

NEW ERROR INEQUALITIES FOR THE LAGRANGE INTERPOLATING POLYNOMIAL

NENAD UJEVIĆ

Received 30 August 2005

A new representation of remainder of Lagrange interpolating polynomial is derived. Error inequalities of Ostrowski-Grüss type for the Lagrange interpolating polynomial are established. Some similar inequalities are also obtained.

1. Introduction

Many error inequalities in polynomial interpolation can be found in [1, 7]. These error bounds for interpolating polynomials are usually expressed by means of the norms $\|\cdot\|_p$, $1 \leq p \leq \infty$. Some new error inequalities (for corrected interpolating polynomials) are given in [10, 11]. The last mentioned inequalities are similar to error inequalities obtained in recent years in numerical integration and they are known in the literature as inequalities of Ostrowski (or Ostrowski-like, Ostrowski-Grüss) type. For example, in [9] we can find inequalities of Ostrowski-Grüss type for the well-known Simpson's quadrature rule,

$$\left| \int_{x_0}^{x_2} f(t) dt - \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] \right| \leq C_n (\Gamma_n - \gamma_n) h^{n+1}, \quad (1.1)$$

where $x_i = x_0 + ih$, for $h > 0$, $i = 1, 2$, γ_n , Γ_n are real numbers such that $\gamma_n \leq f^{(n)}(t) \leq \Gamma_n$, for all $t \in [x_0, x_2]$, and C_n are constants, $n \in \{1, 2, 3\}$.

The inequalities of Ostrowski type can be also found in [2, 3, 4, 5, 6, 12]. In some of the mentioned papers, we can find estimations for errors of quadrature formulas which are expressed by means of the differences $\Gamma_k - \gamma_k$, $S - \gamma_k$, $\Gamma_k - S$, where Γ_k , γ_k are real numbers such that $\gamma_k \leq f^{(k)}(t) \leq \Gamma_k$, $t \in [a, b]$ (k is a positive integer while $[a, b]$ is an interval of integration) and $S = [f^{(k-1)}(b) - f^{(k-1)}(a)]/(b - a)$. It is shown that the estimations expressed in such a way can be much better than the estimations expressed by means of the norms $\|f^{(k)}\|_p$, $1 \leq p \leq \infty$.

As we know there is a close relationship between interpolation polynomials and quadrature rules. Thus, it is a natural try to establish similar error inequalities in polynomial interpolation.

We first establish general error inequalities, expressed by means of $\|f^{(k)} - P_m\|$, where P_m is any polynomial of degree m and then we obtain inequalities of the above mentioned types. For that purpose, we derive a new representation of remainder of the interpolating polynomial. This is done in Section 2. In Section 3, we obtain the error inequalities of the above-mentioned types. In Section 4, we give some results for derivatives.

Finally, we emphasize that the usual error inequalities in polynomial interpolation (for the Lagrange interpolating polynomial $L_n(x)$) are given by means of the $(n+1)$ th derivative while in this paper we can find these error inequalities expressed by means of the k th derivative for $k = 1, 2, \dots, n$.

2. Representation of remainder

Let $D = \{a = x_0 < x_1 < \dots < x_n = b\}$ be a given subdivision of the interval $[a, b]$ and let $f : [a, b] \rightarrow \mathbb{R}$ be a given function. The Lagrange interpolation polynomial is given by

$$L_n(x) = \sum_{i=0}^n p_{ni}(x) f(x_i), \quad (2.1)$$

where

$$p_{ni}(x) = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}, \quad (2.2)$$

for $i = 0, 1, \dots, n$. We have the Cauchy relations [7, pages 160-161],

$$\sum_{i=0}^n p_{ni}(x) = 1, \quad (2.3)$$

$$\sum_{i=0}^n p_{ni}(x) (x - x_i)^j = 0, \quad j = 1, 2, \dots, n. \quad (2.4)$$

Let $\bar{D} = \{x_0 = a < x_1 < \dots < x_n = b\}$ be a given uniform subdivision of the interval $[a, b]$, that is, $x_i = x_0 + ih$, $h = (b - a)/n$, $i = 0, 1, 2, \dots, n$. Then the Lagrange interpolating polynomial is given by

$$L_n(x) = L_n(x_0 + th) = (-1)^n \frac{t(t-1) \cdots (t-n)}{n!} \sum_{i=0}^n (-1)^i \binom{n}{i} \frac{f(x_i)}{t-i}, \quad (2.5)$$

where $t \notin \{0, 1, 2, \dots, n\}$, $0 < t < n$.

LEMMA 2.1. *Let $P_m(t)$ be an arbitrary polynomial of degree $\leq m$ and let $p_{ni}(x)$ be defined by (2.2). Then*

$$\sum_{i=0}^n p_{ni}(x) \int_{x_i}^x P_m(t) (t - x_i)^k dt = 0, \quad (2.6)$$

for $0 \leq k + m \leq n - 1$ and $x \in [a, b]$.

Proof. Let x be a given real number. Then we have

$$P_m(t) = \sum_{j=0}^m c_j (x-t)^j, \quad (2.7)$$

for some coefficients $c_j = c_j(x)$, $j = 0, 1, 2, \dots, m$. (This is a consequence of the Taylor formula.) Thus,

$$\sum_{i=0}^n p_{ni}(x) \int_{x_i}^x P_m(t) (t-x_i)^k dt = \sum_{j=0}^m c_j \sum_{i=0}^n p_{ni}(x) \int_{x_i}^x (x-t)^j (t-x_i)^k dt. \quad (2.8)$$

Let $\beta(\cdot, \cdot)$ and $\Gamma(\cdot)$ denote the beta and gamma functions, respectively. We now calculate

$$\begin{aligned} \int_{x_i}^x (x-t)^j (t-x_i)^k dt &= \int_0^{x-x_i} (x-x_i-u)^j u^k du \\ &= (x-x_i)^j \int_0^{x-x_i} \left(1 - \frac{u}{x-x_i}\right)^j u^k du \\ &= (x-x_i)^{j+k+1} \int_0^1 (1-v)^j v^k dv \\ &= \beta(j+1, k+1) (x-x_i)^{j+k+1} \\ &= \frac{\Gamma(k+1)\Gamma(j+1)}{\Gamma(k+j+2)} (x-x_i)^{j+k+1} \\ &= \frac{k!j!}{(k+j+1)!} (x-x_i)^{j+k+1}. \end{aligned} \quad (2.9)$$

From (2.8) and (2.9) it follows that

$$\sum_{i=0}^n p_{ni}(x) \int_{x_i}^x P_m(t) (t-x_i)^k dt = \sum_{j=0}^m c_j \frac{k!j!}{(k+j+1)!} \sum_{i=0}^n p_{ni}(x) (x-x_i)^{j+k+1}. \quad (2.10)$$

From (2.10) and (2.4) we conclude that (2.6) holds. \square

THEOREM 2.2. *Let $f \in C^{n+1}(a, b)$ and let the assumptions of Lemma 2.1 hold. Then*

$$f(x) = L_n(x) + R_{k,m}(x), \quad (2.11)$$

where $L_n(x)$ is given by (2.1) and

$$R_{k,m}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}(x) \int_{x_i}^x [f^{(k+1)}(t) - P_m(t)] (t-x_i)^k dt. \quad (2.12)$$

Proof. We have

$$R_{k,m}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}(x) \int_{x_i}^x f^{(k+1)}(t) (t-x_i)^k dt - \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}(x) \int_{x_i}^x P_m(t) (t-x_i)^k dt. \quad (2.13)$$

From (2.13) and (2.6) it follows that

$$R_{k,m}(x) = R_k(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}(x) \int_{x_i}^x f^{(k+1)}(t) (t - x_i)^k dt. \quad (2.14)$$

For $k = 0$ we have

$$\begin{aligned} R_0(x) &= \sum_{i=0}^n p_{ni}(x) \int_{x_i}^x f'(t) dt \\ &= \sum_{i=0}^n p_{ni}(x) [f(x) - f(x_i)] = f(x) - L_n(x), \end{aligned} \quad (2.15)$$

since (2.3) holds.

We now suppose that $k \geq 1$. Integrating by parts, we obtain

$$\frac{(-1)^k}{k!} \int_{x_i}^x f^{(k+1)}(t) (t - x_i)^k dt = \frac{(-1)^k}{k!} f^{(k)}(x) (x - x_i)^k + \frac{(-1)^{k-1}}{(k-1)!} \int_{x_i}^x f^{(k)}(t) (t - x_i)^{k-1} dt. \quad (2.16)$$

In a similar way we get

$$\begin{aligned} &\frac{(-1)^{k-1}}{(k-1)!} \int_{x_i}^x f^{(k)}(t) (t - x_i)^{k-1} dt \\ &= \frac{(-1)^{k-1}}{(k-1)!} f^{(k-1)}(x) (x - x_i)^{k-1} \frac{(-1)^{k-2}}{(k-2)!} \int_{x_i}^x f^{(k-1)}(t) (t - x_i)^{k-2} dt. \end{aligned} \quad (2.17)$$

Continuing in this way, we get

$$\begin{aligned} \frac{(-1)^k}{k!} \int_{x_i}^x f^{(k+1)}(t) (t - x_i)^k dt &= \sum_{j=1}^k \frac{(-1)^j}{j!} f^{(j)}(x) (x - x_i)^j + \int_{x_i}^x f'(t) dt \\ &= f(x) - f(x_i) + \sum_{j=1}^k \frac{(-1)^j}{j!} f^{(j)}(x) (x - x_i)^j. \end{aligned} \quad (2.18)$$

From (2.14) and (2.18) it follows that

$$\begin{aligned} R_k(x) &= \sum_{i=0}^n p_{ni}(x) \left[f(x) - f(x_i) + \sum_{j=1}^k \frac{(-1)^j}{j!} f^{(j)}(x) (x - x_i)^j \right] \\ &= f(x) - L_n(x) + \sum_{j=1}^k \frac{(-1)^j}{j!} f^{(j)}(x) \sum_{i=0}^n p_{ni}(x) (x - x_i)^j \\ &= f(x) - L_n(x), \quad k = 1, 2, \dots, n, \end{aligned} \quad (2.19)$$

since (2.3) and (2.4) hold. From (2.14), (2.15), and (2.19) we see that (2.11) holds. \square

3. Error inequalities

We now introduce the notations

$$\omega_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n), \quad (3.1)$$

$$C_k(x) = \sum_{i=0}^n \frac{|x - x_i|^k}{|x_i - x_0| \cdots |x_i - x_{i-1}| |x_i - x_{i+1}| \cdots |x_i - x_n|}, \quad (3.2)$$

$$B_k(x) = \sum_{i=0}^n \frac{(S_{ki} - \gamma_{k+1}) |x - x_i|^k}{|x_i - x_0| \cdots |x_i - x_{i-1}| |x_i - x_{i+1}| \cdots |x_i - x_n|}, \quad (3.3)$$

$$D_k(x) = \sum_{i=0}^n \frac{(\Gamma_{k+1} - S_{ki}) |x - x_i|^k}{|x_i - x_0| \cdots |x_i - x_{i-1}| |x_i - x_{i+1}| \cdots |x_i - x_n|}, \quad (3.4)$$

where $S_{ki} = [f^{(k)}(x) - f^{(k)}(x_i)]/(x - x_i)$, $i = 0, 1, \dots, n$, and γ_{k+1} , Γ_{k+1} are real numbers such that $\gamma_{k+1} \leq f^{(k+1)}(t) \leq \Gamma_{k+1}$, $t \in [a, b]$, $k = 0, 1, \dots, n-1$.

Let $g \in C(a, b)$. As we know among all algebraic polynomials of degree $\leq m$ there exists the only polynomial $P_m^*(t)$ having the property that

$$\|g - P_m^*\|_\infty \leq \|g - P_m\|_\infty, \quad (3.5)$$

where $P_m \in \Pi_m$ is an arbitrary polynomial of degree $\leq m$. We define

$$E_m(g) = \|g - P_m^*\| = \inf_{P_m \in \Pi_m} \|g - P_m\|_\infty. \quad (3.6)$$

THEOREM 3.1. *Under the assumptions of Theorem 2.2,*

$$|f(x) - L_n(x)| \leq \frac{E_m(f^{(k+1)})}{(k+1)!} C_k(x) |\omega_n(x)|, \quad (3.7)$$

where $C_k(\cdot)$ and $E_m(\cdot)$ are defined by (3.2) and (3.6), respectively.

Proof. Let $P_m(t) = P_m^*(t)$, where $P_m^*(t)$ is defined by (3.6) for the function $g(t) = f^{(k+1)}(t)$. We have

$$\begin{aligned} |R_{k,m}(x)| &= \left| \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}(x) \int_{x_i}^x [f^{(k+1)}(t) - P_m^*(t)] (t - x_i)^k dt \right| \\ &\leq \frac{\|f^{(k+1)} - P_m^*\|_\infty}{(k+1)!} C_k(x) |\omega_n(x)| \\ &= \frac{E_m(f^{(k+1)})}{(k+1)!} C_k(x) |\omega_n(x)|, \end{aligned} \quad (3.8)$$

since

$$\left| \int_{x_i}^x (t - x_i)^k dt \right| = \frac{|x - x_i|^{k+1}}{k+1}. \quad (3.9)$$

□

Remark 3.2. The above estimate has only theoretical importance, since it is difficult to find the polynomial P^* . In fact, we can find P^* only for some special cases of functions. However, we can use the estimate to obtain some practical estimations—see Theorem 3.3.

THEOREM 3.3. *Let the assumptions of Theorem 2.2 hold. If $\gamma_{k+1}, \Gamma_{k+1}$ are real numbers such that $\gamma_{k+1} \leq f^{(k+1)}(t) \leq \Gamma_{k+1}$, $t \in [a, b]$, $k = 0, 1, \dots, n - 1$, then*

$$|f(x) - L_n(x)| \leq \frac{\Gamma_{k+1} - \gamma_{k+1}}{2(k+1)!} C_k(x) |\omega_n(x)|, \quad (3.10)$$

where ω_n and $C_k(\cdot)$ are defined by (3.1) and (3.2), respectively. Also

$$\begin{aligned} |f(x) - L_n(x)| &\leq \frac{|\omega_n(x)|}{k!} B_k(x), \\ |f(x) - L_n(x)| &\leq \frac{|\omega_n(x)|}{k!} D_k(x), \end{aligned} \quad (3.11)$$

where $B_k(\cdot)$ and $D_k(\cdot)$ are defined by (3.3) and (3.4), respectively.

Proof. We set $P_m(t) = (\Gamma_{k+1} + \gamma_{k+1})/2$ in (2.12). Then we have

$$\begin{aligned} |f(x) - L_n(x)| &= |R_k(x)| \leq \frac{1}{k!} \sum_{i=0}^n |p_{ni}(x)| \left\| f^{(k+1)} - \frac{\Gamma_{k+1} + \gamma_{k+1}}{2} \right\|_{\infty} \left| \int_{x_i}^x (t - x_i)^k dt \right|. \\ (3.12) \end{aligned}$$

We also have

$$\begin{aligned} \left\| f^{(k+1)} - \frac{\Gamma_{k+1} + \gamma_{k+1}}{2} \right\|_{\infty} &\leq \frac{\Gamma_{k+1} - \gamma_{k+1}}{2}, \\ \left| \int_{x_i}^x (t - x_i)^k dt \right| &= \frac{|x - x_i|^{k+1}}{k+1}. \end{aligned} \quad (3.13)$$

From the above three relations we get

$$\begin{aligned} |f(x) - L_n(x)| &\leq \frac{\Gamma_{k+1} - \gamma_{k+1}}{2(k+1)!} \sum_{i=0}^n |p_{ni}(x)| |x - x_i|^{k+1} \\ &= \frac{\Gamma_{k+1} - \gamma_{k+1}}{2(k+1)!} C_k(x) |\omega_n(x)|. \end{aligned} \quad (3.14)$$

The first inequality is proved.

We now set $P_m(t) = \gamma_{k+1}$ in (2.12). Then we have

$$|f(x) - L_n(x)| = |R_k(x)| \leq \frac{1}{k!} \sum_{i=0}^n |p_{ni}(x)| \left| \int_{x_i}^x [f^{(k+1)}(t) - \gamma_{k+1}] (t - x_i)^k dt \right|. \quad (3.15)$$

We also have

$$\begin{aligned} \left| \int_{x_i}^x [f^{(k+1)}(t) - \gamma_{k+1}] (t - x_i)^k dt \right| &\leq |x - x_i|^k |f^{(k)}(x) - f^{(k)}(x_i) - \gamma_{k+1}(x - x_i)| \\ &= |x - x_i|^{k+1} (S_{ki} - \gamma_{k+1}). \end{aligned} \quad (3.16)$$

Thus,

$$\begin{aligned} |f(x) - L_n(x)| &\leq \frac{1}{k!} \sum_{i=0}^n |p_{ni}(x)| |x - x_i|^{k+1} (S_{ki} - \gamma_{k+1}) \\ &= \frac{|\omega_n(x)|}{k!} B_k(x). \end{aligned} \quad (3.17)$$

The second inequality is proved. In a similar way we prove that the third inequality holds. \square

LEMMA 3.4. *Let $D = \{x_0 = a < x_1 < \dots < x_n = b\}$ be a given uniform subdivision of the interval $[a, b]$, that is, $x_i = x_0 + ih$, $h = (b - a)/n$, $i = 0, 1, 2, \dots, n$. If $x \in (x_{j-1}, x_j)$, for some $j \in \{1, 2, \dots, n\}$, then*

$$|\omega_n(x)| \leq j!(n - j + 1)!h^{n+1}, \quad (3.18)$$

$$C_k(x) \leq \frac{2^n}{n!} \left\{ \frac{1}{2} [n + 1 + |n - 2j + 1|] \right\}^k h^{k-n}, \quad (3.19)$$

$$C_k(x) |\omega_n(x)| \leq \alpha_{jnk} \frac{n - j + 1}{n} \frac{2^n (b - a)^{k+1}}{\binom{n}{j}}, \quad (3.20)$$

where

$$\alpha_{jnk} = \left[\frac{1}{2n} (n + 1 + |2j - n - 1|) \right]^k. \quad (3.21)$$

This lemma is proved in [10].

Remark 3.5. Note that

$$\alpha_{jnk} \leq 1 \quad (3.22)$$

and $\alpha_{jnk} = 1$ if and only if $j = 1$ or $j = n$. If we choose $x \in [x_j, x_{j+1}]$, $j = 0, 1, \dots, n - 1$, then we get the factor $(j + 1)/n$ instead of the factor $(n - j + 1)/n$ in (3.20).

THEOREM 3.6. *Under the assumptions of Lemma 3.4 and Theorem 3.3,*

$$|f(x) - L_n(x)| \leq \frac{\Gamma_{k+1} - \gamma_{k+1}}{(k+1)!} \alpha_{jnk} \frac{n - j + 1}{n} \frac{2^{n-1} (b - a)^{k+1}}{\binom{n}{j}}. \quad (3.23)$$

Proof. The proof follows immediately from Theorem 3.3 and Lemma 3.4. \square

4. Results for derivatives

LEMMA 4.1. Let $1 \leq j \leq n-1$ and $j+1 \leq r \leq n$. Then

$$\sum_{i=0}^n p_{ni}^{(j)}(x)(x-x_i)^r = 0. \quad (4.1)$$

Proof. We have (see (2.4))

$$A(x) = \sum_{i=0}^n p_{ni}(x)(x-x_i)^r = 0, \quad \text{for } 1 \leq r \leq n. \quad (4.2)$$

Thus,

$$A'(x) = \sum_{i=0}^n p_{ni}'(x)(x-x_i)^r + r \sum_{i=0}^n p_{ni}(x)(x-x_i)^{r-1} = 0, \quad (4.3)$$

if $1 \leq r \leq n$. If $n \geq r-1 \geq 1$, that is, $n+1 \geq r \geq 2$, then

$$r \sum_{i=0}^n p_{ni}(x)(x-x_i)^{r-1} = 0. \quad (4.4)$$

From (4.3) and (4.4) we get

$$\sum_{i=0}^n p_{ni}'(x)(x-x_i)^r = 0, \quad \text{for } 2 \leq r \leq n. \quad (4.5)$$

(Note that $\{r : 1 \leq r \leq n\} \cap \{r : 2 \leq r \leq n+1\} = \{r : 2 \leq r \leq n\}$. Here we use this fact and similar facts without a special mentioning.)

We now suppose that

$$\sum_{i=0}^n p_{ni}^{(j)}(x)(x-x_i)^r = 0, \quad (4.6)$$

for $j = 1, 2, \dots, m$, $m < n-1$ and $j+1 \leq r \leq n$. We wish to prove that

$$\sum_{i=0}^n p_{ni}^{(m+1)}(x)(x-x_i)^r = 0, \quad \text{for } m+2 \leq r \leq n. \quad (4.7)$$

For that purpose, we first calculate

$$\begin{aligned} A^{(m)}(x) &= \sum_{i=0}^n [p_{ni}(x)(x-x_i)^r]^{(m)} \\ &= \sum_{i=0}^n \sum_{k=0}^m \binom{m}{k} p_{ni}^{(k)}(x) \frac{r!}{(r-m+k)!} (x-x_i)^{r-m+k} \\ &= \sum_{k=0}^m \binom{m}{k} \frac{r!}{(r-m+k)!} \sum_{i=0}^n p_{ni}^{(k)}(x)(x-x_i)^{r-m+k}. \end{aligned} \quad (4.8)$$

We have

$$A^{(m)}(x) = 0, \quad \text{for } r \geq m+1, \quad (4.9)$$

by the above assumption. Thus,

$$A^{(m+1)}(x) = 0. \quad (4.10)$$

On the other hand, we have

$$\begin{aligned} A^{(m+1)}(x) &= \frac{d}{dx} A^{(m)}(x) \\ &= \sum_{k=0}^m \binom{m}{k} \frac{r!}{(r-m+k)!} \sum_{i=0}^n p_{ni}^{(k+1)}(x) (x-x_i)^{r-m+k} \\ &\quad + \sum_{k=0}^m \binom{m}{k} \frac{r!}{(r-m+k-1)!} \sum_{i=0}^n p_{ni}^{(k)}(x) (x-x_i)^{r-m+k-1} \\ &= 0. \end{aligned} \quad (4.11)$$

We now rewrite the above relation in the form

$$\begin{aligned} \sum_{i=0}^n p_{ni}^{(m+1)}(x) (x-x_i)^r + \sum_{k=0}^{m-1} \binom{m}{k} \frac{r!}{(r-m+k)!} \sum_{i=0}^n p_{ni}^{(k+1)}(x) (x-x_i)^{r-m+k} \\ + \sum_{k=0}^m \binom{m}{k} \frac{r!}{(r-m+k-1)!} \sum_{i=0}^n p_{ni}^{(k)}(x) (x-x_i)^{r-m+k-1} = 0. \end{aligned} \quad (4.12)$$

For $r-m+k-1 \geq k+1$, that is, $r \geq m+2$, we have

$$\sum_{i=0}^n p_{ni}^{(k)}(x) (x-x_i)^{r-m+k-1} = 0 \quad (4.13)$$

by the above assumption. We also have

$$\sum_{i=0}^n p_{ni}^{(k+1)}(x) (x-x_i)^{r-m+k} = 0, \quad (4.14)$$

if $r-m+k \geq k+2$, that is, $r \geq m+2$. Thus (4.7) holds. This completes the proof. \square

THEOREM 4.2. *Let $f \in C^{n+1}(a, b)$ and let $P_r(t)$ be an arbitrary polynomial of degree $\leq r$ and let $0 \leq k \leq n$, $1 \leq m \leq k$. Then*

$$f^{(m)}(x) = L_n^{(m)}(x) + E_{k,r}(x), \quad (4.15)$$

where

$$E_{k,r}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}^{(m)}(x) \int_{x_i}^x [f^{(k+1)}(t) - P_r(t)] (t-x_i)^k dt. \quad (4.16)$$

Proof. We define

$$\begin{aligned} v_i(x) &= \int_{x_i}^x [f^{(k+1)}(t) - P_r(t)](t - x_i)^k dt \\ &= \int_{x_i}^x g(t)(t - x_i)^k dt, \end{aligned} \tag{4.17}$$

where, obviously, $g(t) = f^{(k+1)}(t) - P_r(t)$. We denote

$$R_{k,r}(x) = f(x) - L_n(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}(x) v_i(x), \tag{4.18}$$

see Theorem 2.2. Then we have

$$\begin{aligned} R_{k,r}^{(m)}(x) &= \frac{(-1)^k}{k!} \sum_{i=0}^n [p_{ni}(x) v_i(x)]^{(m)} \\ &= \frac{(-1)^k}{k!} \sum_{i=0}^n \sum_{j=0}^m \binom{m}{j} p_{ni}^{(j)}(x) v_i^{(m-j)}(x) \\ &= \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}^{(m)}(x) v_i(x) + \frac{(-1)^k}{k!} \sum_{i=0}^n \sum_{j=0}^{m-1} \binom{m}{j} p_{ni}^{(j)}(x) v_i^{(m-j)}(x). \end{aligned} \tag{4.19}$$

We introduce the notation

$$B(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n \sum_{j=0}^{m-1} \binom{m}{j} p_{ni}^{(j)}(x) v_i^{(m-j)}(x) \tag{4.20}$$

such that

$$R_{k,r}^{(m)}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}^{(m)}(x) v_i(x) + B(x). \tag{4.21}$$

We now rewrite $B(x)$ in the form

$$B(x) = \frac{(-1)^k}{k!} \sum_{i=0}^n \sum_{j=0}^{m-2} \binom{m}{j} p_{ni}^{(j)}(x) v_i^{(m-j)}(x) + \frac{(-1)^k}{k!} m \sum_{i=0}^n p_{ni}^{(m-1)}(x) v_i'(x). \tag{4.22}$$

We have

$$v_i'(x) = g(x)(x - x_i)^k \tag{4.23}$$

such that

$$\sum_{i=0}^n p_{ni}^{(m-1)}(x) v_i'(x) = g(x) \sum_{i=0}^n p_{ni}^{(m-1)}(x) (x - x_i)^k = 0, \tag{4.24}$$

for $k \geq m$ —see Lemma 4.1.

We also have

$$v_i^{(m-j)}(x) = \sum_{l=0}^{m-j-1} \binom{m-j-1}{l} g^{(l)}(x) \frac{k!}{(k-m+j+l+1)!} (x-x_i)^{k-m+j+l+1}, \quad (4.25)$$

for $m \geq j+2$ such that

$$\begin{aligned} \sum_{i=0}^n \sum_{j=0}^{m-2} \binom{m}{j} p_{ni}^{(j)}(x) v_i^{(m-j)}(x) &= \sum_{j=0}^{m-2} \binom{m}{j} \sum_{l=0}^{m-j-1} \binom{m-j-1}{l} \frac{k!}{(k-m+j+l+1)!} \\ &\quad \times \sum_{i=0}^n p_{ni}^{(j)}(x) (x-x_i)^{k-m+j+l+1} \\ &= 0, \end{aligned} \quad (4.26)$$

if $k-m+j+l+1 \geq j+1$, that is, $k \geq m$, since $l \geq 0$ —see also Lemma 4.1. Hence, $B(x) = 0$ in all cases. Now from (4.21) it follows that

$$\begin{aligned} R_{k,r}^{(m)}(x) &= \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}^{(m)}(x) v_i(x) \\ &= \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}^{(m)}(x) \int_{x_i}^x [f^{(k+1)}(t) - P_r(t)] (t-x_i)^k dt. \end{aligned} \quad (4.27)$$

On the other hand, we have

$$[f(x) - L_n(x)]^{(m)} = f^{(m)}(x) - L_n^{(m)}(x). \quad (4.28)$$

This completes the proof. \square

THEOREM 4.3. *Under the assumptions of Theorem 4.2,*

$$|f^{(m)}(x) - L_n^{(m)}(x)| \leq \frac{E_r(f^{(k+1)})}{(k+1)!} \sum_{i=0}^n |p_{ni}^{(m)}(x)| |x-x_i|^{k+1}, \quad (4.29)$$

where $E_r(\cdot)$ is defined by (3.6).

Proof. Let $P_r(t) = P_r^*(t)$, where $P_r^*(t)$ is defined by (3.6) for the function $g(t) = f^{(k+1)}(t)$. We have

$$\begin{aligned} |R_{k,r}^{(m)}(x)| &= \left| \frac{(-1)^k}{k!} \sum_{i=0}^n p_{ni}^{(m)}(x) \int_{x_i}^x [f^{(k+1)}(t) - P_r^*(t)] (t-x_i)^k dt \right| \\ &\leq \frac{\|f^{(k+1)}(t) - P_r^*(t)\|_\infty}{(k+1)!} \sum_{i=0}^n |p_{ni}^{(m)}(x)| |x-x_i|^{k+1} \\ &= \frac{E_r(f^{(k+1)})}{(k+1)!} \sum_{i=0}^n |p_{ni}^{(m)}(x)| |x-x_i|^{k+1}, \end{aligned} \quad (4.30)$$

since

$$\left| \int_{x_i}^x (t - x_i)^k dt \right| = \frac{|x - x_i|^{k+1}}{k+1}. \quad (4.31) \quad \square$$

THEOREM 4.4. *Under the assumptions of Theorem 3.3 and Lemma 4.1,*

$$\begin{aligned} |f^{(m)}(x) - L_n^{(m)}(x)| &\leq \frac{\Gamma_{k+1} - \gamma_{k+1}}{2(k+1)!} \sum_{i=0}^n |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}, \\ |f^{(m)}(x) - L_n^{(m)}(x)| &\leq \frac{1}{k!} \sum_{i=0}^n (S_{ki} - \gamma_{k+1}) |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}, \\ |f^{(m)}(x) - L_n^{(m)}(x)| &\leq \frac{1}{k!} \sum_{i=0}^n (\Gamma_{k+1} - S_{ki}) |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}. \end{aligned} \quad (4.32)$$

Proof. We choose $P_r(t) = \Gamma_{k+1} + \gamma_{k+1}/2$ in Theorem 4.2. Then we get

$$\begin{aligned} |f^{(m)}(x) - L_n^{(m)}(x)| &\leq \frac{1}{k!} \sum_{i=0}^n |p_{ni}^{(m)}(x)| \left| \int_{x_i}^x \left[f^{(k+1)}(t) - \frac{\Gamma_{k+1} + \gamma_{k+1}}{2} \right] (t - x_i)^k dt \right| \\ &\leq \frac{\Gamma_{k+1} - \gamma_{k+1}}{2(k!)^2} \sum_{i=0}^n |p_{ni}^{(m)}(x)| \left| \int_{x_i}^x (t - x_i)^k dt \right| \\ &= \frac{\Gamma_{k+1} - \gamma_{k+1}}{2(k+1)!} \sum_{i=0}^n |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}. \end{aligned} \quad (4.33)$$

If we choose $P_r(t) = \gamma_{k+1}$ in Theorem 4.2, then we get

$$\begin{aligned} |f^{(m)}(x) - L_n^{(m)}(x)| &\leq \frac{1}{k!} \sum_{i=0}^n |p_{ni}^{(m)}(x)| \left| \int_{x_i}^x [f^{(k+1)}(t) - \gamma_{k+1}] (t - x_i)^k dt \right| \\ &\leq \frac{1}{k!} \sum_{i=0}^n (S_{ki} - \gamma_{k+1}) |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}, \end{aligned} \quad (4.34)$$

since $|\int_{x_i}^x [f^{(k+1)}(t) - \gamma_{k+1}] dt| = |f^{(k)}(x) - f^{(k)}(x_i) - \gamma_{k+1}(x - x_i)|$.

In a similar way we prove that the third inequality holds. \square

References

- [1] R. P. Agarwal and P. J. Y. Wong, *Error Inequalities in Polynomial Interpolation and Their Applications*, Mathematics and Its Applications, vol. 262, Kluwer Academic, Dordrecht, 1993.
- [2] P. Cerone and S. S. Dragomir, *Midpoint-type rules from an inequalities point of view*, Handbook of Analytic-Computational Methods in Applied Mathematics (G. Anastassiou, ed.), Chapman & Hall/CRC, Florida, 2000, pp. 135–200.
- [3] ———, *Trapezoidal-type rules from an inequalities point of view*, Handbook of Analytic-Computational Methods in Applied Mathematics (G. Anastassiou, ed.), Chapman & Hall/CRC, Florida, 2000, pp. 65–134.
- [4] X.-L. Cheng, *Improvement of some Ostrowski-Grüss type inequalities*, Comput. Math. Appl. **42** (2001), no. 1-2, 109–114.

- [5] S. S. Dragomir, R. P. Agarwal, and P. Cerone, *On Simpson's inequality and applications*, J. Inequal. Appl. **5** (2000), no. 6, 533–579.
- [6] S. S. Dragomir and S. Wang, *An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules*, Comput. Math. Appl. **33** (1997), no. 11, 15–20.
- [7] H. N. Mhaskar and D. V. Pai, *Fundamentals of Approximation Theory*, CRC Press, Florida; Narosa, New Delhi, 2000.
- [8] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, *Classical and New Inequalities in Analysis*, Mathematics and Its Applications (East European Series), vol. 61, Kluwer Academic, Dordrecht, 1993.
- [9] C. E. M. Pearce, J. E. Pečarić, N. Ujević, and S. Varošanec, *Generalizations of some inequalities of Ostrowski-Grüss type*, Math. Inequal. Appl. **3** (2000), no. 1, 25–34.
- [10] N. Ujević, *Error inequalities for a corrected interpolating polynomial*, New York J. Math. **10** (2004), 69–81.
- [11] ———, *Error inequalities for a perturbed interpolating polynomial*, Nonlinear Stud. **12** (2005), no. 3, 233–245.
- [12] N. Ujević and A. J. Roberts, *A corrected quadrature formula and applications*, ANZIAM J. **45** (2004), no. (E), E41–E56.

Nenad Ujević: Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
E-mail address: ujevic@pmfst.hr

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk