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Let M be a complete Riemannian manifold and N a complete noncompact Riemannian
manifold. Let ¢ : M — N be a surjective harmonic morphism. We prove that if N ad-
mits a subharmonic function with finite Dirichlet integral which is not harmonic, and
¢ has finite energy, then ¢ is a constant map. Similarly, if f is a subharmonic function
on N which is not harmonic and such that |df| is bounded, and if [;; |[d¢| < oo, then ¢
is a constant map. We also show that if N™ (m = 3) has at least two ends of infinite vol-
ume satisfying the Sobolev inequality or positivity of the first eigenvalue of the Laplacian,
then there are no nonconstant surjective harmonic morphisms with finite energy. For
p-harmonic morphisms, similar results hold.

1. Introduction

Let (M",g) and (N™,h) be complete Riemannian manifolds of dimension # and m, re-
spectively, and let ¢ : M — N be a C! map. For a compact domain D C M, the energy E of
¢ over D is defined by

E(¢sD) = %IDldqﬁlzdvg. (1.1)

A map ¢: M — N is called harmonic if ¢ is a critical point of the energy functional
defined by (1.1) on any compact domain D C M, or equivalently the tension field 7(¢) =
try Vd¢ € T(¢ ' TN) is identically zero, where try and V denote the trace with respect to
the metric g and Levi-Civita connection on M, respectively.

The classical Liouville theorem says that any bounded harmonic function defined on
the whole plane must be a constant. Yau generalized [19] the Liouville theorem to har-
monic functions on Riemannian manifolds of nonnegative Ricci curvature. Cheng [4]
and Schoen and Yau [17] proved theorems of Liouville type for harmonic maps from a
Riemannian manifold into a Riemannian manifold (see also [11]). In particular, Schoen
and Yau proved that if ¢ : M — N is a harmonic map from a complete, noncompact Rie-
mannian manifold M with nonnegative Ricci curvature to a complete Riemannian man-
ifold N with nonpositive sectional curvature with finite energy, then ¢ is constant.
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On the other hand, using the fact that the composition of a harmonic map and a
convex function is subharmonic, Gordon proved [9] that every harmonic map from a
compact Riemannian manifold to a Riemannian manifold which admits a strictly convex
function is a constant map.

In [13], Kawai showed that if M is a complete noncompact Riemannian manifold and
N is a Riemannian manifold having a C? strictly convex function f : N — R such that the
uniform norm |df| is bounded, then every harmonic map ¢ : M — N with

J 1d| < oo (1.2)
M

is a constant map.

In this paper, we consider harmonic morphisms between Riemannian manifolds and
will prove similar results of Liouville type as mentioned above. The notion of harmonic
morphism is stronger than harmonic map. In fact, it is known that every harmonic mor-
phism is a harmonic map. Thus, it could be possible to replace the existence of a convex
function by a weaker condition. Let M be a complete Riemannian manifold and let N be
a complete noncompact Riemannian manifold admitting a subharmonic function f, but
not harmonic (e.g., a strictly convex function). Let ¢ : M — N be a surjective harmonic
morphism. If either |df| is bounded and Jar ldp| < o0, or ldf| is an L? function and ¢
has finite energy, then ¢ is a constant map. As a corollary, if ¢ : M — N is a surjective
harmonic morphism and N is a simply connected Riemannian manifold of nonpositive
sectional curvature, and if ¢ has finite energy or [,;|d¢| < oo, then ¢ is a constant map.
In case [y, |d¢| < oo, the result is, in fact, due to Kawai [13].

On the other hand, any noncompact Riemannian manifold having at least two ends of
infinite volume satisfying the Sobolev inequality or the positivity of the first eigenvalue of
Laplacian admits a nonconstant bounded harmonic function with finite Dirichlet inte-
gral. Thus applying our main result to this, there are no nonconstant surjective harmonic
morphisms from a Riemannian manifold onto such a manifold with at least two ends
of infinite volume. In our results, we would like to remark that there is no kind of cur-
vature conditions on M comparing with other results or the main result in [5]. In [5],
the authors proved that if M is a complete Riemannian manifold with nonnegative Ricci
curvature and N is a complete Riemannian manifold with nonpositive scalar curvature,
and if ¢ : M — N is a harmonic morphism with finite energy, then ¢ is a constant map.

2. Harmonic morphism and subharmonic functions

A C° map ¢: M — N is called a harmonic morphism if for any harmonic function
f:U — R on an open set U C N such that ¢ !(U) is nonempty, the composition
fo¢:¢71(U)— R is also a harmonic function on ¢~!(U). (Because of the existence
of harmonic coordinates (cf. [10]), any harmonic morphism is necessarily C*.)

Let ¢ : (M,g) — (N,h) be a smooth map between Riemannian manifolds. Let Cy :=
{x € M | d¢, = 0} be the critical set of ¢ and M* := M — Cy. At each point p € M*, the
vertical space at p is V), = kerd¢, C T,M and the horizontal space is Hp = V;. A map
¢: (M,g) — (N,h) is said to be horizontally (weakly) conformal if there exists a function
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A:M* — R* such that
Ng(X,Y) = h(d¢(X),dp(Y)) (2.1)

forall X,Y € H, and p € M*. Here A is called the dilation of ¢.

It is well known [8, 12] that a smooth map ¢ : (M,g) — (N,h) between Riemannian
manifolds is a harmonic morphism if and only if it is harmonic and horizontally weakly
conformal. It is also well known that if dim(M) < dim(N), then every harmonic mor-
phism must be constant. Moreover, since any harmonic morphism is an open map, every
harmonic morphism from a compact manifold into a noncompact manifold is a constant
map.

We start with the following simple formula.

LemMa 2.1. Let ¢ : M — N be a horizontally weakly conformal map between Riemannian
manifolds of dimension n and m, respectively, and f : N — R be a C* function. Then for any
C! function n on M,

ldgl

m

(d(fo¢),dn) = HAf) e ¢+ (V(n-(df)eo¢),dp). (2.2)

Proof. Let A be the dilation of ¢ and let {e;}}_; be a local orthonormal frame which is
normal at some point. If dim(M) = n < m = dim(N), then ¢ is a constant and so (2.2) is
obviously true. Thus, we may assume that n > m and d¢(e;) = 0 for j = m + 1. Note that
it follows from (2.1) that {E; = (1/A)d¢(e;)} is an orthonormal frame on N where A # 0
and

mA? = |dg|2. (2.3)

Recall that the set Cy at which A vanishes is discrete. One can compute (cf. [13])

(V(n-(df) = ¢),d¢) = (d(f o ¢),dn) +’1i<vd¢<ei)((df) °¢),de(ei)). (24)

i=1
Also it is easy to see from (2.3) that

|d¢|*

(Vag(en(df o ¢),d¢(ei)) = A*(VE, ((df) o ¢),Ei) = T(Af) °¢. (2.5)

Substituting (2.5) into (2.4), one obtains (2.2). O

ProposiTION 2.2. Let ¢ : M — N be a nonconstant surjective harmonic morphism between
Riemannian manifolds. Assume M is complete and noncompact. Let f be a subharmonic
function on N. Suppose that either

(1) E(¢) < 00 and E(f) < oo, or
(i) [y ld¢| < o and |df | is bounded.

Then f is harmonic.
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Proof. Fix a point p of M and for r > 0 choose a cut-off function # with the following
property:
1 B,(r),
0<n=<1, ldgl<2, p=1t B0 (26)
r 0 onM —B,(2r),

where B, (r) is the geodesic ball of radius r, centered at p. Using Lemma 2.1 together with
harmonicity §d¢ = 0, one obtains

| 1dePna g == [ (d(rogndn < 1dglidnl(dfiog). @)

In case (i), applying the Holder inequality to (2.7),

)\ V2 2 o
| 1agtianiaiog) < (| Gario9)?) (| 1anllagi) < TE@).  @8)
In case (ii),
C
[ 1agtaniiarog <. (2.9)
M r
In both cases, letting r — o, one obtains from subharmonicity
|dg12(Af) o ¢ =0, (2.10)

Since ¢ is nonconstant and the points at which d¢ = 0 are discrete, Af =0 on ¢(M) = N.
O

CoROLLARY 2.3. Let M be a complete Riemannian manifold and N a complete noncompact
Riemannian manifold.
(1) If N admits a subharmonic function f, but not harmonic such that [y |df |> < co, then
there exist no nonconstant surjective harmonic morphisms ¢ : M — N with [, |d¢|? < oo.
(2) If N admits a subharmonic function f, but not harmonic such that |df | is bounded,
then there exist no nonconstant surjective harmonic morphisms ¢ : M — N with [, |d$| < co.

Proof. If M is compact, then any harmonic morphism ¢ : M — N is constant since ¢ is
an open map and N is noncompact. In case M is noncompact, the theorem follows from
Proposition 2.2. ]

The existence of subharmonic functions is a much weaker condition than the existence
of harmonic functions or convex functions. Proposition 2.2 shows that the existence or
nonexistence of nonconstant surjective harmonic morphisms with finite energy depends
on the topology of manifolds rather than the curvature conditions.

THEOREM 2.4. Let M be a complete Riemannian manifold and N a simply connected Rie-
mannian manifold with nonpositive sectional curvature. Then there exist no nonconstant
surjective harmonic morphisms ¢ : M — N with finite energy or [y, 1d¢| < co.
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Proof. In case M is compact, it is obvious and so we may assume that M is noncompact.
By Proposition 2.2, it suffices to show that N has a strictly convex function f whose |df |
is bounded or a subharmonic function f with finite energy, [y [df[? < o0, and Af >0
near a point. Since N is simply connected and has nonpositive sectional curvature, it is
well known that there exists a strictly convex function f whose |df| is bounded [2, 13].
In particular f is not harmonic. Thus the proof follows directly from Proposition 2.2.

For the second case, fix a point p € N and consider the distance function p(x) =
dist(p,x). It is well known that p is a convex function and smooth on N — {p}. Now for
positive real numbers « >0, and § > 0 with a + 8 < 1, choose an increasing C* function
£:[0,00) = Rsothat & =1 on [1,0) and &(f) = at> + S near t = 0.

Define f(x) = & o p(x). Then it is easy to see that

Af =E&"(p)+& (p)Ap (2.11)

and so f is a nonconstant subharmonic function. In particular, Af >0 near p and
Iy ldf 12 < oo since &' (t) = 0 for t > 1. O

Let D C N be a compact subset of N. An end € of N with respect to D is a connected
unbounded component of N \ D. When we say that € is an end, it is implicitly assumed
that € is an end with respect to some compact subset D C N. The monotonicity of the
number of ends with respect to compact subsets allows us to define the number of ends
of a manifold.

Now let N be a complete Riemannian m-manifold with m > 3. If there is a constant
C; > 0, depending only on m, such that for any C? function 7 with compact support in N

(m—=2)/m
(J ;72*"/("1-2)) sCSJ \dn 12, (2.12)
N N

we say N satisfies the Sobolev inequality.

THEOREM 2.5. Let M be a complete Riemannian manifold and let N be a complete noncom-
pact Riemannian m-manifold (m = 3) with at least two ends of infinite volume. Suppose
that either

(i) the Sobolev inequality holds on N, or
(ii) the first eigenvalue A1 (N) of N is positive.

Then there exist no nonconstant surjective harmonic morphisms ¢ : M — N with finite en-
ergy.
Proof. Tt follows from [3] that there is a nonconstant bounded harmonic function f on

N with [y |df|? < co. From boundedness we may assume f > 1 by adding some positive
constant if necessary. Define u = —log f so that

Au = |6;fz|2. (2.13)
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Thus u is a subharmonic function and

JNlduP:L] |i{2|2 SJNIdf|2<oo. (2.14)

Moreover, since f is not constant, u is not harmonic. Consequently, it follows from

Proposition 2.2 that there exist no nonconstant surjective harmonic morphisms ¢ : M —
N with [, [d¢|? < co. O

3. p-harmonic morphisms

A C' map ¢ : M — N between Riemannian manifolds of dimension n and m, respectively,
is called a p-harmonic map (p = 2) if it is a critical point of the p-energy functional

Ep(¢) = L)Idgbl"dvg (3.1)

for any bounded domain Q € M. It is well known [1, 16] thata C* map ¢: M — N is a
p-harmonic map if and only if it satisfies the p-harmonic map equation

tre (V(Idg|P=2d¢)) = 8(Id¢|P~2d¢) = 0. (3.2)

We call a 2-harmonic map just a harmonic map.

Note that the notion of p-harmonic map is a parallel generalization of harmonic
map and some Liouville-type theorems for p-harmonic maps are known. For example,
Takeuchi [18] proved that if ¢ : M — N is a p-harmonic map from a complete noncom-
pact Riemannian manifold M of nonnegative Ricci curvature into a Riemannian man-
ifold N of nonpositive sectional curvature such that E;, >(¢) < oo, then ¢ is a constant
map. And Nakauchi [15] showed that if E,(¢) < co with the same curvature conditions,
then ¢ is constant. In [13], Kawai showed that if M is a complete noncompact Rie-
mannian manifold and N is a Riemannian manifold having a C? strictly convex function
f:N — Rsuch that |df | is bounded, then every p-harmonic map ¢ : M — N with

JM 1dglP! < oo (3.3)

is a constant map. Note that any harmonic map or harmonic morphism is necessarily
smooth because of the existence of harmonic coordinates (cf. [10]). However when p # 2,
the degenerate ellipticity of (3.2) gives only C%-regularity even for minimizers of p-
energy functional (3.1).

Definition 3.1. Amap ¢ : M — N is called a p-harmonic morphism if for any p-harmonic
function f: V — R defined on an open subset V of N with ¢ ~!(V) nonempty, the com-
position fo¢: ¢ 1(V) — Risalso a p-harmonic function.

In [14], Loubeau characterized the p-harmonic morphisms as follows.

THEOREM 3.2. A map ¢ : M — N is called a p-harmonic morphism if and only if it is a
horizontally weakly conformal and p-harmonic map.
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In [6], the authors proved that if M is a complete noncompact Riemannian manifold
of nonnegative Ricci curvature and N is a Riemannian manifold of nonpositive scalar cur-
vature, then any p-harmonic morphism of class Cy such that E,(¢) < 0 or E;,_»(¢) < 0
must be a constant.

In this section, using a similar identity as in Lemma 2.1, we will show that for p-
harmonic morphisms, similar results as in Section 2 hold.

Lemma 3.3. Let ¢ : M — N be a horizontally weakly conformal map of Cl._ between Rie-
mannian manifolds of dimension n and m, respectively, and f : N — R be a C* function.
Then for any C' function n on M,

ldglr

m

(1dg1P=2d(f o ¢),dn) = n(Af)o¢+(V(n-(df)o¢),ldplP~2dg).  (3.4)

Proof. Let A be the dilation of ¢ and let {e;}}-; be an orthonormal frame which is normal
at some point. We may assume that #n > m and d¢(e;) = 0 for j = m+ 1. Then

mA2 = |d¢|?, (3.5)

and note that it follows from (2.1) that {E; = (1/A)d¢(e;)} is an orthonormal frame on N
where A # 0. Recall that the set Cy4 at which A vanishes is discrete. One can compute (cf.
[13])

(V(n-(df)o@),|dg|P=2de) = (|d|P2d(f o ¢),dn)
+171dp1P72 > (Vagien (df) 0 ¢),d (e:)).

i=1

(3.6)

Since from (3.5)

(Vs A = 8),d9(e)) = V(5. (d1) 2 §).E) = - 1dgIP(Af) g, (37)

identity (3.4) follows from (3.6) and (3.7). O

ProrosITION 3.4. Let ¢ : M — N be a nonconstant surjective p-harmonic morphism of
class Cl,. between Riemannian manifolds. Assume M is complete and noncompact. Let f be
a subharmonic function on N. Suppose that either

(i) Ezp-2(¢) < 00 and E(f) < o, or
(ii) Ep—1(¢) < oo and |df | is bounded.

Then f is harmonic.

Proof. First of all, note that we may assume ¢ is of class C;,_ from [7, 16]. It follows from
Lemma 3.3, subharmonicity, and the proof of Proposition 2.2 that

|doIP(Af)o¢ =0, (3.8)

and so f is harmonic on N. O
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CoOROLLARY 3.5. Let M be a complete Riemannian manifold and N a complete noncompact
Riemannian manifold.

(1) If N admits a subharmonic function f, but not harmonic such that [y |df > < o,
then there exist no nonconstant surjective p-harmonic morphisms ¢ : M — N with
fuu |dg 122 < oo,

(2) If N admits a subharmonic function f, but not harmonic such that |df | is bounded,
then there exist no nonconstant surjective p-harmonic morphisms ¢ : M — N with
fur dp1P1 < oo,

THEOREM 3.6. Let M be a complete Riemannian manifold and N a simply connected Rie-
mannian manifold with nonpositive sectional curvature. Then there exist no nonconstant
surjective p-harmonic morphisms ¢ : M — N with Eyp »(¢) < 00 or E,—1(¢) < 0.

Proof. The proof follows from the proofs of Theorem 3.6 and Proposition 3.4. O

THEOREM 3.7. Let M be a complete Riemannian manifold and let N be a complete noncom-
pact Riemannian m-manifold (m = 3) with at least two ends of infinite volume. Suppose
that either

(i) the Sobolev inequality holds on N, or
(ii) the first eigenvalue A1 (N) of N is positive.

Then there exist no nonconstant surjective p-harmonic morphisms ¢ : M — N with
E2p72(¢) < 00,

Proof. The proof is similar as that of Theorem 2.5. O
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