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Some conditions equivalent to a strong quasi-divisor property (SQDP) for a partly or-
dered group G are derived. It is proved that if G is defined by a family of t-valuations of
finite character, then G admits an SQDP if and only if it admits a quasi-divisor property
and any finitely generated t-ideal is generated by two elements. A topological density con-
dition in topological group of finitely generated t-ideals and/or compatible elements are
proved to be equivalent to SQDP.

1. Introduction

Let G be a partly ordered commutative group (po-group). Then G is said to have a quasi-
divisor property if there exist commutative lattice-ordered group (l-group) (Γ,·,∧) and
an order isomorphism h (the so-called quasi-divisor morphism) from G into Γ such that
for any α∈ Γ, there exist g1, . . . ,gn ∈G such that α= h(g1)∧···∧h(gn). Moreover, if this
embedding h satisfies the condition

(∀α,β ∈ Γ+
) (∃γ ∈ Γ+

)
α · γ ∈ h(G), β∧ γ = 1, (1.1)

then G is said to have a strong quasi-divisor property. Many papers have dealt with po-
groups with (strong) quasi-divisor property (e.g., see [1, 3, 4, 5, 6, 7, 8]). It is well known
that there are some generic examples of such l-group Γ. Namely, if h : G→ Γ is a quasi-

divisor morphism, then Γ is o-isomorphic to the group (�
f
t (G),×t) of finitely generated

t-ideals of G. Recall that a t-ideal Xt of G generated by a lower bounded subset X ⊆ G is

a set Xt = {g ∈ G : (∀s∈ G) s≤ X ⇒ g ≥ s}. Then the set �
f
t (G) of all finitely generated

t-ideals of G is a semigroup with operation ×t defined such that Xt ×t Yt = (X ·Y)t (see

[2]). It is clear that a map d :G→�
f
t (G) defined by d(g)= {g}t is an embedding. Another

example of a group Γ is a group �(W) of compatible elements of a defining family of t-
valuations W (see the definitions below). In this note, we want to show that properties
of a group �(W) can be used for deriving new conditions under which quasi-divisor
property is also a strong quasi-divisor property.
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Let w : G → G1 be an o-homomorphism. Then, w is called t-homomorphism if
w(Xt)⊆ (w(X))t for any lower bounded subsetX ⊆G. Moreover, ifG1 is a totally ordered
group (i.e., o-group), then w is called t-valuation. Recall that a family W of t-valuations
w :G→Gw is called a defining family for G if

(∀g ∈G) g ≥ 1⇐⇒ (∀w ∈W) w(g)≥ 1. (1.2)

We say that W is of finite character if

(∀g ∈G) (∀′w ∈W) w(g)= 1, (1.3)

where ∀′ means “for all but a finite number.” Hence any defining family W of finite
character creates an embedding of G into a sum

∑
w∈W Gw of o-groups Gw, w ∈W . Then

a quasi-divisors property of G is said to be of finite character, if there exists a defining
family of t-valuations of finite character forG. Ifw1,w2 are two t-valuations of a po-group
G, thenw1 is said to be coarser thanw2 (w1 ≥w2) if there exists an o-epimorphism dw1,w2 :
Gw1 → Gw2 such that w2 = dw1,w2w1. It may be then proved that for any two t-valuations
w1, w2, there exists a t-valuation w1 ∧w2 which is the infimum of w1, w2 with respect
to this preorder relation. Then, dw1,w1∧w2 (resp., dw2,w1∧w2 ) is an o-epimorphism such that
w1 ∧w2 = dw1,w1∧w2 , w1 = dw2,w1∧w2w2. For simplicity, we set dw1w2 = dw1,w1∧w2 , dw2w1 =
dw2,w1∧w2 (see the difference between dw1,w2 and dw1w2 ). If W is a system of t-valuations
w :G→Gw of a po-group G and W ′ ⊆W , then a system (gw)w ∈

∏
w∈W ′Gw of elements

is called compatible provided that dwv(gw) = dvw(gv) for all w,v ∈W ′. Finally, (gw)w∈W ′

is called W ′-complete if
⋃
w∈W ′W(gw) =W ′, where W(gw) = {v ∈W : dwv(gw) �= 1} for

gw �= 1w and W(1w)= {w} for any w ∈W .
Let W be a defining family of t-valuations of G. Then, we set

�(W)=
{(
aw
)
w ∈

∏
w∈W

Gw :
(
aw
)
w is compatible

}
. (1.4)

It can be proved that �(W) is an l-subgroup in
∏

w∈W Gw (see [8]). Now we say that G
with a defining family of t-valuations satisfies the positive weak approximation theorem
(PWAT) if for any finite subset F ⊆W and any compatible system (αw)w∈F ∈

∏
w∈F G+

w,
there exists g ∈ G+ such that w(g) = αw, w ∈ F. Finally, we say that G with W satisfies
the approximation theorem (AT) if for any finite subset F ⊆W and any compatible and
F-complete system (αw)w∈F ∈

∏
w∈F Gw, there exists g ∈G such that

w(g)= αw, w ∈ F,

w(g)≥ 1, w ∈W \F. (1.5)

2. Results

In the theory of quasi-divisors of a po-group, a t-ideal theory has an important position.
In the next propositions, we want to show that all t-ideals in a po-group G with a quasi-
divisor property of finite character can be derived from the set of compatible elements
�(W) of G, where W is some defining family of t-valuations of G.
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Lemma 2.1. Let (αw)w ∈�(W) and let W0 = {w ∈W : αw �= 1}. Then (αw)w∈W ′ is W ′-
complete for any W0 ⊆W ′ ⊆W .

Proof. Let v ∈⋃w∈W ′W(αw). Then there exists w ∈W0 such that v ∈W(αw). Because
(αw,αv) is compatible, we have 1 �= dwv(αw)= dvw(αv) and it follows that αv �= 1. Hence,
v ∈W0 ⊆W ′. �

Proposition 2.2. Let G be a po-group with a quasi-divisor property of finite character and
let W be a defining family of t-valuations of G. Let (αw)w ∈ �(W). Then X = {g ∈ G :
(∀w ∈W) w(g)≥ αw} is a finitely generated t-ideal of G.

Proof. Because the t-system is defined by a family W of t-valuations, according to [8,
Theorem 2.6], the group �(W) is o-isomorphic to a Lorenzen l-group Λt(G). It follows
that a map d : G→�(W) such that d(g)= (w(g))w is a quasi-divisors morphism. Then
for any (αw)w ∈�(W), there exist g1, . . . ,gn ∈ G such that d(g1)∧ ··· ∧ d(gn) = (αw)w.
Then X = (g1, . . . ,gn)t. In fact, for g ∈ X , we have w(g) ≥ αw and it follows that w(g) ∈
(w(g1), . . . ,w(gn))t. Because the t-system is defined by W , we have g ∈ (g1, . . . ,gn)t, analo-
gously for the other inclusion. �

Corollary 2.3. Let G be a po-group with a quasi-divisor property of finite character and
let W be a defining family of t-valuations of G. Then there exists an o-isomorphism

σ : �(W)−→�
f
t (G) (2.1)

such that for (αw)w ∈�(W) and J ∈�
f
t (G),

σ
((
αw
)
w

)= {g ∈G : (∀w ∈W) w(g)≥ αw
}

,

σ−1(J)= ((∧x∈J w(x)
)
w

)
.

(2.2)

It is well known that the existence of quasi-divisor property is equivalent to the ex-
istence of a defining family of essential t-valuations (see [3, Theorem 2.1]). Recall that
a t-valuation w of G is essential if kerw is a directed subgroup of G and w is an o-
epimorphism.

Lemma 2.4. Let w, v be essential t-valuations of G and let α∈ Gv be such that dvw(α)= 1.
Then there exists g ∈G such that w(g)= 1, v(g)≥ α.

Proof. We may assume that α > 1. Let J = {x ∈G : v(x)≥ α}. Let us suppose on contrary
that the statement of the lemma is not true. Then for any x ∈ J , we have w(x) > 1. Let
H be the largest convex subgroup in Gv such that α �∈H and let w′ : G

v→ Gv → Gv/H be
the composition of v and canonical morphism. Then w′ ≤ w. In fact, let x ∈ G, x ≥ 1 be
such thatw′(x) > 1. Becausew′(x)= v(x)H , we have v(x) �∈H , v(x) > 1. Then there exists
n ∈ N such that v(x)n ≥ α. In fact, if v(x)n < α for all n ∈ N, then the convex subgroup
H′ generated by H ∪ {v(x)} does not contain α and H ⊆ H′. On the other hand, we
have v(x) ∈ H′ \H , a contradiction. Then xn ∈ J for some n ∈ N and according to the
assumption, we have w(x)n > 1. Hence w(x) > 1 and we proved the implication

x ∈G, x ≥ 1, w′(x) > 1=⇒w(x) > 1. (2.3)
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Let ρ :Gw →Gw′ be defined by ρ(w(g))=w′(g). Then ρ is well defined. In fact, let w(x)=
w(y). Since w is essential, there exists t ∈ kerw such that t ≥ 1,xy−1. If w′(x) �=w′(y), we
have, for example, w′(xy−1) > 1. Then w′(t)≥ w′(xy−1) > 1. According to (2.3), we have
w(t) > 1, a contradiction with t ∈ kerw. Thus w′ = ρ ·w and w′ ≤ w. Then, we have also
w′ ≤ w∧ v. For any b ∈ G such that α = v(b), we obtain w′(b) = v(b)H = αH �= 1 and
v∧w(b)= dvw > v(b)= dvw(α)= 1, a contradiction, because v∧w ≥w′. �

Lemma 2.5. Let w1, . . . ,wn be essential t-valuations of G and let (α1, . . . ,αn)∈∏n
i=1G

+
wi be

compatible elements. Then there exists a1 ∈G, a1 ≥ 1, such that

∀ j �= 1, w1
(
a1
)= α1, wj

(
a1
)
> αj. (2.4)

Proof. The proof will be done by the induction with respect to n. For n= 1, the proof is
trivial. Let us assume that the statement is true for any compatible set of n− 1 elements.
Let us assume firstly thatw1 < wk for some k �= 1. According to the induction assumption,
there exists a∈G+ such that

∀ j �= k,1, wk(a)= αk, wj(a) > αj. (2.5)

Because w1 < wk, there exists an o-epimorphism σ : Gwk → Gw1 such that w1 = σ ·wk.
Since (α1,αk) is compatible, we have σ(αk)= α1. Since kerσ �= {1}, there exists δ ∈ kerσ ,
δ > 1. From the fact that wk is essential, it follows that there exists g ∈G, g > 1, such that
wk(g)= δ. We set a1 = ga. Then, we have

w1
(
a1
)= σ ·wk(ga)= σ(δ) · σ(αk)= α1,

wk
(
a1
)= δ ·αk > αk,

∀i �= k, i≥ 2, wi
(
a1
)≥wi(a) > αi.

(2.6)

Let us assume now that w1‖wj , j ≥ 2. Then wj �= w1∧wj and for any j ≥ 2, there exists
δj ∈ kerdj1, δj > 1. According to Lemma 2.4, for any j ≥ 2, there exists gj ∈G+ such that
w1(gj)= 1, wj(gj)≥ δj . We set g1 =

∏
j≥2 gj . Then

∀ j ≥ 2, w1
(
g1
)= 1, wj

(
g1
)≥wj

(
gj
)≥ δj > 1. (2.7)

According to the induction assumption, there exists a1 ∈G+ such that

∀2≤ j ≤ n− 1, w1
(
a1
)= α1, wj

(
a1
)
> αj. (2.8)

Without the loss of generality, we may assume that

∀2≤ j, w1
(
a1
)= α1, wj

(
a1
)≥ αj . (2.9)
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In fact, if wn(a1) < αn, then dn1(αn ·w−1
n (a1))= d1n(α1) ·d1n(w−1

1 (a1))= 1 and according
to Lemma 2.4, there exists a′1 ∈ G+ such that w1(a′1)= 1, wn(a′1)≥ α ·w−1

n (a1). Then for
a′′1 = a1a

′
1, we have

w1
(
a′′1
)=w1

(
a1a

′
1

)= α1,

∀n > j ≥ 2, wj
(
a′′1
)≥wj

(
a1
)
> αj ,

wn
(
a′′1
)≥ αn.

(2.10)

We set c1 = a1g1, where a1 satisfies the relation (2.9). Then we have

w1
(
c1
)=w1

(
a1
)= α1,

wj
(
c1
)
> wj

(
a1
)≥ αj , j ≥ 2.

(2.11)

�

If G admits a quasi-divisor property of finite character, the existence of a map

σ : �(W)−→�
f
t (G) (2.12)

follows immediately from Proposition 2.2. Between the l-group of compatible elements

�(W) and a semigroup �
f
t (G) of finitely generated t-ideals of any po-group G, there

exists another naturally defined map, namely,

τ : �
f
t (G)−→�(W) (2.13)

such that τ(Xt)= (∧w(X))w∈W = (∧w(Xt))w∈W ∈�(W). τ is well defined and it can be
proved easily that τ is a semigroup monomorphism (because t-ideals are defined by W).
If G admits a quasi-divisor property of finite character, then σ and τ are mutually inverse

o-isomorphisms (see Corollary 2.3). Moreover, if h : G→ �
f
t (G) and d : G→�(W) are

natural embedding maps such that h(g)= (g)t and d(g)= (w(g))w∈W , then the following
diagram commutes:

�
f
t (G)

τ
�(W)

σ
�
f
t (G)

G

h

G

d

G

h (2.14)

In the group �(W), a group topology �W can be defined such that kerŵ = {(αv)v ∈
�(W) : αw = 1} is a subbase of neighborhoods of 1 for any w ∈W (clearly, ŵ : �(W)→
Gw is the projection map). Then the semigroup monomorphism τ : �

f
t (G)→�(W) in-

duces a semigroup topology �W on �
f
t (G). If for w ∈W , we define a map w̃ : �

f
t (G)→

Gw such that w̃(Xt)=∧w(X)(=∧w(Xt)), then for any finite F ⊆W , we obtain

τ−1

( ⋂
w∈F

kerŵ

)
=
⋂
w∈F

kerw̃. (2.15)
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Hence, the topology �W can be defined by maps w̃,w ∈W . Moreover, in the ordered

semigroup (�
f
t (G),×t,≤t), where Xt ≤t Yt if Yt ⊆ Xt, a t-ideals structure can be defined

analogously as in any po-group. The following lemma shows that the topology �W is
defined also by t-valuations.

Lemma 2.6. For any w ∈W , w̃ is a (t, t)-morphism from (�
f
t (G),×t,≤t) to Gw.

Proof. Let �t be a t-ideal in �
f
t (G) generated by a lower bounded subset � and let Xt ∈

�t. Then there exists a finite set � ⊆ � such that Xt ∈�t. We set S =⋃Ft∈�F. Then, S
is a finite subset in G and St ≤t Ft for any Ft ∈�. Hence, Xt ≥t St and we have ∧w(X)=
∧w(Xt)≥∧w(St)=∧w(S). Thus w̃(Xt)∈ (w̃(St))t = (∧Ft∈�w̃(Ft))t = (w̃(�))t. �

Theorem 2.7. Let G be defined by a family of t-valuations of finite character. Then the
following statements are equivalent.

(1) G admits a strong quasi-divisor property.
(2) G admits a quasi-divisor property and for any (αw)w ∈�(W) and a∈ G such that

αw ≤ w(a) for all w ∈W , there exists b ∈ G such that αw = w(a)∧w(b) for all
w ∈W .

(3) G admits a quasi-divisor property and for any Xt ∈ �
f
t (G) and a ∈ Xt, there exists

b ∈G such that Xt = (a,b)t.
If W is an infinite set, then these statements are equivalent to the following equivalent state-
ments.

(4) G admits a quasi-divisor property and h(G) is dense in (�
f
t (G),�W ).

(5) d(G) is dense in (�(W),�W ).

Proof. (1)⇒(2) Let (αw)w ∈�(W), a ∈ G such that w(a) ≥ αw for all w ∈W . Let W1 =
{w ∈W : αw �= 1}∪ {v ∈W : v(a) �= 1}. According to Lemma 2.1, (αw)w∈W1 is compati-
ble and W1-complete and according to AT, there exists b ∈G such that

w(b)= αw, w ∈W1,

w(b)≥ 1, w ∈W \W1.
(2.16)

Then for w ∈W1, we have w(a)∧w(b)= w(a)∧ αw = αw, and for w ∈W \W1, w(a)∧
w(b)= 1∧w(b)= 1= αw.

(2)⇒(3) Let a ∈ Xt ∈ �
f
t (G). Because t-system is defined by W , we have Xt = {g ∈

G :w(g)≥∧w(X), w ∈W}. According to [3, Lemma 2.9], (∧w(X))w ∈�(W) and there
exists b ∈ G such that ∧w(X)= w(a)∧w(b), for all w ∈W . Then we have Xt = {g ∈ G :
w(g)∈ (w(a),w(b))t, w ∈W} = (a,b)t.

(3)⇒(1) We show that G satisfies the positive weak approximation theorem (PWAT).
Let (α1, . . . ,αn)∈∏n

i=1G
+
wi be compatible. According to Lemma 2.5, there exist a1, . . . ,an ∈

G+ such that

∀i, ∀ j �= i, wi
(
ai
)= αi, wj

(
ai
)
> αj. (2.17)
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We set b = a1 ···an. Then b ∈ (a1, . . . ,an)t. Hence, there exists a ∈ G+ such that (a1, . . . ,
an)t = (a,b)t. Then for any i, we have

wi(b)= αi ·
∏
j �=i
wi(aj) > αni ≥ αi. (2.18)

Let us assume that there exists i such that wi(b) < wi(a). Since ai ∈ (a,b)t, we have αi =
wi(ai)≥wi(a)∧wi(b)=wi(b), a contradiction. Then we have αi =wi(ai)≥wi(a)∧wi(b)
= wi(a). Since a ∈ (a1, . . . ,an)t, we have wi(a) ≥ wi(a1)∧···∧wi(an) = αi∧

∧
j �=i wi(aj)

= αi. Thus wi(a) = αi, i = 1, . . . ,n and G satisfies the PWAT. According to [7, Theorem
3.5], G admits a strong quasi-divisor property.

Now let W be an infinite set.
(1)⇒(4) Since G admits a quasi-divisor property, (�

f
t (G),×t) is a group and the sub-

base of neighborhoods of unity in topology �W is {kerw̃ : w ∈W}. We show that a map

σ : �(W)→�
f
t (G) is a homeomorphism. Let a,b∈�(W). Then there exist a1, . . . ,an,b1,

. . . ,bm ∈G such that a= d(a1)∧···∧d(an), b= d(b1)∧···∧d(bm) and we have σ(a)=
(a1, . . . ,an)t, σ(b) = (b1, . . . ,bm)t. Then a · b = d(a1b1)∧ ··· ∧ d(anbm) and σ(a · b) =
(a1b1, . . . ,anbm)t = σ(a)×t σ(b). If σ(a)= (1)t, then (a1, . . . ,an)t = (1)t and it follows eas-
ily that a = 1. It is clear that σ is also homeomorphism. According to [8, Theorem 2.6],
there exists an o-isomorphism ψ such that the following diagram commutes:

Λt(G)

w

ψ
�(W)

ŵ

Gw Gw

(2.19)

where w is a canonical extension of w. Since G→ Λt(G) is a strong quasi-divisor mor-
phism, it follows that d : G→�(W) is a strong quasi-divisor morphism as well. Then,
according to [5, Theorem 2.9], d(G) is dense in (�(W),�W) and it follows that h(G) is

also dense in (�
f
t (G),�W ).

(4)⇒(5) If G admits a quasi-divisor property, then �
f
t (G) is o-isomorphic to Λt(G)

and according to [8, Theorem 6], it is also o-isomorphic to �(W). It can be proved easily

that (�
f
t (G),�W ) is also homeomorphic to (�(W),�W).

(5)⇒(1) It follows directly from [5, Theorem 2.9]. �
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