

COMPATIBLE ELEMENTS IN PARTLY ORDERED GROUPS

JIŘÍ MOČKOŘ AND ANGELIKI KONTOLATOU

Received 16 September 2004 and in revised form 28 September 2005

Some conditions equivalent to a strong quasi-divisor property (SQDP) for a partly ordered group G are derived. It is proved that if G is defined by a family of t -valuations of finite character, then G admits an SQDP if and only if it admits a quasi-divisor property and any finitely generated t -ideal is generated by two elements. A topological density condition in topological group of finitely generated t -ideals and/or compatible elements are proved to be equivalent to SQDP.

1. Introduction

Let G be a partly ordered commutative group (*po*-group). Then G is said to have a *quasi-divisor property* if there exist commutative lattice-ordered group (*l*-group) (Γ, \cdot, \wedge) and an order isomorphism h (the so-called quasi-divisor morphism) from G into Γ such that for any $\alpha \in \Gamma$, there exist $g_1, \dots, g_n \in G$ such that $\alpha = h(g_1) \wedge \dots \wedge h(g_n)$. Moreover, if this embedding h satisfies the condition

$$(\forall \alpha, \beta \in \Gamma_+) (\exists \gamma \in \Gamma_+) \quad \alpha \cdot \gamma \in h(G), \quad \beta \wedge \gamma = 1, \quad (1.1)$$

then G is said to have a *strong quasi-divisor property*. Many papers have dealt with *po*-groups with (strong) quasi-divisor property (e.g., see [1, 3, 4, 5, 6, 7, 8]). It is well known that there are some generic examples of such *l*-group Γ . Namely, if $h: G \rightarrow \Gamma$ is a quasi-divisor morphism, then Γ is *o*-isomorphic to the group $(\mathcal{I}_t^f(G), \times_t)$ of finitely generated t -ideals of G . Recall that a *t-ideal* X_t of G generated by a lower bounded subset $X \subseteq G$ is a set $X_t = \{g \in G : (\forall s \in G) s \leq X \Rightarrow g \geq s\}$. Then the set $\mathcal{I}_t^f(G)$ of all finitely generated t -ideals of G is a semigroup with operation \times_t defined such that $X_t \times_t Y_t = (X \cdot Y)_t$ (see [2]). It is clear that a map $d: G \rightarrow \mathcal{I}_t^f(G)$ defined by $d(g) = \{g\}_t$ is an embedding. Another example of a group Γ is a group $\mathcal{K}(W)$ of compatible elements of a defining family of t -valuations W (see the definitions below). In this note, we want to show that properties of a group $\mathcal{K}(W)$ can be used for deriving new conditions under which quasi-divisor property is also a strong quasi-divisor property.

Let $w : G \rightarrow G_1$ be an o -homomorphism. Then, w is called t -homomorphism if $w(X_t) \subseteq (w(X))_t$ for any lower bounded subset $X \subseteq G$. Moreover, if G_1 is a totally ordered group (i.e., o -group), then w is called t -valuation. Recall that a family W of t -valuations $w : G \rightarrow G_w$ is called a *defining family for G* if

$$(\forall g \in G) \quad g \geq 1 \iff (\forall w \in W) \quad w(g) \geq 1. \quad (1.2)$$

We say that W is of finite character if

$$(\forall g \in G) \quad (\forall' w \in W) \quad w(g) = 1, \quad (1.3)$$

where \forall' means “for all but a finite number.” Hence any defining family W of finite character creates an embedding of G into a sum $\sum_{w \in W} G_w$ of o -groups G_w , $w \in W$. Then a quasi-divisors property of G is said to be of *finite character*, if there exists a defining family of t -valuations of finite character for G . If w_1, w_2 are two t -valuations of a po -group G , then w_1 is said to be coarser than w_2 ($w_1 \geq w_2$) if there exists an o -epimorphism $d_{w_1, w_2} : G_{w_1} \rightarrow G_{w_2}$ such that $w_2 = d_{w_1, w_2} w_1$. It may be then proved that for any two t -valuations w_1, w_2 , there exists a t -valuation $w_1 \wedge w_2$ which is the infimum of w_1, w_2 with respect to this preorder relation. Then, $d_{w_1, w_1 \wedge w_2}$ (resp., $d_{w_2, w_1 \wedge w_2}$) is an o -epimorphism such that $w_1 \wedge w_2 = d_{w_1, w_1 \wedge w_2}$, $w_1 = d_{w_2, w_1 \wedge w_2} w_2$. For simplicity, we set $d_{w_1 w_2} = d_{w_1, w_1 \wedge w_2}$, $d_{w_2 w_1} = d_{w_2, w_1 \wedge w_2}$ (see the difference between d_{w_1, w_2} and $d_{w_1 w_2}$). If W is a system of t -valuations $w : G \rightarrow G_w$ of a po -group G and $W' \subseteq W$, then a system $(g_w)_{w \in W'} \in \prod_{w \in W'} G_w$ of elements is called *compatible* provided that $d_{wv}(g_w) = d_{wv}(g_v)$ for all $w, v \in W'$. Finally, $(g_w)_{w \in W'}$ is called W' -*complete* if $\bigcup_{w \in W'} W(g_w) = W'$, where $W(g_w) = \{v \in W : d_{wv}(g_w) \neq 1\}$ for $g_w \neq 1_w$ and $W(1_w) = \{w\}$ for any $w \in W$.

Let W be a defining family of t -valuations of G . Then, we set

$$\mathcal{K}(W) = \left\{ (a_w)_w \in \prod_{w \in W} G_w : (a_w)_w \text{ is compatible} \right\}. \quad (1.4)$$

It can be proved that $\mathcal{K}(W)$ is an l -subgroup in $\prod_{w \in W} G_w$ (see [8]). Now we say that G with a defining family of t -valuations satisfies the positive weak approximation theorem (PWAT) if for any finite subset $F \subseteq W$ and any compatible system $(\alpha_w)_{w \in F} \in \prod_{w \in F} G_w^+$, there exists $g \in G^+$ such that $w(g) = \alpha_w$, $w \in F$. Finally, we say that G with W satisfies the approximation theorem (AT) if for any finite subset $F \subseteq W$ and any compatible and F -complete system $(\alpha_w)_{w \in F} \in \prod_{w \in F} G_w$, there exists $g \in G$ such that

$$\begin{aligned} w(g) &= \alpha_w, \quad w \in F, \\ w(g) &\geq 1, \quad w \in W \setminus F. \end{aligned} \quad (1.5)$$

2. Results

In the theory of quasi-divisors of a po -group, a t -ideal theory has an important position. In the next propositions, we want to show that all t -ideals in a po -group G with a quasi-divisor property of finite character can be derived from the set of compatible elements $\mathcal{K}(W)$ of G , where W is some defining family of t -valuations of G .

LEMMA 2.1. Let $(\alpha_w)_w \in \mathcal{K}(W)$ and let $W_0 = \{w \in W : \alpha_w \neq 1\}$. Then $(\alpha_w)_{w \in W'}$ is W' -complete for any $W_0 \subseteq W' \subseteq W$.

Proof. Let $v \in \bigcup_{w \in W'} W(\alpha_w)$. Then there exists $w \in W_0$ such that $v \in W(\alpha_w)$. Because (α_w, α_v) is compatible, we have $1 \neq d_{vv}(\alpha_w) = d_{vw}(\alpha_v)$ and it follows that $\alpha_v \neq 1$. Hence, $v \in W_0 \subseteq W'$. \square

PROPOSITION 2.2. Let G be a po-group with a quasi-divisor property of finite character and let W be a defining family of t -valuations of G . Let $(\alpha_w)_w \in \mathcal{K}(W)$. Then $X = \{g \in G : (\forall w \in W) w(g) \geq \alpha_w\}$ is a finitely generated t -ideal of G .

Proof. Because the t -system is defined by a family W of t -valuations, according to [8, Theorem 2.6], the group $\mathcal{K}(W)$ is o -isomorphic to a Lorenzen l -group $\Lambda_t(G)$. It follows that a map $d : G \rightarrow \mathcal{K}(W)$ such that $d(g) = (w(g))_w$ is a quasi-divisors morphism. Then for any $(\alpha_w)_w \in \mathcal{K}(W)$, there exist $g_1, \dots, g_n \in G$ such that $d(g_1) \wedge \dots \wedge d(g_n) = (\alpha_w)_w$. Then $X = (g_1, \dots, g_n)_t$. In fact, for $g \in X$, we have $w(g) \geq \alpha_w$ and it follows that $w(g) \in (w(g_1), \dots, w(g_n))_t$. Because the t -system is defined by W , we have $g \in (g_1, \dots, g_n)_t$, analogously for the other inclusion. \square

COROLLARY 2.3. Let G be a po-group with a quasi-divisor property of finite character and let W be a defining family of t -valuations of G . Then there exists an o -isomorphism

$$\sigma : \mathcal{K}(W) \longrightarrow \mathcal{J}_t^f(G) \quad (2.1)$$

such that for $(\alpha_w)_w \in \mathcal{K}(W)$ and $J \in \mathcal{J}_t^f(G)$,

$$\begin{aligned} \sigma((\alpha_w)_w) &= \{g \in G : (\forall w \in W) w(g) \geq \alpha_w\}, \\ \sigma^{-1}(J) &= ((\wedge_{x \in J} w(x))_w). \end{aligned} \quad (2.2)$$

It is well known that the existence of quasi-divisor property is equivalent to the existence of a defining family of *essential* t -valuations (see [3, Theorem 2.1]). Recall that a t -valuation w of G is essential if $\ker w$ is a directed subgroup of G and w is an o -epimorphism.

LEMMA 2.4. Let w, v be essential t -valuations of G and let $\alpha \in G_v$ be such that $d_{vw}(\alpha) = 1$. Then there exists $g \in G$ such that $w(g) = 1, v(g) \geq \alpha$.

Proof. We may assume that $\alpha > 1$. Let $J = \{x \in G : v(x) \geq \alpha\}$. Let us suppose on contrary that the statement of the lemma is not true. Then for any $x \in J$, we have $w(x) > 1$. Let H be the largest convex subgroup in G_v such that $\alpha \notin H$ and let $w' : G \xrightarrow{v} G_v \rightarrow G_v/H$ be the composition of v and canonical morphism. Then $w' \leq w$. In fact, let $x \in G, x \geq 1$ be such that $w'(x) > 1$. Because $w'(x) = v(x)H$, we have $v(x) \notin H, v(x) > 1$. Then there exists $n \in \mathbb{N}$ such that $v(x)^n \geq \alpha$. In fact, if $v(x)^n < \alpha$ for all $n \in \mathbb{N}$, then the convex subgroup H' generated by $H \cup \{v(x)\}$ does not contain α and $H \subseteq H'$. On the other hand, we have $v(x) \in H' \setminus H$, a contradiction. Then $x^n \in J$ for some $n \in \mathbb{N}$ and according to the assumption, we have $w(x)^n > 1$. Hence $w(x) > 1$ and we proved the implication

$$x \in G, \quad x \geq 1, \quad w'(x) > 1 \implies w(x) > 1. \quad (2.3)$$

Let $\rho : G_w \rightarrow G_{w'}$ be defined by $\rho(w(g)) = w'(g)$. Then ρ is well defined. In fact, let $w(x) = w(y)$. Since w is essential, there exists $t \in \ker w$ such that $t \geq 1, xy^{-1}$. If $w'(x) \neq w'(y)$, we have, for example, $w'(xy^{-1}) > 1$. Then $w'(t) \geq w'(xy^{-1}) > 1$. According to (2.3), we have $w(t) > 1$, a contradiction with $t \in \ker w$. Thus $w' = \rho \cdot w$ and $w' \leq w$. Then, we have also $w' \leq w \wedge v$. For any $b \in G$ such that $\alpha = v(b)$, we obtain $w'(b) = v(b)H = \alpha H \neq 1$ and $v \wedge w(b) = d_{vw} > v(b) = d_{vw}(\alpha) = 1$, a contradiction, because $v \wedge w \geq w'$. \square

LEMMA 2.5. *Let w_1, \dots, w_n be essential t -valuations of G and let $(\alpha_1, \dots, \alpha_n) \in \prod_{i=1}^n G_{w_i}^+$ be compatible elements. Then there exists $a_1 \in G$, $a_1 \geq 1$, such that*

$$\forall j \neq 1, \quad w_1(a_1) = \alpha_1, \quad w_j(a_1) > \alpha_j. \quad (2.4)$$

Proof. The proof will be done by the induction with respect to n . For $n = 1$, the proof is trivial. Let us assume that the statement is true for any compatible set of $n - 1$ elements. Let us assume firstly that $w_1 < w_k$ for some $k \neq 1$. According to the induction assumption, there exists $a \in G_+$ such that

$$\forall j \neq k, 1, \quad w_k(a) = \alpha_k, \quad w_j(a) > \alpha_j. \quad (2.5)$$

Because $w_1 < w_k$, there exists an o -epimorphism $\sigma : G_{w_k} \rightarrow G_{w_1}$ such that $w_1 = \sigma \cdot w_k$. Since (α_1, α_k) is compatible, we have $\sigma(\alpha_k) = \alpha_1$. Since $\ker \sigma \neq \{1\}$, there exists $\delta \in \ker \sigma$, $\delta > 1$. From the fact that w_k is essential, it follows that there exists $g \in G$, $g > 1$, such that $w_k(g) = \delta$. We set $a_1 = ga$. Then, we have

$$\begin{aligned} w_1(a_1) &= \sigma \cdot w_k(ga) = \sigma(\delta) \cdot \sigma(\alpha_k) = \alpha_1, \\ w_k(a_1) &= \delta \cdot \alpha_k > \alpha_k, \\ \forall i \neq k, i \geq 2, \quad w_i(a_1) &\geq w_i(a) > \alpha_i. \end{aligned} \quad (2.6)$$

Let us assume now that $w_1 \parallel w_j$, $j \geq 2$. Then $w_j \neq w_1 \wedge w_j$ and for any $j \geq 2$, there exists $\delta_j \in \ker d_{j1}$, $\delta_j > 1$. According to Lemma 2.4, for any $j \geq 2$, there exists $g_j \in G_+$ such that $w_1(g_j) = 1$, $w_j(g_j) \geq \delta_j$. We set $g_1 = \prod_{j \geq 2} g_j$. Then

$$\forall j \geq 2, \quad w_1(g_1) = 1, \quad w_j(g_1) \geq w_j(g_j) \geq \delta_j > 1. \quad (2.7)$$

According to the induction assumption, there exists $a_1 \in G_+$ such that

$$\forall 2 \leq j \leq n - 1, \quad w_1(a_1) = \alpha_1, \quad w_j(a_1) > \alpha_j. \quad (2.8)$$

Without the loss of generality, we may assume that

$$\forall 2 \leq j, \quad w_1(a_1) = \alpha_1, \quad w_j(a_1) \geq \alpha_j. \quad (2.9)$$

In fact, if $w_n(a_1) < \alpha_n$, then $d_{n1}(\alpha_n \cdot w_n^{-1}(a_1)) = d_{1n}(\alpha_1) \cdot d_{1n}(w_1^{-1}(a_1)) = 1$ and according to Lemma 2.4, there exists $a'_1 \in G_+$ such that $w_1(a'_1) = 1$, $w_n(a'_1) \geq \alpha \cdot w_n^{-1}(a_1)$. Then for $a''_1 = a_1 a'_1$, we have

$$\begin{aligned} w_1(a''_1) &= w_1(a_1 a'_1) = \alpha_1, \\ \forall n > j \geq 2, \quad w_j(a''_1) &\geq w_j(a_1) > \alpha_j, \\ w_n(a''_1) &\geq \alpha_n. \end{aligned} \tag{2.10}$$

We set $c_1 = a_1 g_1$, where a_1 satisfies the relation (2.9). Then we have

$$\begin{aligned} w_1(c_1) &= w_1(a_1) = \alpha_1, \\ w_j(c_1) &> w_j(a_1) \geq \alpha_j, \quad j \geq 2. \end{aligned} \tag{2.11}$$

□

If G admits a quasi-divisor property of finite character, the existence of a map

$$\sigma : \mathcal{K}(W) \longrightarrow \mathcal{J}_t^f(G) \tag{2.12}$$

follows immediately from Proposition 2.2. Between the l -group of compatible elements $\mathcal{K}(W)$ and a semigroup $\mathcal{J}_t^f(G)$ of finitely generated t -ideals of *any* *po*-group G , there exists another naturally defined map, namely,

$$\tau : \mathcal{J}_t^f(G) \longrightarrow \mathcal{K}(W) \tag{2.13}$$

such that $\tau(X_t) = (\wedge w(X_t))_{w \in W} = (\wedge w(X_t))_{w \in W} \in \mathcal{K}(W)$. τ is well defined and it can be proved easily that τ is a semigroup monomorphism (because t -ideals are defined by W). If G admits a quasi-divisor property of finite character, then σ and τ are mutually inverse o -isomorphisms (see Corollary 2.3). Moreover, if $h : G \rightarrow \mathcal{J}_t^f(G)$ and $d : G \rightarrow \mathcal{K}(W)$ are natural embedding maps such that $h(g) = (g)_t$ and $d(g) = (w(g))_{w \in W}$, then the following diagram commutes:

$$\begin{array}{ccccc} \mathcal{J}_t^f(G) & \xrightarrow{\tau} & \mathcal{K}(W) & \xrightarrow{\sigma} & \mathcal{J}_t^f(G) \\ h \uparrow & & d \uparrow & & h \uparrow \\ G & \xlongequal{\quad} & G & \xlongequal{\quad} & G \end{array} \tag{2.14}$$

In the group $\mathcal{K}(W)$, a group topology \mathcal{T}_W can be defined such that $\ker \hat{w} = \{(\alpha_v)_v \in \mathcal{K}(W) : \alpha_w = 1\}$ is a subbase of neighborhoods of 1 for any $w \in W$ (clearly, $\hat{w} : \mathcal{K}(W) \rightarrow G_w$ is the projection map). Then the semigroup monomorphism $\tau : \mathcal{J}_t^f(G) \rightarrow \mathcal{K}(W)$ induces a semigroup topology \mathcal{F}_W on $\mathcal{J}_t^f(G)$. If for $w \in W$, we define a map $\tilde{w} : \mathcal{J}_t^f(G) \rightarrow G_w$ such that $\tilde{w}(X_t) = \wedge w(X_t) (= \wedge w(X_t))$, then for any finite $F \subseteq W$, we obtain

$$\tau^{-1} \left(\bigcap_{w \in F} \ker \hat{w} \right) = \bigcap_{w \in F} \ker \tilde{w}. \tag{2.15}$$

Hence, the topology \mathcal{F}_W can be defined by maps $\tilde{w}, w \in W$. Moreover, in the ordered semigroup $(\mathcal{J}_t^f(G), \times_t, \leq_t)$, where $X_t \leq_t Y_t$ if $Y_t \subseteq X_t$, a t -ideals structure can be defined analogously as in any *po*-group. The following lemma shows that the topology \mathcal{F}_W is defined also by t -valuations.

LEMMA 2.6. *For any $w \in W$, \tilde{w} is a (t, t) -morphism from $(\mathcal{J}_t^f(G), \times_t, \leq_t)$ to G_w .*

Proof. Let \mathcal{X}_t be a t -ideal in $\mathcal{J}_t^f(G)$ generated by a lower bounded subset \mathcal{X} and let $X_t \in \mathcal{X}_t$. Then there exists a finite set $\mathcal{F} \subseteq \mathcal{X}$ such that $X_t \in \mathcal{F}_t$. We set $S = \bigcup_{F_t \in \mathcal{F}} F_t$. Then, S is a finite subset in G and $S_t \leq_t F_t$ for any $F_t \in \mathcal{F}$. Hence, $X_t \geq_t S_t$ and we have $\wedge w(X) = \wedge w(X_t) \geq \wedge w(S_t) = \wedge w(S)$. Thus $\tilde{w}(X_t) \in (\tilde{w}(S_t))_t = (\wedge_{F_t \in \mathcal{F}} \tilde{w}(F_t))_t = (\tilde{w}(\mathcal{F}))_t$. \square

THEOREM 2.7. *Let G be defined by a family of t -valuations of finite character. Then the following statements are equivalent.*

- (1) G admits a strong quasi-divisor property.
- (2) G admits a quasi-divisor property and for any $(\alpha_w)_w \in \mathcal{K}(W)$ and $a \in G$ such that $\alpha_w \leq w(a)$ for all $w \in W$, there exists $b \in G$ such that $\alpha_w = w(a) \wedge w(b)$ for all $w \in W$.
- (3) G admits a quasi-divisor property and for any $X_t \in \mathcal{J}_t^f(G)$ and $a \in X_t$, there exists $b \in G$ such that $X_t = (a, b)_t$.

If W is an infinite set, then these statements are equivalent to the following equivalent statements.

- (4) G admits a quasi-divisor property and $h(G)$ is dense in $(\mathcal{J}_t^f(G), \mathcal{F}_W)$.
- (5) $d(G)$ is dense in $(\mathcal{K}(W), \mathcal{T}_W)$.

Proof. (1) \Rightarrow (2) Let $(\alpha_w)_w \in \mathcal{K}(W)$, $a \in G$ such that $w(a) \geq \alpha_w$ for all $w \in W$. Let $W_1 = \{w \in W : \alpha_w \neq 1\} \cup \{v \in W : v(a) \neq 1\}$. According to Lemma 2.1, $(\alpha_w)_{w \in W_1}$ is compatible and W_1 -complete and according to AT, there exists $b \in G$ such that

$$\begin{aligned} w(b) &= \alpha_w, \quad w \in W_1, \\ w(b) &\geq 1, \quad w \in W \setminus W_1. \end{aligned} \tag{2.16}$$

Then for $w \in W_1$, we have $w(a) \wedge w(b) = w(a) \wedge \alpha_w = \alpha_w$, and for $w \in W \setminus W_1$, $w(a) \wedge w(b) = 1 \wedge w(b) = 1 = \alpha_w$.

(2) \Rightarrow (3) Let $a \in X_t \in \mathcal{J}_t^f(G)$. Because t -system is defined by W , we have $X_t = \{g \in G : w(g) \geq \wedge w(X), w \in W\}$. According to [3, Lemma 2.9], $(\wedge w(X))_w \in \mathcal{K}(W)$ and there exists $b \in G$ such that $\wedge w(X) = w(a) \wedge w(b)$, for all $w \in W$. Then we have $X_t = \{g \in G : w(g) \in (w(a), w(b))_t, w \in W\} = (a, b)_t$.

(3) \Rightarrow (1) We show that G satisfies the positive weak approximation theorem (PWAT). Let $(\alpha_1, \dots, \alpha_n) \in \prod_{i=1}^n G_{w_i}^+$ be compatible. According to Lemma 2.5, there exist $a_1, \dots, a_n \in G_+$ such that

$$\forall i, \forall j \neq i, \quad w_i(a_i) = \alpha_i, \quad w_j(a_i) > \alpha_j. \tag{2.17}$$

We set $b = a_1 \cdots a_n$. Then $b \in (a_1, \dots, a_n)_t$. Hence, there exists $a \in G_+$ such that $(a_1, \dots, a_n)_t = (a, b)_t$. Then for any i , we have

$$w_i(b) = \alpha_i \cdot \prod_{j \neq i} w_i(a_j) > \alpha_i^n \geq \alpha_i. \quad (2.18)$$

Let us assume that there exists i such that $w_i(b) < w_i(a)$. Since $a_i \in (a, b)_t$, we have $\alpha_i = w_i(a_i) \geq w_i(a) \wedge w_i(b) = w_i(b)$, a contradiction. Then we have $\alpha_i = w_i(a_i) \geq w_i(a) \wedge w_i(b) = w_i(a)$. Since $a \in (a_1, \dots, a_n)_t$, we have $w_i(a) \geq w_i(a_1) \wedge \cdots \wedge w_i(a_n) = \alpha_i \wedge \bigwedge_{j \neq i} w_i(a_j) = \alpha_i$. Thus $w_i(a) = \alpha_i$, $i = 1, \dots, n$ and G satisfies the PWAT. According to [7, Theorem 3.5], G admits a strong quasi-divisor property.

Now let W be an infinite set.

(1) \Rightarrow (4) Since G admits a quasi-divisor property, $(\mathcal{I}_t^f(G), \times_t)$ is a group and the subbase of neighborhoods of unity in topology \mathcal{F}_W is $\{\ker \tilde{w} : w \in W\}$. We show that a map $\sigma : \mathcal{K}(W) \rightarrow \mathcal{I}_t^f(G)$ is a homeomorphism. Let $\mathbf{a}, \mathbf{b} \in \mathcal{K}(W)$. Then there exist $a_1, \dots, a_n, b_1, \dots, b_m \in G$ such that $\mathbf{a} = d(a_1) \wedge \cdots \wedge d(a_n)$, $\mathbf{b} = d(b_1) \wedge \cdots \wedge d(b_m)$ and we have $\sigma(\mathbf{a}) = (a_1, \dots, a_n)_t$, $\sigma(\mathbf{b}) = (b_1, \dots, b_m)_t$. Then $\mathbf{a} \cdot \mathbf{b} = d(a_1 b_1) \wedge \cdots \wedge d(a_n b_m)$ and $\sigma(\mathbf{a} \cdot \mathbf{b}) = (a_1 b_1, \dots, a_n b_m)_t = \sigma(\mathbf{a}) \times_t \sigma(\mathbf{b})$. If $\sigma(\mathbf{a}) = (1)_t$, then $(a_1, \dots, a_n)_t = (1)_t$ and it follows easily that $\mathbf{a} = 1$. It is clear that σ is also homeomorphism. According to [8, Theorem 2.6], there exists an o -isomorphism ψ such that the following diagram commutes:

$$\begin{array}{ccc} \Lambda_t(G) & \xrightarrow{\psi} & \mathcal{K}(W) \\ \overline{w} \downarrow & & \downarrow \hat{w} \\ G_w & \xlongequal{\quad} & G_w \end{array} \quad (2.19)$$

where \overline{w} is a canonical extension of w . Since $G \rightarrow \Lambda_t(G)$ is a strong quasi-divisor morphism, it follows that $d : G \rightarrow \mathcal{K}(W)$ is a strong quasi-divisor morphism as well. Then, according to [5, Theorem 2.9], $d(G)$ is dense in $(\mathcal{K}(W), \mathcal{F}_W)$ and it follows that $h(G)$ is also dense in $(\mathcal{I}_t^f(G), \mathcal{F}_W)$.

(4) \Rightarrow (5) If G admits a quasi-divisor property, then $\mathcal{I}_t^f(G)$ is o -isomorphic to $\Lambda_t(G)$ and according to [8, Theorem 6], it is also o -isomorphic to $\mathcal{K}(W)$. It can be proved easily that $(\mathcal{I}_t^f(G), \mathcal{F}_W)$ is also homeomorphic to $(\mathcal{K}(W), \mathcal{F}_W)$.

(5) \Rightarrow (1) It follows directly from [5, Theorem 2.9]. \square

References

- [1] A. Geroldinger and J. Močkoř, *Quasi-divisor theories and generalizations of Krull domains*, J. Pure Appl. Algebra **102** (1995), no. 3, 289–311.
- [2] P. Jaffard, *Les Systèmes d'Idéaux*, Travaux et Recherches Mathématiques, IV, Dunod, Paris, 1960.
- [3] J. Močkoř, *t -valuations and the theory of quasi-divisors*, J. Pure Appl. Algebra **120** (1997), no. 1, 51–65.
- [4] ———, *Construction of po-groups with quasi-divisors theory*, Czechoslovak Math. J. **50**(125) (2000), no. 1, 197–207.

- [5] ———, *Topological characterization of ordered groups with quasi-divisor theory*, Czechoslovak Math. J. **52**(127) (2002), no. 3, 595–607.
- [6] J. Močkoř and A. Kontolatou, *Divisor class groups of ordered subgroups*, Acta Math. Inform. Univ. Ostraviensis **1** (1993), 37–46.
- [7] ———, *Groups with quasi-divisors theory*, Comment. Math. Univ. St. Paul. **42** (1993), no. 1, 23–36.
- [8] ———, *Some remarks on Lorenzen r-group of partly ordered groups*, Czechoslovak Math. J. **46**(121) (1996), no. 3, 537–552.

Jiří Močkoř: Department of Mathematics, University of Ostrava, CZ-702 00 Ostrava, Czech Republic

E-mail address: jiri.mockor@osu.cz

Angeliki Kontolatou: Department of Mathematics, School of Natural Sciences, University of Patras, 26500 Patras, Greece

E-mail address: angelika@math.upatras.gr

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru