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We study the approximation properties of beta operators of second kind. We obtain the
rate of convergence of these operators for absolutely continuous functions having a de-
rivative equivalent to a function of bounded variation.

1. Introduction

For Lebesgue integrable functions f on the interval I = (0,∞), beta operators Ln of sec-
ond kind are given by

(
Ln f

)
(x)= 1

B (nx,n+ 1)

∫∞
0

tnx−1

(1 + t)nx+n+1
f (t)dt. (1.1)

Obviously the operators Ln are positive linear operators on the space of locally integrable
functions on I of polynomial growth as t→∞, provided that n is sufficiently large.

In 1995, Stancu [10] gave a derivation of these operators and investigated their ap-
proximation properties. We mention that similar operators arise in the work by Adell
et al. [3, 4] by taking the probability density of the inverse beta distribution with param-
eters nx and n.

Recently, Abel [1] derived the complete asymptotic expansion for the sequence of op-
erators (1.1). In [2], Abel and Gupta studied the rate of convergence for functions of
bounded variation.

In the present paper, the study of operators (1.1) will be continued. We estimate their
rate of convergence by the decomposition technique for absolutely continuous functions
f of polynomial growth as t→ +∞, having a derivative f

′
coinciding a.e. with a function

which is of bounded variation on each finite subinterval of I .
Several researchers have studied the rate of approximation for functions with deriva-

tives of bounded variation. We mention the work of Bojanić and Chêng (see [5, 6]) who
estimated the rate of convergence with derivatives of bounded variation for Bernstein
and Hermite-Fejer polynomials by using different methods. Further papers on the sub-
ject were written by Bojanić and Khan [7] and by Pych-Taberska [9]. See also the very
recent paper by Gupta et al. [8] on general class of summation-integral type operators.
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For the sake of convenient notation in the proofs we rewrite operators (1.1) as

(
Ln f

)
(x)=

∫∞
0
Kn(x, t) f (t)dt, (1.2)

where the kernel function Kn is given by

Kn(x, t)= 1
B (nx,n+ 1)

tnx−1

(1 + t)nx+n+1
. (1.3)

Moreover, we put

λn(x, y)=
∫ y

0
Kn(x, t)dt (y ≥ 0). (1.4)

Note that 0≤ λn(x, y)≤ 1 (y ≥ 0).
Our main result is contained in Section 3, while the next section contains some auxil-

iary results.

2. Auxiliary results

For fixed x ∈ I , define the function ψx, by ψx(t)= t− x. The first central moments for the
operators Ln are given by

(
Lnψ

0
x

)
(x)= 1,

(
Lnψ

1
x

)
(x)= 0,

(
Lnψ

2
x

)
(x)= x (1 + x)

n− 1
(2.1)

(see [1, Proposition 2]). In general, we have the following result.

Lemma 2.1 [1, Proposition 2]. Let x ∈ I be fixed. For r = 0,1,2, . . . and n∈N, the central
moments for the operators Ln satisfy

(
Lnψ

r
x

)
(x)=O(n−�(r+1)/2�) (n−→∞). (2.2)

In view of (1.2), an application of the Schwarz inequality, for r = 0,1,2, . . . , yields

(
Ln
∣∣ψrx∣∣)(x)≤

√(
Lnψ2r

x

)
(x)=O(n−r/2) (n−→∞). (2.3)

In particular, by (2.1) we have

(
Ln
∣∣ψx∣∣)(x)≤

√
x (1 + x)
(n− 1)

. (2.4)
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Lemma 2.2 [2, Proposition 2]. Let x ∈ I be fixed and Kn(x, t) be defined by (1.3). Then, for
n≥ 2,

λn(x, y)=
∫ y

0
Kn(x, t)dt ≤ x (1 + x)

(n− 1)(x− y)2
(0≤ y < x),

1− λn(x,z)=
∫∞
z
Kn(x, t)dt ≤ x (1 + x)

(n− 1)(z− x)2
(x < z <∞).

(2.5)

3. The main result

Throughout this paper, for each function g of bounded variation on I and fixed x ∈ I , we
define the auxiliary function gx, which is given by

gx(t)=



g(t)− g(x−) (0≤ t < x),

0 (t = x),

g(t)− g(x+) (x < t <∞).

(3.1)

Furthermore,
∨b
a(g) denotes the total variation of g on [a,b]. For r ≥ 0, let DBr(I) be the

class of all absolutely continuous functions f defined on I ,
(i) having on I a derivative f

′
coinciding a.e. with a function which is of bounded

variation on each finite subinterval of I ,
(ii) satisfying f (t)=O(tr) as t→ +∞.

Note that all functions f ∈DBr(I) possess, for each a > 0, a representation

f (x)= f (a) +
∫ x
a
ψ(t)dt (x ≥ a) (3.2)

with a function ψ of bounded variation on each finite subinterval of I .
The following theorem is our main result.

Theorem 3.1. Let r ∈N, x ∈ I , and f ∈DBr(I). Then there holds

∣∣(Ln f )(x)− f (x)
∣∣≤ 1

2

√
x(1 + x)
n− 1

∣∣ f ′(x+)− f
′
(x−)

∣∣+
x√
n
Vx+x/

√
n

x−x/√n
(
( f

′
)x
)

+
1 + x
n− 1


�

√
n�∑

k=1

Vx+x/k
x−x/k

(
( f

′
)x
)

+ x−1
∣∣ f (2x)− f (x)

∣∣+ 2
∣∣ f ′(x+)

∣∣



+
cr,x ·Mr,x( f )

nr/2
,

(3.3)

where the constants cr,x and Mr,x( f ) are given by

cr,x = sup
n∈N

√
nr
(
Lnψ2r

x

)
(x),

Mr,x( f )= 2r sup
t≥2x

t−r
∣∣ f (t)− f (x)

∣∣. (3.4)
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Remark 3.2. Note that, for each f ∈DBr(I), we haveMr,x( f )<+∞. Furthermore, Lemma
2.1 implies that cr,x < +∞.

Proof. For x ∈ I , we have

(
Ln f

)
(x)− f (x)=

∫∞
0
Kn(x, t)

(
f (t)− f (x)

)
dt =

∫∞
0
Kn(x, t)

∫ t
x
f
′
(u)dudt. (3.5)

Now we take advantage of the identity

f
′
(u)= ( f

′
)x(u) +

1
2

(
f
′
(x+) + f

′
(x−)

)
+

1
2

(
f
′
(x+)− f

′
(x−)

)
sign(u− x)

+
(
f
′
(x)− 1

2

(
f
′
(x+) + f

′
(x−)

))
χx(u),

(3.6)

where χx(u)= 1 (u= x) and χx(u)= 0 (u 
= x). Obviously, we have

∫∞
0
Kn(x, t)

∫ t
x

(
f
′
(x)− 1

2

(
f
′
(x+) + f

′
(x−)

))
χx(u)dudt = 0. (3.7)

Furthermore, by (2.1) and (2.4), respectively, we have

∫∞
0
Kn(x, t)

∫ t
x

1
2

(
f
′
(x+) + f

′
(x−)

)
dudt = 1

2

(
f
′
(x+) + f

′
(x−)

)∫∞
0
Kn(x, t)(t− x)dt = 0,

∣∣∣∣
∫∞

0
Kn(x, t)

∫ t
x

1
2

(
f
′
(x+)− f

′
(x−)

)
sign(u− x)dudt

∣∣∣∣
≤ 1

2

∣∣ f ′(x+)− f
′
(x−)

∣∣∫∞
0
Kn(x, t)|t− x|dt

≤ 1
2

√
x(1 + x)
n− 1

∣∣ f ′(x+)− f
′
(x−)

∣∣.
(3.8)

Collecting the latter relations, we obtain the estimate

∣∣(Ln f )(x)− f (x)
∣∣≤ ∣∣An( f ,x) +Bn( f ,x) +Cn( f ,x)

∣∣+
1
2

√
x(1 + x)
n− 1

∣∣ f ′(x+)− f
′
(x−)

∣∣
(3.9)

with the denotations

An( f ,x)=
∫ x

0
Kn(x, t)

∫ t
x
( f

′
)x(u)dudt,

Bn( f ,x)=
∫ 2x

x
Kn(x, t)

∫ t
x
( f

′
)x(u)dudt,

Cn( f ,x)=
∫∞

2x
Kn(x, t)

∫ t
x
( f

′
)x(u)dudt.

(3.10)

In order to complete the proof, it is sufficient to estimate the termsAn( f ,x), Bn( f ,x), and
Cn( f ,x).
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Using integration by parts, and application of Lemma 2.2 yields

∣∣An( f ,x)
∣∣=

∣∣∣∣
∫ x

0

∫ t
x
( f

′
)x(u)dudtλn(x, t)

∣∣∣∣=
∣∣∣∣
∫ x

0
λn(x, t)( f

′
)x(t)dt

∣∣∣∣
≤
(∫ x−x/√n

0
+
∫ x
x−x/√n

)∣∣λn(x, t)
∣∣Vx

t

(
( f

′
)x
)
dt

≤ x(1 + x)
n− 1

∫ x−x/√n
0

(x− t)−2Vx
t

(
( f

′
)x
)
dt+

x√
n
Vx
x−x/√n

(
( f

′
)x
)
.

(3.11)

By the substitution of u= x/(x− t), we obtain

∫ x−x/√n
0

(x− t)−2Vx
t

(
( f

′
)x
)
dt = x−1

∫ √n
1

Vx
x−x/u

(
( f

′
)x
)
du

≤ x−1
�√n�∑
k=1

∫ k+1

k
Vx
x−x/u

(
( f

′
)x
)
du

≤ x−1
�√n�∑
k=1

Vx
x−x/k

(
( f

′
)x
)
.

(3.12)

Thus we have

∣∣An( f ,x)
∣∣≤ 1 + x

n− 1

�√n�∑
k=1

Vx
x−x/k

(
( f

′
)x
)

+
x√
n
Vx
x−x/√n

(
( f

′
)x
)
. (3.13)

Furthermore, we have

∣∣Bn( f ,x)
∣∣=

∣∣∣∣∣−
∫ 2x

x

∫ t
x
( f

′
)x(u)dudt

(
1− λn(x, t)

)∣∣∣∣∣
≤
∣∣∣∣∣
∫ 2x

x
( f

′
)x(u)du

∣∣∣∣∣∣∣1− λn(x,2x)
∣∣+

∫ 2x

x

∣∣( f
′
)x(t)

∣∣∣∣1− λn(x, t)
∣∣dt

≤ 1 + x
(n− 1)x

∣∣ f (2x)− f (x)− x f ′(x+)
∣∣+

∫ x+x/
√
n

x
Vt
x

(
( f

′
)x
)
dt

+
x(1 + x)
n− 1

∫ 2x

x+x/
√
n
(t− x)−2Vt

x

(
( f

′
)x
)
dt,

(3.14)

where we applied Lemma 2.2. By the substitution of u= x/(t− x), we obtain

∫ 2x

x+x/
√
n
(t− x)−2Vt

x

(
( f

′
)x
)
dt = x−1

∫ √n
1

Vx+x/u
x

(
( f

′
)x
)
du

≤ x−1
�√n�∑
k=1

∫ k+1

k
Vx+x/u
x

(
( f

′
)x
)
du

≤ x−1
�√n�∑
k=1

Vx+x/k
x

(
( f

′
)x
)
.

(3.15)
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Thus we have

∣∣Bn( f ,x)
∣∣≤ 1 + x

(n− 1)x

∣∣ f (2x)− f (x)− x f ′(x+)
∣∣+

1 + x
n− 1

�√n�∑
k=1

Vx+x/k
x

(
( f

′
)x
)

+
x√
n
Vx+x/

√
n

x

(
( f

′
)x
)
.

(3.16)

Finally, we have

∣∣Cn( f ,x)
∣∣=

∣∣∣∣∣
∫∞

2x
Kn(x, t)

(
f (t)− f (x)− (t− x) f

′
(x+)

)
dt

∣∣∣∣∣
≤ 2−rMr,x( f )

∫∞
2x
Kn(x, t)tr dt+

∣∣ f ′(x+)
∣∣∫∞

2x
Kn(x, t)|t− x|dt.

(3.17)

Using the obvious inequalities t ≤ 2(t− x) and x ≤ t− x for t ≥ 2x, we obtain

∣∣Cn( f ,x)
∣∣≤Mr,x( f )

∫∞
2x
Kn(x, t)(t− x)r dt+ x−1

∣∣ f ′(x+)
∣∣∫∞

2x
Kn(x, t)(t− x)2dt

≤Mr,x( f ) · (Ln∣∣ψrx∣∣)(x) + x−1
∣∣ f ′(x+)

∣∣(Lnψ2
x

)
(x).

(3.18)

By (2.3), we conclude that

∣∣Cn( f ,x)
∣∣=Mr,x( f ) · cr,xn−r/2 +

1 + x
n− 1

∣∣ f ′(x+)
∣∣. (3.19)

Combining the estimates (3.13)–(3.19) with (3.9), we get the desired result. This com-
pletes the proof of the theorem. �

Acknowledgments

The authors are thankful to the four kind referees for their valuable comments which
led to a better presentation of the paper. The revised version of the paper was submitted
while the first author was visiting the Department of Mathematics and Statistics, Auburn
University, USA, in the fall 2005.

References

[1] U. Abel, Asymptotic approximation with Stancu beta operators, Rev. Anal. Numér. Théor. Ap-
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