,...,a). (1.3)

The main goal of this paper is to develop the sub-supersolution method for variational-
hemivariational inequalities of form (1.1). Problem (1.1) includes various special cases.
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(i) For K = Vyand j : R — R smooth, (1.1) is the weak formulation of the Dirichlet
problem

ueVo:Au+j'(u)=f inV{, (1.4)

for which the sub-supersolution method is well known.
(ii) If K = Vo, and j: R — R not necessarily smooth, then (1.1) is a hemivariational
inequality of the form

ue VO:(Au—f,v—u)+J (v —u)dx=0 VveV, (1.5)
Q

for which an extension of the sub-supersolution method has been given recently
in [3].

(iii) If j =0, then (1.1) becomes a variational inequality for which a sub-supersolution
method has been developed in [8, 9].

This paper continues the work on the extension of the sub-supersolution method started
with the papers by Carl, Le, and Motreanu in [2, 3, 8, 9] to develop a strongly generalized
and unified theory that includes all the above cited special cases.

2. Notation and hypotheses

We assume the following hypotheses of Leray-Lions type on the coefficient functions a;,
i=1,...,N, of the operator A.

(A1) Each a;: Q X RN — R satisfies the Carathéodory conditions, that is, a;(x,&) is
measurable in x € Q for all £ € RN and continuous in ¢ for almost all x € Q.
There exist a constant ¢y > 0 and a function ko € L1(Q),1/p + 1/q = 1, such that

|ai(x,&)| < ko(x)+colélP7! (2.1)

fora.e. x € Q and forall £ € RN,

(A2)
N
> (ai(x,8) — ai(x,€) (& - &) >0 (2.2)
-1
fora.e.x € Q,and forall £, € RN with & £ ¢&'.
(A3)

N
> ai(x,E)& = vIEIP — ki (x) (2.3)
i-1

for a.e. x € Q, and for all £ € RN with some constant v > 0 and some function
ki € LY(Q).
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As a consequence of (A1), (A2) the semilinear form a associated with the operator A

by
N P)
(Au, ) :=alu,@) = J zai(x,Vu)gdx VeV (2.4)
Qg i

is well defined for any u € V, and the operator A : Vy — V{* is continuous, bounded, and
strictly monotone. For functions w,z: Q — R and sets W and Z of functions defined on
Q we use the following notations: w A z = min{w,z}, w vV z = max{w,z}, WA Z = {w A
zlweW,zeZ}, WvZ={wvz|lweW,zeZl,andwAZ={w}AZ, wVvZ=
{w} Vv Z. Next we introduce our basic notion of sub-supersolution.

Definition 2.1. A function u € V is called a subsolution of (1.1) if the following holds:
(i) u <0 on 0Q,
(i) (Au— f,v—u)+ [oj°(usv —u)dx > 0, forallv € u A K.
Definition 2.2. i1 € V is a supersolution of (1.1) if the following holds:
(i) # = 0 on 0Q),
(ii) (Aa— f,v—a)+ [ojo(asv —i)dx = 0, forallv e 1 v K.

Note that the notion of sub-supersolution introduced here extends that for inclusions
of hemivariational type introduced in [4, 5] and those for variational or hemivariational
inequalities in [3, 8, 9].

Letdj: R — 28\ {@} denote Clarke’s generalized gradient of j defined by

2j(s):={{eR|j%sr)={r, Vr e R}. (2.5)

We assume the following hypothesis for j.

(H) The function j: R — R is locally Lipschitz and its Clarke’s generalized gradient
0] satisfies the following growth conditions:
(i) there exists a constant ¢; > 0 such that

SLi=&H+a (52—51)1071 (2.6)

forall § € 0j(s;), i = 1,2, and for all 51, s, with s; < s,
(ii) there is a constant ¢, > 0 such that

£€0j(s): €l <ca(1+1sIP7!) VseR. (2.7)

Let LP(Q) be equipped with the natural partial ordering of functions defined by u < w
if and only if w — u belongs to the positive cone L} (Q) of all nonnegative elements of
LP(Q). This induces a corresponding partial ordering also in the subspace V of LP(Q),
and if u,w € V with u < w, then

(uwl={ze V] iu<z<w} (2.8)

denotes the ordered interval formed by u and w.
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In the proofs of our main results we make use of the cut-off function b: Q xR — R
related to an ordered pair of functions u < #, and given by

(s—a(x)""  ifs>ax),
if u(x) <s <ua(x), (2.9)
—(u(x)=5)"" i s<u(x),

b(x,s) =

o

One readily verifies that b is a Carathéodory function satisfying the growth condition
|b(x,s)| <k(x)+cs|s|P! (2.10)

for a.e. x € Q, for all s € R, with some function k € Lz(Q) and a constant ¢3 > 0. More-
over, one has the following estimate

JQ b(x,u(x))u(x)dx = c4 ||u||€p(m —cs YueLP(Q), (2.11)

where ¢, and ¢5 are some positive constants. In view of (2.10) the Nemytskij operator
B:LP(Q) — L1(Q) defined by

Bu(x) = b(x,u(x)) (2.12)

is continuous and bounded, and thus due to the compact embedding V c LP(Q) it fol-
lows that B: V — V" is compact.

3. Preliminaries

In this section, we briefly recall a surjectivity result for multivalued mappings in reflexive
Banach spaces (cf., e.g., [10, Theorem 2.12]) which among others will be used in the proof
of our main result in this section.

Tueorem 3.1. Let X be a real reflexive Banach space with dual space X*, ® : X — 2%
a maximal monotone operator, and uy € dom(®). Let A : X — 2X" be a pseudomonotone
operator, and assume that either A, is quasibounded or @, is strongly quasibounded. As-
sume further that A: X — 2X* is uy-coercive, that is, there exists a real-valued function
c: Ry = Rwith c(r) — 400 as r — 400 such that for all (u,u*) € graph(A), (u™,u—ug) =
c(llullx) lullx holds. Then A + @ is surjective, that is, range(A + @) = X*.

The operators A, and ®,, that appear in the theorem above are defined by A, (v) :=
A(up +v) and similarly for ®,,. As for the notion of quasibounded and strongly quasi-
bounded, we refer to [10, page 51]. In particular, one has that any bounded operator is
quasibounded and strongly quasibounded as well. The following proposition provides
sufficient conditions for an operator A : X — 2X" to be pseudomonotone, which is suit-
able for our purpose.

ProPOSITION 3.2. Let X be a real reflexive Banach space, and assume that A : X — 2X°
satisfies the following conditions:

(i) for each u € X, A(u) is a nonempty, closed, and convex subset of X*;
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(i) A: X — 2X7 is bounded;

(iii) if u, — win X and u}y — vu* in X* with u}} € A(u,) and if
limsup(u,u, —u) <0, then u* € A(u) and (u}t,u,) — (u*,u).

Then the operator A : X — 2X" is pseudomonotone.

As for the proof of Proposition 3.2 we refer, for example, to [10, Chapter 2].

4. Existence and comparison result

The main result of this section is given by the following theorem which provides an exis-
tence and comparison result for the variational-hemivariational inequality (1.1).

TaEOREM 4.1. Let it and u be super- and subsolutions of (1.1), respectively, satisfying u < i,
and assume it A K C K and uv K C K. Then under hypotheses (A1)—(A3) and (H), there
exist solutions of (1.1) within the ordered interval [u,u].

Proof. Let Ix : Vo — RU {+00} denote the indicator function related to the given closed
convex set K # @ and defined by

L () = 0 ifuek, 1)
K= +oo  ifuéK, ’

which is proper, convex, and lower semicontinuous. By means of the indicator function
the variational-hemivariational inequality (1.1) can be rewritten in the following form.
Find u € K such that

(Au— f,v—u) +Ix(v) — Ix(u) +L)j°(u;v— u)dx>0 VvelV,. (4.2)

Since we are looking for solutions of (4.2) within [u, ], we consider the following auxil-
iary problem: Find u € K such that

(Au— f+AB(u),v—u) +Ix(v) — Ix(u) + JQ JPwv—u)dx>=0 VveV,, (4.3)

where B is the cut-off operator introduced in Section 2, and A > 0 is some parameter to
be specified later. As will be seen in the course of the proof, the role of AB is twofold. First
it provides a coercivity generating term, and second, it allows for comparison. The proof
of the theorem will be done in two steps. In Step 1 we prove the existence of solutions
of auxiliary problem (4.3), and in Step 2 we are going to show that any solution of (4.3)
belongs to the interval [u, ], which completes the proof, since then B(u) = 0 and (4.2)
holds.

Step 1 (existence for (4.3)). We introduce the functional J : L?(Q}) — R defined by

T(v) = JQj(v(x))dx Vv € LP(Q), (4.4)
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which by hypothesis (H) is locally Lipschitz, and moreover, by Aubin-Clarke theorem
(see [6, page 83]) for each u € LP(Q)) we have

Eedj(u) =& L1(Q) withé&(x) €9j(u(x)) fora.e. x € Q. (4.5)
Consider now the multivalued operator
A+AB+0d(J|y,) +olx : Vo — 27, (4.6)

where ]|y, denotes the restriction of ] to Vj and 0l is the subdifferential of Ix in the sense
of convex analysis. It is well known that ® := dIx : V) — 2V% is a maximal monotone op-
erator (cf,, e.g., [11]). Since A : Vy — V{ is strictly monotone, bounded, and continuous,
and AB: V — V{ is bounded, continuous, and compact, it follows that A+ AB: V — V{
is a (single-valued) pseudomonotone, continuous, and bounded operator. In [3], it has
been shown that o(J |v,) : Vo — 2V is a (multivalued) pseudomonotone operator, which,
due to (H), isbounded. Thus Ag:= A+ AB+9(Jlv,) : Vo — 2V isa pseudomonotone and
bounded operator. Hence, it follows by Theorem 3.1 that range(A + ®) = V" provided
Ay is up-coercive for some uy € K, which can readily be seen as follows. For any v € V
and any w € d(J|v,)(v), we obtain by applying (A3), (H)(ii), and (2.11) the estimate

(Av+AB(v) + w,v — up)
N ov
= J Zai(x,Vv)—dx+A<B(v),v) +J wvdx — (Av+AB(v) + w,ug)
o5 ox; Q

> v | 19viPdx= [kl + v - 5t (4.7)
—czj (1+vIP Y vldx — | (Av+AB(v) + w,ug) |
Q
= vlviiy, - c(1+vll5, ")

for some constant C > 0, by choosing the constant A in such a way that ¢4;A > ¢;. Since
p > 1, the coercivity of A follows from (4.7). In view of the surjectivity of the operator
A + D, there exists a u € K such that f € Ag(u) + @ (u), that is, there isan & € 9(J |, ) (u)
with & € L1(Q) and &(x) € dj(u(x)) for a.e. x € Q, and an 5 € ®(u) such that

Au— f+AB(u)+&+n=0 inV{, (4.8)

where
(69 = | Ewgtdx Vo eV, (4.9)
Ix(v) =z Ig(u) +(n,v—u) VveV,. (4.10)

By definition of Clarke’s generalized gradient dj from (4.9) we get

(£,9) = joax)«p(x)dx < jQ (i) dx Yo e V. (4.11)
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Thus from (4.8), (4.9), (4.10), and (4.11) with ¢ replaced by v — u we obtain (4.3), which
proves the existence of solutions of problem (4.3).

Step 2 (u < u < @ for any solution u of (4.3)). We first show u < 1. By definition, the
supersolution # satisfies & > 0 on 0, and

(Aa—f,v—a>+J jolv—)dx=0 VvenvKk. (4.12)
Q

Let u be any solution of (4.3) which is equivalent to the following variational-hemi-
variational inequality:

uEK:(Au—f,v—u)+(AB(u),v—u>+J (v —u)dx=0 Vvek. (4.13)
Q

We apply the special test functionv =avVu =+ (u—-a)"(€ i vK)in(4.12)andv = 1 A
u=u—(u—u)"(e K)in (4.13), and get by adding the resulting inequalities the following
one:

(At — Au, (u—a)*) +M{B(u),—(u—a)*)

0~ _ . _ (4.14)
+ J (Go(ms(u—)") +j (s —(u—a)*"))dx = 0,
Q
which yields due to
(Au—Au,(u—a)") =0, (4.15)
the inequality
MB(u), (u—u)") < JQ (GO (a5 (u—a)*) + j° (us—(u—@)") ) dx. (4.16)

By using (H) and the properties on j° and dj we get for certain Ex)eo j(i(x)) and
¢(x) € 9j(u(x)) the following estimate of the right-hand side of (4.16):

[ G st )+ = 1)) dx
L joasu—a)+j°(us—(u—u)))dx

u>i}

LM (ECo) (u(x) - () +E@)(— (u(x) —a(0)))dx  (4.17)

J{u>u} (§00) = &) (ux) — a(x))dx
J u(x) — a(x)) P dx.

{u>u}

Since

(B(w), (u—a)") =J (u—a)Pdx, (4.18)
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we get from (4.16) and (4.17) the estimate
(A—cl)J (u—a)Pdx < 0. (4.19)
{u>i}

Selecting the parameter A, in addition, such that A — ¢; > 0, then (4.19) yields
J (u—)")’dx <0, (4.20)
Q

which implies (4 — #)* = 0 and thus u < &i. The proof for the inequality u < u can be car-
ried out in a similar way which completes the proof of the theorem. O

5. Compactness and existence of extremal solutions

Let & denote the set of all solutions of (1.1) within the interval [u, %] of an ordered pair
of sub- and supersolutions. In this section, we are going to show that the solution set ¥ is
compact, and under certain lattice conditions on K, & possesses the smallest and greatest
elements with respect to the given partial ordering. The smallest and greatest elements of
S are called the extremal solutions of (1.1) within [u, @].

THEOREM 5.1. Under the hypotheses of Theorem 4.1 the solution set & is compact in V.

Proof. First we prove that & is bounded in V). Since any u € & belongs to the interval
[u, @], it follows that & is bounded in L?(Q). Moreover, any u € & solves (1.1), that is, we
have u € K: (Au— f,v—u) + fQj"(u;v —u)dx = 0, forall v € K. Let ug be any (fixed)
element of K. By taking v = u in the above inequality we get

(Au,u) < (Au,ug) + (fru—up) +J 7 (usu — u)dx. (5.1)
Q
This yields, by applying (A3), (H)(ii), and Young’s inequality, the following estimate:

VIV ullf <1kl oy + (@) (ILF 1 +1) +ellulld, +a(Iullio + lulfy ) +1)
(5.2)

for any & > 0. Hence, the boundedness of & in V; follows by choosing ¢ sufficiently small
and by taking into account that & is bounded in L?(Q).

Let (u,) C &. From the above boundedness of & in Vj, we can choose a subsequence
(ug) of (u,) such that

ur — u in Vo, ur — u in LP(Q), ur(x) — u(x) a.e.in Q. (5.3)

Obviously u € [u,#]. On the other hand, because K is closed and convex in Vj, it is
weakly closed. As uy € K for all k, we see that u is also in K. Since u solve (1.1), we can
put v =u € K in (1.1) (with u instead of u) and get

(Auk—f,u—uk)+J 7O (usu — ug)dx > 0, (5.4)
Q
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and thus
(Aug,up —u) < (f,uk—u)+J 7 (i v — ug ) dx. (5.5)
Q

Due to (5.3) and due to the fact that (s,r) — j°(s;7) is upper semicontinuous, we get by
applying Fatou’s lemma

limsupj j"(uk;u—uk)dxsj limsup j° (uk; 1 — ug)dx = 0. (5.6)
k Q Q  k

In view of (5.6) we thus obtain from (5.3) and (5.5)

limsup (Aug, ux —u) <0. (5.7)
k

Since the operator A has the (S, )-property (we refer, e.g., to [1] for the definition of the
(S+)-property being used here), the weak convergence of (uy) in Vj along with (5.7) imply
the strong convergence u; — u in Vy, see, for example, [1, Theorem D.2.1]. Moreover, the
limit u belongs to ¥ as can be seen by passing to the limsup on the left-hand side of the
following inequality:

(Auk—f,v—uk)+J 7O (uisv —ug)dx = 0, (5.8)
Q

where we have used Fatou’s lemma and the strong convergence of (ux) in Vy. This com-
pletes the proof. O

As for the existence of extremal solutions in ¥, we introduce the following notion.

Definition 5.2. Let (P, <) be a partially ordered set. A subset € of P is said to be upward-
directed if for each pair x,y € €, there is a z € € such that x <z and y <z, and € is
downward-directed if for each pair x, y € €, there isa w € € such that w < x and w < y.
If € is both upward and downward directed it is called directed.

We are now ready to prove our extremality result.

TaEOREM 5.3. Let the hypotheses of Theorem 4.1 be satisfied, and assume, moreovet,
KAKCK, KVvKCK. (5.9)

Then, the solution set ¥ possesses extremal elements.

Proof. The proof of Theorem 5.3 is divided into two steps. In Step 1, we show that the
solution set ¥ is directed, and the existence of extremal elements of & is proved in Step 2.

Step 1 (¢ is a directed set). As a consequence of Theorem 4.1, we have & # @. Given
u,uy € ¥, we show that there is a u € & such that ux < u, k = 1,2, which means & is
upward-directed. To this end we consider the following auxiliary variational-hemivaria-
tional inequality

ueK:(Au—f+AB(u),v—u)+J j(wsv—u)dx>=0 VveKk, (5.10)
Q
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where A > 0 is a free parameter to be chosen later. Unlike in the proof of Theorem 4.1, the
operator B is now given by the following cut-off function b: Q X R — R:

(s—ax)""  ifs>alx),
b(x,s) =40 if up(x) <s < u(x), (5.11)
—(uo(x) —s)p_1 if s < up(x),

where uy = max{u;,u,}. By arguments similar to those in the proof of Theorem 4.1 we
get the existence of solutions of (5.10). The set & is shown to be upward-directed provided
that any solution u of (5.10) satisfies ux < u < i1, k = 1,2, because then Bu = 0 and thus
u € ¥ exceeding u.

For k = 1,2, because u; € ¥, we have ux € K N [y, 1] and

(Auk—f,v—uk)+J jo(usv—uk)dx =0 VveKk. (5.12)
Q
Note that since u, u;,u; € K, (5.9) implies that

u+t (e —u) =uvu ek, ue— (ux—u) =unru K. (5.13)

Therefore, one can take as special functions v = u + (ux — )" in (5.10) and v = uy — (uy —
u)* in (5.12). Adding the resulting inequalities we obtain

<Auk — Au, (ug — M)+> —)L<B(u), (g — “)+>
(5.14)
< L} (j”(u; (uy — u)+> +j°(uk;—(uk - M)+))dx-

Arguing as in (4.17), we have for the right-hand side of (5.14) the estimate

L} (j"(u; (u — u)+> +j° (uk;—(uk - u)+))dx < J e (ur(x) —u(x))fdx.  (5.15)

{ug>u}

For the terms on the left-hand side we have
<Auk—Au,(uk—u)+> >0, (5.16)

and (5.11) yields

(Bl =0)") == (o) =) () = )

(5.17)
< —J (e (x) — u(x))  dx.
{ug>u}
By means of (5.15), (5.16), (5.17) we get from (5.14) the inequality
(/\—cl)J (u(x) — u(x))fdx < 0. (5.18)
{ug>u}
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Selecting A such that A > ¢; from (5.18) it follows uy < u. The proof for u < # follows sim-
ilar arguments, and thus & is upward-directed. By obvious modifications of the auxiliary
problem, one can show analogously that & is also downward-directed.

Step 2 (existence of extremal solutions). We show the existence of the greatest element of
. Since Vj is separable, we have that ¥ C Vj is separable too, so there exists a countable,
dense subset Z = {z, | n € N} of ¥. From Step 1, ¥ is upward-directed, so we can con-
struct an increasing sequence (u,) C ¥ as follows. Let u; = z;. Select 1,41 € & such that

max{z,, Uy} <ty <7 (5.19)

The existence of u,; is established in Step 1. From the compactness of & according to
Theorem 5.1, we can choose a subsequence of (u,), denoted again (u,), and an element
u € & such that u, — u in Vj, and u,(x) — u(x) a.e. in Q. This last property of (uy,)
combined with its increasing monotonicity implies that the entire sequence is convergent
in Vy and, moreover, u = sup,, u,. By construction, we see that

max{z1,22,...,Zn} SUp1 <u Vn, (5.20)
thus Z C [u,u]. Since the interval [u, u] is closed in V{, we infer

Y cZcluu]=[uul, (5.21)

which in conjunction with u € & ensures that u is the greatest solution of (1.1).
The existence of the least solution of (1.1) can be proved in a similar way. O

Remark 5.4. From the proof of Theorem 5.3 it can be seen that instead of lattice condition
(5.9), it is enough to assume the following weaker condition:

KA (Kn[ui]) CK, Kv (Knuiu]) CK. (5.22)

6. Example and generalization

6.1. Example. We consider (1.1) with f € LP*'(Q), where p*' is the Holder conjugate of
the critical Sobolev exponent p*, and K representing the following obstacle problem:

K={veVylv(x) <y(x)forae x € Q} (6.1)

with ¥ : QO — R measurable. We are going to provide sufficient conditions for the existence
of an ordered pair of constant sub-and supersolutions « and f3, respectively.

ProPOSITION 6.1. Let K # @ be given by (6.1) and assume f and y as given above, and let
ai(x,0)=0,i=1,...,N. Then

(a) the constant function u(x) = a < 0 is a subsolution of (1.1) if
f(x)=—-j%a;—-1) forae xe€Q, (6.2)
(b) the constant function i(x) = = 0 is a supersolution of (1.1) if

f(x)<j°(B;1) forae xeQ, (6.3)
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(o) if f e L®(Q) and o, 3 € R satisfy a <0 < f3 and
—j%a-1) < f(x) <j°(B;1) forae xeQ, (6.4)

then o and f3 is an ordered pair of sub- and supersolutions.

Proof. Let a < 0 satisty (6.2). According to Definition 2.1, we only need to verify that «
satisfies Definition 2.1(ii). To this end let v € a A K be given. Then v — « < 0 in Q) and in
view of (6.2) we get

(Aa— fv—a)+ Jﬂj"(oc;v(x) —a)dx
= JQ (72 (o v(x) —a) — f(x) (v(x) — ) )dx (6.5)

= L) (%l =1+ f(x) (a—v(x))dx=0 Vveanrk,

which proves that « is a subsolution. In a similar way one can show that under (6.3), the
constant 3 > 0 is a supersolution. Finally, (c) follows immediately from (a) and (b). O

In order to apply Theorem 4.1 to our example, we only need to make sure that, in
addition, B A K C K and a v K C K is satisfied. For the obstacle problem S A K C K is
trivially satisfied and o v K C K holds provided a < y(x) for a.e. x € Q.

Moreover, straightforward calculations show that both lattice conditions in (5.9) are
satisfied for our convex set K here. Thus, Theorem 5.3 also holds in the present example
if o < y(x) fora.e. x € Q.

Remark 6.2. Our main goal is a general sub-supersolution approach for variational-
hemivariational inequalities and the example given here illustrates the above results in
a simple circumstance. Calculations of nonconstant sub-supersolutions in inclusions and
variational inequalities were presented, for example, in [3, 4, 7].

Applications of the sub-supersolution method presented above to some variational-
hemivariational inequalities in material science (in which nonconstant sub-supersolu-
tions are constructed) will be studied in a forthcoming project.

6.2. Generalization. Our discussions above could be extended to the case where the

principal operator A is perturbed by a lower-order term G. The inequality (1.1) is ex-
tended to

uEK:(Au+Gu—f,v—u)+I (v —u)dx=0 Vvek, (6.6)
Q

where G is the Nemytskij operator associated with a Carathéodory function g: QO X R X
RN — R:

(Gu,v) = J g, u,Vu)vdx Yu,veV. (6.7)
Q
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For the integral in (6.7) to be defined, we need some growth condition on g, which will
be specified later. Note that the operator A + G is not coercive in general. The definition
of supersolutions of (6.6) now becomes as follows.
Definition 6.3. A function &1 € V is called a supersolution of (6.6) if the following holds:
(i) # > 0 on 0Q),
(ii) Gu € L1(Q),
(iii) (Aa+Giu— f,v—u) + o j°(sv — it)dx > 0, forallv € v K.

We have a similar definition for subsolutions of (6.6). Combining this notion of sub-
supersolutions with appropriate modifications of the arguments in Section 5, we can
prove the following existence and extremality result for (6.6).

THEOREM 6.4. (a) Assume the hypotheses (A1)—-(A3), (H), and that (6.6) has subsolutions
Uys..., U, and supersolutions iy, ..., oy, such that

u:=max{u,,...,u;} < i:=min{iy,..., iy}, (6.8)

and ; A K ;‘K, u; VK CK forall 1 <i<m, 1< j<k. Suppose furthermore g has the
growth condition

|6, u,8) | < ka(x) +col E1P7 (6.9)
fora.e.x € Q,allé € RN, and all u € R such that
min {u; (x),...,u.(x)} < u <max {i;(x),...,in(x)}, (6.10)
where k, € L1(Q), ¢ > 0. Then there exists a solution u of (6.6) such that
u<u<i. (6.11)

(b) Furthermore, if K satisfies (5.9), then under the assumptions in (a), (6.6) possesses
extremal solutions within [u, ).

Proof. To prove the assertion in part (a), we follow the idea of the proof of Theorem 4.1.
We first note that variational-hemivariational inequality (6.6) is equivalent to the follow-
ing. Find u € V; such that

(Au+Gu—f,v—u)+IK(v)—IK(u)+J (v —u)dx=0 VveV, (6.12)
Q

where Ix denotes the indicator function related to K. However, unlike in Theorem 4.1
the functions u and @ defined in (6.8) are no longer sub- and supersolutions, respectively.
Therefore our existence proof will be based on the following modified auxiliary truncated
problem: find u € V} such that

(Au— f+AB(u) + Pu,v — u) +Ix(v) — Ix (u) +L)j“(u;v —u)dx>=0 VveV,
(6.13)
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where B is the cut-off operator as given by (2.9) and A > 0 is some free parameter to be
specified later. The operator P: Vi — V' is defined by

m k
Pu:=GoTu+> |GoT'u-GoTu|l—> |GoTju—GoTul, (6.14)
i=1 j=1

where the truncation operators T}, TLT:V — [u,it] CV are defined as follows:

(x) ifu(x) <u(x),
Tu(x) = u(x) ifulx)<ulx)<ax),
(x) ifu(x) >u(x),
(1,00 if ulx) <u;(x),
Tiu(x) =y u(x) ifg]-(x) < u(x) < a(x), (6.15)
kl)(x) if u(x) > a(x),

(u(x)  ifu(x) < u(x),
Tiu(x) = ulx)  ifulx) <ulx) < ai(x),

[ i(x) if u(x) > @i(x),

forl<i<m,1<j<k,x€Q.Theoperators GoT,Go T}, Go T! stand for the compo-
sitions of the Nemytskij operator G and the truncation operators T, Tj, T", respectively,
and we have

(|GoTju—GoTul,v) = J |g(-s Tju, VTju) —g(-, Tu, VTu) |vdx (6.16)
0

for all u,v € V. Since T}, Ti T :Vy — V, are bounded and continuous, it follows in view
of the growth condition imposed on g that P: Vy — L1(Q) C V{ is bounded and con-
tinuous as well. Moreover, by applying [1, Theorem D.2.1] one sees that A+ AB+ P :
Vo — Vi is continuous, bounded, and pseudomonotone. Introducing the same func-
tional J as in the proof of Theorem 4.1, we can show that the multivalued operator
A+AB+P+9d(Jly,): Vo — 2" is pseudomonotone, bounded, and due to the growth
condition on g as well as the mapping properties of the truncation operators, it is also
coercive for A chosen sufficiently large. Hence, by similar arguments as in the proof of
Theorem 4.1, we infer that (6.13) has a solution u. The proof of the existence result of
part (a) is accomplished provided any solution u of (6.13) can be shown to satisfy

u,su<iy, l<ism,1<j<k. (6.17)

This is because then u satisfies also u < u < i which finally results in Tu = u,Tju = u,
T'u = u, and thus Pu = Gu as well as Bu = 0 showing that u is a solution of (6.12) (i.e., of
(6.6)) within [u,7].



S.Carletal. 415

We first show that u < @ for [ € {1,...,m} fixed. By Definition 6.3 we have #; > 0 on
0Q), and

(A + Giy - fv— i) +J j"(az;v —i)dx>=0 VveiaVvKk, (6.18)
Q

and u is a solution of auxiliary problem (6.13) which is equivalent to the following. Find
u € K such that

(Au—f+AB(u)+Pu,v—u)+J (v —u)dx>=0 Vvek. (6.19)
Q

We apply the special test function v = vV u =i+ (u—i)* in (6.18) and v =iy Au =
u—(u—i)*(€ K) in (6.19), and get by adding the resulting inequalities the following
one:

<A121 —Au, (u— 1:{1)+> + <AB(u) + Pu— Giig, — (u — 121)+>

(6.20)
+ L) (jo(ﬂz;(u - ﬁ1)+) +j° (u;—(u - ﬂz)+))dx >0,

which yields due to
(Au— A, (u—m)") =0, (6.21)
the inequality
<AB(u) + Pu — Giy, (u — ﬂ1)+> < JQ (j“(itl; (u-— al)+) + j"(u; —(u-— ﬂ1)+>>dx. (6.22)
As in (4.17), for the right-hand side of (6.22) we get the estimate

J;; (j”(ﬂl;(u—ﬂz)+) +j”<u;—(u—ﬁ1)+))dxsj cl(u(x)—ﬂl(x))de. (6.23)

{u>iy}

As for the estimates of the terms on the left-hand side of (6.22) we note that &t > 1 > u >
u; which by taking into account the definition of the truncation operators yields

k
J > |GoTju—GoTu|(u—in)dx =0, (6.24)
{u>1'41}j=1
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and the following estimates
<B(u),(u—ﬁ1)+> =J (u—ﬂ)deZJ (u—i)Pdx,
{u>in} {u>iy}
<Pu - Giiy, (u — 121)+>

_ j (Pu— Gity) (u — i) dx
{u>a}

=L >_}[(GOTM—Gitz)(u—z‘u)+i |G Tiu=Go Tul (u—) [dx (6.25)
o i-1
= | (GoTu=Gu)+|Giu=GoTul) (u=m)ds
usiy
+J{u>a,}§;‘ |GoT'u—GoTul(u—in)dx=0.

Thus from (6.22) we get by means of (6.23), and (6.25),

(A—cl)L - (u—1iy)Pdx <0. (6.26)
usiy

By selecting A in addition large enough such that A — ¢; > 0, from (6.26) we obtain u <
i;. In a similar way one can prove that for any / € {1,...,k} one has also u > y; which
completes the proof of part (a) of the theorem.

In order to prove (b), that is, the existence of extremal solutions in [y, ], we denote
again by ¥ the set of all solutions of (6.6) within [u,]. Following the line in the proof
of Theorem 5.1, one readily verifies the compactness of & in V;. Due to lattice condition
(5.9) assumed in (b), one observes that any solution u € & is, in particular, a subsolution
and a supersolution of (6.6). Therefore, the statement of part (a) implies that & is a di-
rected set. In just the same way as in Step 2 of the proof of Theorem 5.3, the compactness
and directedness of & yield the existence of extremal elements of &, which completes the
proof of the theorem. 0

Remark 6.5. The results and methods in this paper can be extended to variational-
hemivariational inequalities involving more general quasilinear elliptic operators of
Leray-Lions type and functions j: QO X R — R depending also on the space variable x,
which, however, has been omitted in order to avoid too many technicalities and in order
to emphasize the main ideas.

We could also extend the above results to more general cases where the operator A
satisfies a monotonicity condition such as

<AU1 — Auy, (u1 - Z/lz)+> >0 (6.27)

for uy, u, in some appropriate function space (such as Vj or its analogue). This extension
would allow us to study problems with weighted or degenerate operators.
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