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A new representation of remainder of Lagrange interpolating polynomial is derived. Er-
ror inequalities of Ostrowski-Griiss type for the Lagrange interpolating polynomial are
established. Some similar inequalities are also obtained.

1. Introduction

Many error inequalities in polynomial interpolation can be found in [1, 7]. These er-
ror bounds for interpolating polynomials are usually expressed by means of the norms
I - Iy, 1 < p < oo. Some new error inequalities (for corrected interpolating polynomials)
are given in [10, 11]. The last mentioned inequalities are similar to error inequalities ob-
tained in recent years in numerical integration and they are known in the literature as
inequalities of Ostrowski (or Ostrowski-like, Ostrowski-Griiss) type. For example, in [9]
we can find inequalities of Ostrowski-Griiss type for the well-known Simpson’s quadra-
ture rule,

‘ J’:zf(t)dtf g[f(xo) caf(x) + )| = Cumn = puyne, (1.1)

where x; = x¢ +ih, for h >0, i = 1,2, y,,, I, are real numbers such that y,, < f(”)(t) <T,,
for all t € [x9,x>], and C, are constants, n € {1,2,3}.

The inequalities of Ostrowski type can be also found in [2, 3, 4, 5, 6, 12]. In some of the
mentioned papers, we can find estimations for errors of quadrature formulas which are
expressed by means of the differences I'x — yk, S — yk, Tk — S, where I't, yk are real numbers
such that y, < f®(t) < Ty, t € [a,b] (k is a positive integer while [a,b] is an interval
of integration) and S [f*=D(b) — fk=D(a)]/(b — a). It is shown that the estimations
expressed in such a way can be much better than the estimations expressed by means of
the norms IIf(k)Ilp, 1< p<oo.

As we know there is a close relationship between interpolation polynomials and quad-
rature rules. Thus, it is a natural try to establish similar error inequalities in polynomial
interpolation.
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We first establish general error inequalities, expressed by means of || f &) — P,,|l, where
P, is any polynomial of degree m and then we obtain inequalities of the above mentioned
types. For that purpose, we derive a new representation of remainder of the interpolating
polynomial. This is done in Section 2. In Section 3, we obtain the error inequalities of the
above-mentioned types. In Section 4, we give some results for derivatives.

Finally, we emphasize that the usual error inequalities in polynomial interpolation
(for the Lagrange interpolating polynomial L,(x)) are given by means of the (n + 1)th
derivative while in this paper we can find these error inequalities expressed by means of
the kth derivative for k = 1,2,...,n

2. Representation of remainder

Let D = {a=xp<x; <---<x, =0b} be agiven subdivision of the interval [a,b] and let
f:[a,b] — R be a given function. The Lagrange interpolation polynomial is given by

L,(x) = ani(x)f(xi)’ (2.1)
i—0

where

i) = (x—x0) - - (x—xi_1) (x —xp41) -+ - (x —x) ’ (22)

(xi = x0) - = - (% = xim) (% = xis1) -+ - (X — %)

fori=0,1,...,n. We have the Cauchy relations [7, pages 160-161],

> puilx) =1, (2.3)
i=0
me (x— x, =0, j=12,...,n (2.4)
Let D= {xp=a<x; <---<x, = b} be a given uniform subdivision of the interval

[a,b], that is, x; = xo +ih, h = (b—a)/n,i=0,1,2,...,n. Then the Lagrange interpolating
polynomial is given by

L) = i) = (- D Sy (Do)
where t € {0,1,2,...,n},0<t<n.

LemMA 2.1. Let Py, (t) be an arbitrary polynomial of degree < m and let p,i(x) be defined
by (2.2). Then

me LP () (t—x;) dt =0, (2.6)

forO<k+m<n—1andx € [a,b].
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Proof. Let x be a given real number. Then we have

Pu(t) =D cj(x—t), (2.7)

j=0

for some coefficients ¢; = cj(x), j = 0,1,2,...,m. (This is a consequence of the Taylor
formula.) Thus,

S pu) jxpmuxt—xi)"dt =SS pux) jx<x— Di(t—x)'d.  (2.8)
i=0 Xi j=0 =0 Xi

Let B(-,-) and I'(-) denote the beta and gamma functions, respectively. We now calculate

0

=(x—x,-)fJX_XI<1_ u )jukdu

0 X = Xj

, 1
= (x—xi)1+k+lj (1—v)ivkdy
0

J (x—t)j(t—xi)kdt=J . x.(x—xl-—u)jukdu

(2.9)
=BG+ Lk+1) (x—x;) ™!

_ I'(k+1I(j+1)

( _ ‘)j+k+1
T(k+j+2) '

k!j! i+k
From (2.8) and (2.9) it follows that
- x - k’]' c jHk+1
ani(x)J o) (t - x)'d Z T S 210
i=0 Xi

From (2.10) and (2.4) we conclude that (2.6) holds. O

THEOREM 2.2. Let f € C"*'(a,b) and let the assumptions of Lemma 2.1 hold. Then
S (x) = Lu(x) + Ry (x), (2.11)

where L,(x) is given by (2.1) and

Rim(x) = i r (k) (1) = P (£)] (¢ — x;) " dit. (2.12)

Xi

Proof. We have

n

k7 k
ka = 1) me(x J fk+1) dt— 1) me x)J t) t_xl dt'
(2.13)
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From (2.13) and (2.6) it follows that

=

)rf(k”)(t)(t —x) . (2.14)

Rk m(x)

For k = 0 we have

Ro() = m<x>j £t

(2.15)

AM: Iy I_\/]:

Il
o

X)[f(x) = fx)] = f(x) = Lu(x),

since (2.3) holds.
We now suppose that k > 1. Integrating by parts, we obtain

1)k (% k k-1
CE [ somoe-sta= S o ) 4 S [0 e-x)
‘ ’ (2.16)
In a similar way we get
(—l)k—l fo(k)(t) t—xi)k_ldl‘
2.17
( (k-1) kl(l)kz kl) k2 ( )
1)|f ( )( 1) f t) t— xl) dt.
Continuing in this way, we get
k i X
( 1) Jfk+1 (t fo xl) :Z(—jl')]f(j)(x)(x_xi)j_i_J f’(t)dt
=t J° i
oy (2.18)
= £ = f o)+ X F P60 )
j=1 '
From (2.14) and (2.18) it follows that
S j
Ri(x) = D pui x)[f(x fl)+ 2 i f(f)(x)(x—xz)]
j=1 ’
k n (2.19)
- 10 =L@+ X 0@ S o) (55
=1 ) i=0

= f(x)—Lu(x), k=1,2,...,n,

since (2.3) and (2.4) hold. From (2.14), (2.15), and (2.19) we see that (2.11) holds. O
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3. Error inequalities

We now introduce the notations

wn(x) = (x=2x0) (x —x1) - - - (x = xa),

n k
| % — xi
Cr(x) =
K) ;|xi*x0|"'|xi*xi71||xi*xi+l|"'|xi*xn|,
n k
(Ski = yre1) [ % — x|
B (x) =
. goIxi—xol---Ixi—xi-lllxi—xml---Ixi—xnl’
n k
(Tkr = Ski) | % — i
Dy (x) =
K =2, [xi—=xo| - |xi=xio1 | | =X | -+ [ = x|

i=0

3839

(3.1)

(3.2)

(3.3)

(3.4)

where S; = [f(k) (x) — f(k)(xi)]/(x —xi), i=0,1,...,n, and k41, T4 are real numbers

such that yrs1 < f*D(£) <Typ, t € [a,b), k=0,1,...,n— 1.

Letg € C(a,b). As we know among all algebraic polynomials of degree < m there exists

the only polynomial P} (t) having the property that
llg = Prlle = 1lg = Pullcs
where P,, € I1,, is an arbitrary polynomial of degree < m. We define
En(@ = llg - Pill = inf g~ Pull.

THEOREM 3.1. Under the assumptions of Theorem 2.2,

E,, (f(k+1))

|f(x)_Ln(x)| = (k+1)’

Cr(x) | wn(x)],

where Cy(+) and E,,(+) are defined by (3.2) and (3.6), respectively.

(3.5)

(3.6)

(3.7)

Proof. Let P,,(t) = Pj(t), where Pj(t) is defined by (3.6) for the function g(¢) = f**(¢).

We have
R = | G5 3o [ [100 - B3] -
< wck(x)lwn(x)l
= B G ot
since

(3.8)

(3.9)



3840 Inequalities in polynomial interpolation

Remark 3.2. The above estimate has only theoretical importance, since it is difficult to
find the polynomial P*. In fact, we can find P* only for some special cases of functions.
However, we can use the estimate to obtain some practical estimations—see Theorem 3.3.

THEOREM 3.3. Let the assumptions of Theorem 2.2 hold. If yi+1, Tk+1 are real numbers such
that yrs1 < fEV(t) < Tpar, t € [a,b], k =0,1,...,n— 1, then

Tir1 — i+
£ = L) = G |wn), (3.10)

where wy, and Ci(-) are defined by (3.1) and (3.2), respectively. Also

) = Lot | = 19 @ g )

|
oo S
wy(x
0 - La0) | < 22Dy,
where Bi(+-) and Di(+) are defined by (3.3) and (3.4), respectively.
Proof. We set Py, (t) = (Tk+1 + pi+1)/2 in (2.12). Then we have
1 ¢ Tie1 + x
[£00 = L) | = [R0)] < g )| £ = 2| [ .
=0 oo 1 JXi
(3.12)
We also have
Hf(k+1) _ Tir1 + YPr - i1 — Y1
2 o 2 ’
| |k+1 (3.13)
* X — X
Ixi ( ) dt‘ k+1
From the above three relations we get
T
| ()~ La(@)] = “Tﬁk“z [P0 x| !
i=0 (3.14)
r
= S G|

The first inequality is proved.
We now set P,,(f) = y+1 in (2.12). Then we have

| f(x) = La(x)| = | Re(x)| <kiZ | pri(x J [F&D () =y ] (= x)"dt . (3.15)
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We also have

L0 =y (- 30| < =] = £ 0) =y (- 0) |

= |x-— x,| Sk — Vie1)-
(3.16)
Thus,
1< k+1
| f) = La) | = 15 20 | puiC) [ e =i |7 (Ski = yenn)
=0 (3.17)
TICIP
The second inequality is proved. In a similar way we prove that the third inequality holds.
O
LEMMA 3.4. Let D = {xp =a<x; <---<x, = b} be a given uniform subdivision of the

interval [a,b], that is, x; = xo +ih, h = (b—a)/n, i = 0,1,2,...,n. If x € (xj_1,X;), for some
jeil,2,...,n}, then

|wa(x)] < jl(n—j+ 1), (3.18)

n k
Ck(x)s%{%[n+l+|n—2j+ll]} kn, (3.19)

n—j+12%b—a)*!

) | 0n(®) | < ik A, (3.20)
()
where
1 k
ajnkz[%(n+1+|2]—n—1|)] ) (3.21)
This lemma is proved in [10].
Remark 3.5. Note that
e < 1 (3.22)
and aj,x = 1 if and only if j = 1 or j = n. If we choose x € [xj,xj+1], j = 0,1,...,n—1,
then we get the factor (j + 1)/n instead of the factor (n — j+1)/n in (3.20 )
THEOREM 3.6. Under the assumptions of Lemma 3.4 and Theorem 3.3,
T — — 412 1(ph = g)ktl
()~ L) | < el et o127 (0@l (3.23)

(k+1)!

()

Proof. The proof follows immediately from Theorem 3.3 and Lemma 3.4. O
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4. Results for derivatives

LemMMa 4.1. Letl1 <j<n—1land j+1<r <mn. Then

me (x—x;)" =0. (4.1)
Proof. We have (see (2.4))
x) = ip,,,-(x)(x -x) =0, forl<r=<n. (4.2)
i~0
Thus,
9= 3 P x) Y pu e x) ! =0, (43

i=0
ifl<r<nlIfn>r—-1=>1,thatis,n+1>r > 2, then

r me(x) (x— x,-)r_1 =0. (4.4)
i=0
From (4.3) and (4.4) we get
Zp;i(x)(x -x) =0, for2<r<n. (4.5)

i=0

(Notethat {r:1<r<n}n{r:2<r<n+1}={r:2 <r <n}. Here we use this fact and
similar facts without a special mentioning.)
We now suppose that

n
(i
S pd @) (x-x) =0, (4.6)
i=0
forj=1,2,...,m,m<n—1and j+1 <r < n Wewish to prove that

zpmﬂ (x)(x—x)" =0, form+2<r<n. (4.7)

For that purpose, we first calculate

= Z Z (7:) P;(ﬁ)(x)(r_ri!)! (x— xi)r7m+k (4.8)
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We have
AM(x)=0, forr>m+1, (4.9)
by the above assumption. Thus,
A (x) = 0. (4.10)

On the other hand, we have

A () iA(m)( )
dx
- m) z (k+1) r—m+k
=5 ) o b @) (x = x)
k=o(k (r m+k (4.11)
= m r m+k—1
+kzo<k> (r—m+k Zp () (x
=0.
We now rewrite the above relation in the form
(m+1) k+1) r—m+k
ZP x)x x;) +z( )(r_erk).zP xi)
(4.12)
- m r! r—m+k—1
+z<k>r—m+k1)'zp’” @)™ =0
Forr—m+k—1>k+1, thatis, r > m+ 2, we have
ZP r m+k— 1_0 (4‘13)
by the above assumption. We also have
ZP %D () (x = xi) " =0, (4.14)

ifr —m+k = k+2,thatis, r = m+2. Thus (4.7) holds. This completes the proof. O

THEOREM 4.2. Let f € C"(a,b) and let P,(t) be an arbitrary polynomial of degree < r
andlet0 <k <n,1 <m<k. Then

£ (x) = L (x) + Egr (), (4.15)

where

_1)k x
Bl = SRS [0 -Rl-x) . @ae)
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Proof. We define
w0 = [ 170 =P (e x) ar
* k
:J gt)(t—x;)" dt,
where, obviously, g(¢) = f**D(t) — P,(t). We denote

(-D*

Rir(x) = f(x) = Lu(x) = i

Pm‘(x)Vi(x)a

VR

i=0

see Theorem 2.2. Then we have

PT‘

R]((n: = Z Pai(x)vi( x)

(=1

n

2i< )pm " ()

m _1 n m i
! x 0 ZZ( )pi,’,’ "),

We introduce the notation

such that

=

R (x) = ™ (x)vi(x) + B(x).

We now rewrite B(x) in the form

_lk”
-3

m

i=0
We have

vi(x) = g(x)(x — xi)k
such that

ZP”"l(xV(x) x)zp D) (x = x;)* =0,

for k > m—see Lemma 4.1.

_ L )
Z ( )pm( ) (m ](X)‘f'%m P;T_l)(x)vf(x),

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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We also have

-j- ' .
v (x Z ( 1)g<”(x)( & (=) T (425)

k—-m+j+1+1)!

for m = j +2 such that

m—2 ) ) m—2
> (’]’7)p£’i)(x>vf’””<x> = (’“)

i=0 j=0

m—

m-j-1 k!
P [ (k—m+j+I1+1)!

n
i k— i+l
X > P () (o6 — ;) T

-

(4.26)

ifk—m+j+I+1=j+1,thatis, k = m, since | = 0—see also Lemma 4.1. Hence, B(x) =
0 in all cases. Now from (4.21) it follows that

m -1 k& m)
R ) = S5 S o)
o (4.27)
_1)k
= kl) me (x) J ) (8) = P(0)] (£ - ;) .
On the other hand, we have
[£ () = La(x)]™ = £ (x) = LI (). (4.28)
This completes the proof. O
TaEOREM 4.3. Under the assumptions of Theorem 4.2,
E,
| (x) — L{ (%) | < E () Z |pI ) | = x|, (4.29)

(k+1)!

where E,(-) is defined by (3.6).

Proof. Let P,(t) = Py (t), where P (t) is defined by (3.6) for the function g(t) = f**(¢).
We have

IR ()] = ‘ Z P Jf”‘“ () - PX(1)] (t — x;)*dt

(k+1
- Il f (k+1 ||wz|p )||X_xi|kJr1 (4.30)

E(f( k+
ZWIZ()“) @) 2= x] ",
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since
‘Jx(t—x)kdt' _M (4.31)
xi k+1 0
THEOREM 4.4. Under the assumptions of Theorem 3.3 and Lemma 4.1,
L1 — Yint k1
(m) _7(m) LS .50
|f (x) Ln (x)|S 2(k+1 ;‘Pm (x |x 'x1|
1 n
F"0 L @] < 5 2 (S pen) [P @ =™ @32)
i=0
1« m
| F™ G -1 @) | = 15 3 (T = S) | () | [x -7
i=0
Proof. We choose P,(t) = I'ty1 + pr+1/2 in Theorem 4.2. Then we get
° x T +
| () = Ly kiz APl [ [f<k+1>(t> e (e
T — Lkl = Vi1
<o Z | (x) | t—x, ) dt (4.33)
2(k!)
_rk+1 )/k+lz| )||x_x‘|k+1
2(k+1)! Pri e
If we choose P, (t) = px+1 in Theorem 4.2, then we get
1 n
| F(x) - LM (x)] < - Z |pm yk+1](t—xi)kdt
| j (4.34)
m k
= k_Z(Skz Yi+1) |P£«i)(x)| |x = xi] +1>
T i=0
since | [3 [f*D (1) = yrar 1dt] = [ F O (x) = B (x7) = prer (x = x:) .
In a similar way we prove that the third inequality holds. O
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