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We consider and study formal power series, that we call supported series, with real coeffi-
cients which are either zero or bounded below by some positive constant. The sequences
of such coefficients have a lot of similarity with sequences of natural numbers consid-
ered in additive number theory. It is this analogy that we pursue, thus establishing many
properties and giving equivalent statements to the well-known Erdos-Turan conjectures
in terms of supported series and extending to them a version of Erdés-Fuchs theorem.

1. Introduction

In a seminal paper of 1941, Erdos and Turdn [4] made two conjectures in additive num-
ber theory, which have had an important impact on the field. They concern the number
r(A,n) of representations of a natural number # as a sum of two elements of a subset A
of the set N of natural numbers. One of them, the so-called Erdos-Turan conjecture, still
a notorious open question, can be formulated as follows.
(ET) If A is a basis of N, if every natural number is the sum of two elements of A, then
the number (A, n) of such representations is unbounded for n € N.

The other one predicted that r(A, n) cannot be asymptotically too well approximated
by its average value; more precisely, it is impossible to have >, _,r(A,m) = cn+ O(1) for
any positive real number c. Fifteen years later, in another very influential paper, Erdos and
Fuchs [3] proved even more than that, namely that >, _,r(A,m) = cn+ o(n'/* logfl/2 n)
is impossible. This surprising result stirred a lot of interest since it was almost as good
as a classical estimate of its kind for the number of lattice points in a circle, specific to
the set A of the squares in N and obtained via difficult analytic techniques, while this
one was valid for any subset A of N and with a simpler proof. Consequently, several
authors presented various versions of the Erdos-Fuchs theorem [1,7, 9, 10, 11]. Moreover,
the Erdos-Fuchs paper contained the statement of a more general conjecture than (ET),
namely the following.

(GET)IfA={a1<ay<---<a,<---}is an infinite subset of N such that a,, < dn?,

for some constant d >0 and all » in N* = N\ {0}, then the number r(A,n) of
representations of # as a sum of two elements of A is unbounded for n € N.
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Indeed, (GET) implies (ET) because of the well-known fact [7] that if A is a basis of
N, then its elements a,, taken in strictly increasing order, verify the condition a, < dn®
for some constant d >0 and all n € N* (it also follows from [5, Lemma 3.15] that if A
is a basis of N, then we may take d = 9/16). In addition, Erdés and Fuchs remarked in
their paper that their “[3, Theorem 1] remains true for sequences of nonnegative num-
bers {ax}, not necessarily integers.” Similarly, Halberstam and Roth [7, page 98] noted
about their statement of the Erdds-Fuchs theorem: “Here we do not assume that the in-
tegers in A are distinct. In fact even the assumption that the elements of A are integers is
superfluous (cf. Erdos-Fuchs, loc. cit., page 68).” In the light of such facts and remarks, it
is natural to explore the extent to which some concepts and questions in additive number
theory are independent of the specific nature of the subsets of N under consideration.
The quest for a broader context, in which the above conjectures and results still make
sense or remain valid, leads to the consideration and study of what we call “supported se-
ries.” These are formal power series whose coefficients form sequences of nonnegative real
numbers resembling the subsets of N in that their nonzero terms are bounded below by
some positive constant. We thus establish various equivalent statements to the conjectures
(ET) and (GET) in the realm of the supported series, and we extend to them a version
of the Erdos-Fuchs theorem, due to Newman [12]. More precisely, we prove that for any
supported series f = > (a,X", with f2=>" r,X", if we have >}_,(rx — ¢) = O(n?)
for some real numbers ¢ >0 and ¢ > 0, then t > 1/4. Our point is that most of the con-
cepts, questions, and techniques pertaining to the additive representation of integers by
subsets of N are not just about integers, but have a more general scope and can be natu-
rally extended to the context of the supported series. The definitions, notions, and results
presented in the sequel are all aimed at determining the essential features of the underly-
ing ideas and problems, in a general setting, thus shedding more light and allowing for a
more direct approach.

It is to be noted that special cases of supported series have already been considered
in [1, 9, 10]. Thus in [1], we find: “In this paper, we consider sequences ¢,c1,¢2,. ..,
of real numbers satisfying the following two conditions: ¢2 > ¢, > 0 (n=0,1,2,...) and
Dot < oo for every r in (0,1).” And in [9], we read: “Let {r,(n)} -, be a sequence of
nonnegative real numbers such that if r;(n) # 0, then r,(n) > 1. (The lower bound 1 is
chosen for convenience; any positive lower bound would suffice.)”

2. Definitions and simple properties

The sets of natural numbers, rational integers, rational numbers, real numbers, and com-
plex numbers are, respectively, denoted by N, Z, Q, R, and C. If E is anyone of these sets,
then E* =E\ {0}. For E=QorR,wewriteE* = {x€E:x>0}and E** = {x € E:x >
0}. Moreover, N =N U {co} and R = RU {+oo}, while R = R* U {oo}.

Definition 2.1. Let f = >.." a,X" € R[[X]] be a power series with real coefficients. The
mass function of f is the function F of a real variable x defined by F(x) = >, ., a,. In
particular, F(x) = 0 if x < 0. The support of f is the set Supp(f) = {n € N:a, # 0}. The
norm of f is the element || f|| = sup{la,|:n € N} of R". The size of fiss(f) = Il f2Il. We
write f2 =37 r(f,n)X", where r(f,n) = 3, ;_,aiaj foralln € N.
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LEMMA 2.2, Let f =Y qa, X" and g = > b, X" in R[[X]], with mass functions F and
G, respectively.
(1) £(X) = (1= X)(Zo F(m)X").
(2) The mass function of f +g is F + G. Moreover, || f +gll < [ fll +lIgll and s(f +g) <
s(f)+s(@+2lfgll.
(3) The mass function of fg is given by H(x) = X j.a;G(x — j) = X<y bk F(x — k),
where the summations can also be extended to all j,k € N.
(4) For any a € R, the mass function of af is aF. Also, llaf|l = |al - || fI| and s(af) =
a’s(f). Moreover, if a # 0, then Supp(af) = Supp(f).
(5) For any m € N, the mass function of X" f is F,(x) = F(x — m), where x € R. More-
over, | X" fll = || fll and s(X™ f) = s(f).

Proof. The proofs are mostly straightforward. Note that (1) amounts to ay = F(0) and
a, =F(n)—F(n—1) for n > 1. As to (3), the mass function of fg is by definition H(x) =
znstjJrk:najbk = Zj+ksxajbk = stxaj Zka—j by = stxajG(x - ])) with a similar
relation exchanging F and G; moreover, the summations can be extended to all j,k € N,
since F(x) = G(x) =0 for x < 0. O

Definition 2.3. The set of all subsets of N will be written as #(N). Let P € F(N). The
characteristic function of P is the function yp defined on N by xp(n) = 1 or 0 according as
n € Por n ¢ P. The companion series of Pis fp = 3 ,cp XP = 3" xp(1)X". The counting
function of P is defined for x € R* by P(x) =| P N [0,x]|, where |E| denotes the cardinality
of the set E.

For P,Q € ¥(N) and n € N, we set r(P,Q;n) = [{(p,q) € PX Q: p+q = n}l|; we fur-
ther set s(P,Q) = sup{r(P,Q;n) : n € N} in N. The sumset of Pand Qis P+ Q = {p+q:
p € P, q € Q}. In particular, if P = Q, we write #(P,n) = r(P,P;n) and s(P) = s(P,P). We
say that P is a basis of N if P+ P = N.

For two subsets P={p1 < pr < - <py<---tand Q={q1 <<+ <qu<---}
of N, we set P < Qif |Q| < |P| and p, < g, for all positive integers #n not exceeding |Q|
(here, |P| and |Q| may be finite or infinite).

LEmMMA 2.4. Let P, Q be subsets of N.

(1) The mass function of the companion series fp coincides with the counting function
P(x) = >, <xxp(n) for x € R*. Moreover, Supp(fp) = P.

(2) fofq =D or(P,Q;n) X", and r(P,Q;n) < min(|P|,|Ql), for all n € N, so that
Il fp foll = s(P,Q) < min(|P|,|Ql) is finite if P or Q is finite. Moreover, Supp( fp fo) = P+ Q.
In particular, fP2 = > or(P,n)X" and s(fp) = s(P). Moreover, P is a basis of N if and only
if Supp(fy) = N.

Remark 2.5. To every subset P of N corresponds its companion series fp. In a certain
sense, this embeds #(N) into R[[X]]. There are already two partial orders defined in
J(N), namely the set inclusion C and the relation <. Both relations can be extended to
R[[X]].

Definition 2.6. For f =37 ja,X"and g = > (b, X" in R[[X]], with mass functions F
and G, respectively, we say that f is contained by g and write f C gifa, < b, foralln € N.
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We also say that f is subordinated to g and write f < g if F(x) = G(x) for all x € R. This
defines two partial orders in R[[X]].

LemMma 2.7. Let f,g,h € R[[X]].

(1) f<gifandonlyifg(X)/(1-X)C f(X)/(1-X).

(2) If f C g, then g < f. The converse is false, as shown by the example where f =
Z;ozox2n+l ﬂﬂdg — Z;O:OXZH'

(3) For P,Q € ¥(N), the relation fp T fq is equivalent to P C Q, while fp < fq is equiv-
alentto P < Q.

(4) IfO T f, that s, if all the coefficients of f are = 0, theng C_ f+gand f +g < g.

G)IfoC fog then | fll < ligll and0C f2C fgT g2 sothats(f) < |l fgll <s(g).

(6) If I fIl < 0 and P = Supp(f), then f T || f|l fp and therefore || f fp < f, that is,
F(x) < I fIIP(x) for allx € R*.

(7)If f T g (resp., f < g), then f+hT g+h (resp., f+h < g+h).

(8) If f T g (resp., f < g)and 0T h, then fh T gh (resp., fh < gh) and, in particular,
af Cag (resp., af < ag) foralla € R**.

Proof. Property (1) follows from the relation f(X)/(1 —X) = >, ,F(n)X" given in
Lemma 2.2. For (3), note that fp T fq if and only if yp(n) < yo(n), that is, n € P im-
plies n € Q for all n € N, that is, P € Q; while fp < fq if and only if P(x) = Q(x) for all
x € R*, which is equivalent to P(q,) = Q(g,) = n, that is, p, < g, for all possible #, that
is, P < Q. For (8), note that if f = > a,X", g = >, obnX", and h = > ;c, X" with
respective mass functions F, G, and H, then, by Lemma 2.2, the mass functions of fhand
ghare U(x) = >, ¢,F(x —n) and V(x) = >, ¢,G(x — n), respectively. Everything else is
straightforward. O

Example 2.8. The set of squares in N* will be written as S = {n? : n € N*}. We have
S(x) = [/x ] for all x € R*, where [y] is the integer part of the real number y. For an
infinite subset P of N, we have P < S, that s, p, < n? for alln € N*, ifand only if P(x?) >
S(x?) = [x] for all x € R*, that is, P(x?) > x — 1 for all x € R*.

Definition 2.9. For f = > ;a,X" in R[[X]] and ¢ € R™*, we say that f is c-supported if,
for any n € N, the condition a, # 0 implies that a, > c. We denote by F. the set of all c-
supported power series in R[[X]]. We say that the series f is supported if it is c-supported
for some ¢ € R**. We denote by & the set of all supported series in R[[X]].

LemMma 2.10. Let f,g € R[[X]], with f = >." a,X", P = Supp(f), and c,d € R**.
(1) The series f is c-supported if and only if a, = cxp(n) for all n € N, that is, cfp C f.
So, if f is c-supported, then f < cfp.
(2) The set & is closed under addition and multiplication.
(3) The series f lies in & if and only if inf{a, :n € P} >0 or f = 0. In particular, a
constant a lies in & if and only if a > 0.
(4) If A is a nonempty subset of N, then fy € F.

Remark 2.11. The following construction affords a better grasp of some features of the
order relation <. Let P = {p; < py < --- < p, < ---} be an infinite subset of N and let
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f(X) =2 cuXPr, with ¢, € RY (for n € N), and g(X) = fp(X) = X, XP in R[[X]],
with mass functions F and G, respectively. For a real number p, < x < p,.1, we clearly
have F(x) = F(p,) = 27:19‘ and G(x) = n, while for x < p;, we have F(x) = G(x) = 0.
Note also that Supp(f) C P. Then the condition fp < f is equivalent to the following
one:

(%) Xj_i¢cj < nforalln e N*.

Different choices for the sequence (c,) provide various examples and counterexam-
ples. Here, we just give two illustrations.

(1) For any infinite subset P of N, there exists f € & such that Supp(f) = P and its
mass function F satisfies F(x) > x? for all large enough real numbers x. Indeed, just take
f(X) = pa.aXPe, thatis, ¢, = p2,, for n € N*. This implies, for p, < x < p,+1, that
F(x) > ¢, = p2og >x°.

(2) For any infinite subset P of N, there exists f € & such that || f|| = o and fp < f.
Indeed, just take f(X) = >, c,XP" with ¢, = k if n = k? for some k € N*, and ¢, = 0
otherwise. Clearly, f € % and || f|| = co. Moreover, for any n € N*, there is a unique m €
N* such that m* < n < (m+1)% and we have 3}, ¢; = XL k= m(m+1)/2 <m* < n.
Thus the condition () is satisfied, that is, fp < f.

3. The extended class of Erdos-Turan sets

Definition 3.1. We say that an element f of & belongs to the extended class ‘€(EET) of
Erdos-Turdn sets if any supported power series which is subordinated to f has infinite
size; that is, for any ¢ € & such that g < f, we have s(g) = co.

We say that an infinite subset P of N belongs to the class ‘€(ET) of Erdos-Turdn sets if
for any infinite subset Q of N such that Q < P, we have s(Q) = oo.

Remark 3.2. Note first that if f € 6(EET) and P = Supp(f), then, since f < f, we have
s(f) = co and thus |P| = co.

The class €(ET) was defined in [6]. Now let P be an infinite subset of N. If fp €
“€(EET), then the relation Q < P, which by Lemma 2.7 means that f; < fp, implies that
s(Q) = s(fq) = o (by Lemma 2.4). Thus, if fp € €(EET), then P € €(ET). However, as
indicated below, it is not known if the converse holds.

ProrosiTioN 3.3. Let f,g € R[[X]] be such that 0 C f and 0 C g, with mass functions F
and G, respectively. Let P = Supp(f) and Q = Supp(g). Then the following hold.
(1 max(l[ fI, Igl) < [l +gll < L f I+ llgll.
2) IfI- gl < ||fg|| < |Ifll-ligll-s(P,Q).
max(s(f),s(g)) =s(f+g) <s(f)+s(g)+2lfgll.
Supp(f +g) = PuU Qand Supp(fg) =P+Q.
5)s(f)-s(g) <s(fg) =s(f)-s(g)-s(P+P, Q+Q).
The mass function H of fg satisfies H(x) < F(x)G(x) < H(2x) for all x € R.
||f||2 <s(f) <l fII’s(P) and Supp(f?) = P+ P = Supp(f#).
(x) = I fIIP(x) < | fl(x+1) for all x € R*.
9) If f € F. for some c € R™™, then ¢?s(P) <s(f) < |l flI*s(P) and cP(x) < F(x) <
[l fIP(x) for all x € R*.

(3
(4
(6

(8

\_/\_/\_/\/\_/\_/\_/\_/
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(10) If ligll < oo, then || f +gll = oo if and only if || f]| = co.
(11) Assume that g is a nonzero polynomial with coefficients in R*. Then || fg|| = oo ifand
only if || f1| = co. Moreover, the following conditions are equivalent:

(D) s(f +g) = o0; (ii) s(f) = oo; (iii) s(fg) = co.

Proof. (1) and (3) follow from Lemmas 2.2 and 2.7. Also, (4) is straightforward, since the
coefficients of f and g are > 0. As to (5) and (7), they follow directly from (2) and (4).
Also, (10) follows from (1).

Let f =2 0anX", g =20 obuX", fg =2, 0cnX", and fpfo = >.,_odnX", where
cn =2 p—oakbn-rand d, = X[ _oxp(k)xo(n—k) for all n € N.

(2) We have a, < || fllxp(n) and b, < lIgllyq(n) for all n € N. Hence ¢, < || fIl - lIglld,
for all n € N. Therefore || fgll < [ fIl - lgll - Il fofoll = Il f1I - ligll - s(P,Q) by Lemma 2.4.
Moreover, amuby < cpan < || fgll for all m,n € N. Hence | f1l - ligll = sup{amb, : m,n €
N} <l fgll.

(6) By Lemma 2.2, we have H(x) = X k<x@jbx < (X4 aj)(Zp=xbr) = F(x)G(x) <
2 j+k<2x@jbx = H(2x) for all x € R.

(8) Since a, < | fllyp(n) for all n € N, then F(x) = >, an < [ fI| X, <xxp(n) =
[l fIIP(x), and P(x) < INN [0,x]| < x+1 for all x € R*. Hence the inequalities.

(9) By Lemma 2.10, if f € %, then 0C cfp T f, so that 0 C ¢ f7 C f? by Lemma 2.7.
Hence ¢?s(P) = |2 fz 1l < || 21l = s(f). Moreover, cxp(n) < a, forall n € N. Hence cP(x) <
F(x) for all x € R*. The other inequalities are contained in (7) and (8).

(11) Note that g being a nonzero polynomial, |Q/, llgll, and s(g) are finite and positive.
Also, by Lemma 2.4, s(P,Q) < |Q| < co and s(P+P,Q+ Q) < |Q+ Q| < co. Now, the first
equivalence results from (2). The equivalence of (i) and (ii) results from (3) and (7), since
ifs(f+g) =00, thens(f)=coor | fgll =oco;butif || fgll = oo, then || || = oo (previous
case) and thus s(f) = oo by (7). The equivalence of (ii) and (iii) results from (5). |

CoROLLARY 3.4. Let f € & and P = Supp(f).
(1) If s(P) = oo, then s(f) = oo.
2) If I fIl < oo, then s(f) = oo if and only if s(P) = co.
B)IfIIfIl = oo, then s(f) = oo.

These follow from Proposition 3.3(9) and (7).

Remark 3.5. Let f € &. Assume that || f]| < co. If f € 6(EET), then Supp(f) € 6(ET).
Indeed, let P = Supp(f). By Remark 3.2, we have |P| = co. Now, if Q is an infinite subset
of N such that Q < P, then, by Lemma 2.7, we have fo < fp, and f C || fll fp, so that
lfllfo < fllfp < f.Since f € €(EET), it follows that s(|| f |l fo) = co. But sl f1l fo) =
Il £1I?s(Q) by Lemmas 2.2 and 2.4, and since || f || < oo, then s(Q) = co. Thus P € 6(ET).

However, if || f || = co, we may have f € 6(EET) with Supp(f) ¢ 6(ET). Indeed, given
any infinite subset P of N, belonging to ‘6 (ET) or not, one can easily construct a supported
series f belonging to €(EET) such that Supp(f) = P. Indeed, by Remark 2.11(1), there
exists f € & whose support is P and whose mass function F satisfies F(x) > x? for large
enough real x. Then, for any g € % with mass function G such that g < f, we have G(x) >
F(x) > x*. Consequently, Il fll = llgll = o by Proposition 3.3(8), and therefore s(g) = co
by Corollary 3.4(3). Thus f € 6(EET).
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ProrosITION 3.6. For f € €(EET), the following properties hold.

(1) For any g € & such that g < f, g € €(EET).

(2) Foranyt e R™, tf € €(EET).

(3) Foranyg € &, f +g € €(EET).

(4) Foranym e N, X" f € €(EET).

(5) For any g € &, provided g # 0, fg € 6(EET).

(6) For g € &, if the mass functions F and G of f and g, respectively, satisfy G(x) = F(x)
for large enough x € R, then s(g) = co.

Furthermore, for f € &, the following hold.

(7) If g is a polynomial with coefficients in R*, then f € ‘€(EET) if and only if f +g €
€@ (EET).

(8) If g is a nonzero polynomial with coefficients in R, then f € G€(EET) if and only if
fg € 6(EET).

Proof. (1) follows directly from the definitions.

(2)Ifg € Fissuchthatg < tf,thent 'g < f by Lemma 2.7. Since f € 6(EET), then
s(t71g) = 0. But s(t7!g) = t%s(g) by Lemma 2.2. Hence s(g) = c. Thus ¢ f € €(EET).

(3) This follows from (1), since f+g € Fand f +g < f.

(4) By Lemma 2.2, the mass function of X" f is F,,(x) = F(x —m) forallx € R. Let g =
2. b, X" in & be such that g <« X™ f, that is, the mass function G of g satisfies F(x) < G(x +
m) forallx € R*. Leth = > c, X", withcy = >, b, and ¢, = by, for n € N*. Then h
lies in &, and its mass function H is given, for x € R*, by H(x) = >, < ¢n = D pexim bn =
G(x +m). Therefore F(x) < H(x) for all x € R¥, thatis, h <« f. Since f € €(EET), then
s(h) = c0. Now, g + coX™ = X"h + u, where u is a polynomial with coefficients in R*.
Moreover, by Lemma 2.2, s(X"h) = s(h) = c. Hence s(g + ¢coX™) = s(X"h+u) = o and
therefore s(g) = co by Proposition 3.3(11). Thus X™ f € 6(EET).

(5) Let f =2, ganX" and g = > (b,X" in %, and h = fg (also in F by Lemma
2.10), with mass functions F, G, and H respectively. Since g # 0, there exists m € N such
that b,, > 0. By Lemma 2.2, H(x) = >, b,F(x — n) = b,,F(x — m), for x > m—an in-
equality which also holds trivially for x < m. Thus, if u € & is such that u < h, then its
mass function U satisfies U(x) = H(x) = b,,F(x — m) for all x € R*. But, by Lemma 2.2,
x — b, F(x —m) is the mass function of b, X" f, so that u < b, X" f. Now, since f €
@ (EET), then by (4) and (2), b,,X™ f € €(EET). Hence s(u) = co. Thus h € ‘6(EET).

(6) Let f =2 ga,X"and g = >, (b, X" in F be such that G(x) > F(x) for x > xo,
where xg € R*. Define h = >, ,c,X" by ¢, = max(a,,b,) if n < xo, and ¢, = b, if n > x,
(n € N). Then its mass function H satisfies H(x) > F(x) for x < xy and H(x) > G(x) >
F(x) for x = xy (x € R), so that h < f, and since f € €(EET), we get s(h) = co. More-
over, h = g+u, where u = >, (¢, — b,)X" is a polynomial with coefficients in R*, and
therefore s(g) = o by Proposition 3.3(11).

(7) Assume that f +g¢ € €(EET). Then, for any h € & such that h < f, we have h+
g < f+g, by Lemma 2.7, so that s(h + g) = oo, and therefore, by Proposition 3.3(11),
since 0 C g and g is a polynomial, s(h) = co. Thus f € 6(EET). The converse follows
from (3) above.

(8) Assume that fg € 6(EET). Then, for any h € & such that h < f, we have hg <
fg, by Lemma 2.7, so that s(hg) = o, and therefore, by Proposition 3.3(11), since 0 C g,



3774  Analytic Erdos-Turan conjectures and Erdos-Fuchs theorem

g # 0 and g is a polynomial, s(h) = co. Thus f € €(EET). The converse follows from (5)
above. O

Definition 3.7. For f € R[[X]] and m € N, the truncated series of f at mis f | m =
> an X",

For f and g in R[[X]], with mass functions F and G, respectively, we say that g is
asymptotically subordinated to f if G(x) = F(x) for all large enough real numbers x.

CoRroLLARY 3.8. For f € &, the following properties hold.
(1) For any m € N, the series f lies in “€(EET) if and only if f | m lies in “€(EET).
(2) The series f lies in ‘€(EET) if and only if, for any g asymptotically subordinated to f
in &, we have s(g) = .

Proof. The first property follows from Proposition 3.6(7) since f | m differs from f by
the polynomial consisting of the first m terms of f. The second property follows from
Proposition 3.6(6). (]

Definition 3.9. Let P = {py < pp < --- < p, <---} be a subset of N, identified to the
sequence (p,) of its elements indexed in strictly increasing order. For every k € N*, the
kth ray of P is the set Py = {px < pak < - -+ < pak < - - - } consisting of the elements of P
whose index is a multiple of k.

Remark 3.10. Simple properties for an infinite subset P = {p; < p» < - - -} of N are the
following.
(1) For x € R* and k,n € N*, we have Px(x) = n if and only if pr, < X < pi(n+1). Thus
if Pr(x) = n,then kn < P(x) <k(n+1).
(2) For x € R, we have kP (x) < P(x) < kPr(x) + k.
(3) For x € R* and k,n € N*, we have Px(x) > n if and only if px, < x.

LEMMA 3.11. Let P={p; <pr<- - <py<---tand Q={q1 <q2<-+-<qn<---} be
two infinite subsets of N, and k € N*.
(1) If P(x) < kQ(x) (resp., P(x) < kQ(x), resp., P(x) = kQ(x)) for all x € R, then q,, <
Din (Tesp., gn < Pkn»> T€SP., Gn = Pkn) for all n € N*.
(2) If qu < pin for all n € N*, then P(x) < kQ(x) +k for all x € R*.
(3) If kQ(x) < P(x) < kQ(x) + k for all x € RY, then pr, < qn < pin+k for alln € N*,
(4) Let d € R**. The inequality p, < dn® holds for large enough n in N* if and only if
P(dx?) > x — 1 for large enough x in R*.
(5) There exists d € R*™* such that p, < dn? for large enough n in N* if and only if there
exists e € R** such that P(x) = e./x for large enough x in R™.

Proof. (1) If P(x) < kQ(x) for x € R*, then kn = P(pk,) < kQ(pin), that is, Q(px.) = n,
that is, g, < pka, for n € N*. Moreover, if we have g, = pk, for some n, then taking x =
Pkn = qn, we get P(x) = kn = kQ(x). Thus, if the inequality in the assumption is strict,
then so it is in the conclusion. Similarly, if we have g, < pk, for some n, then taking
qn < X < Pk, We get P(x) < kn < kQ(x). Thus if there is equality in the assumption, then
so it is in the conclusion. Hence the results.

(2) If x = px, there is a unique n € N* such that pi, < x < p(u+1), and we have P(x) <
k(n+1) < k(Q(x) + 1), since g, < prn < X, by the assumption. If 0 < x < py, then P(x) <
k < kQ(x) + k. Hence the result in all cases.
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(3) By the assumption, kn = kQ(g,) < P(qn) < kQ(qn) + k = kn+k, that is, px, < gu <
Pin+k> for n € N*,

(4) The first condition means that P(dn?) > n for large enough n € N*, while the
second one means that P(dx?) > [x] for large enough x € R*. The first one implies the
second upon taking n = [x]; and the converse implication is trivial.

(5) The first condition means that the sequence (p,/n?) is bounded, while the sec-
ond one means that the function x/P(x)? is bounded for x > p;. Now, for p, < x < pn+1,
one has P(x) = n, so that p,/n* < x/P(x)* < p,+1/n*. Hence the equivalence of the two
conditions. O

THEOREM 3.12. Let f € &F with Supp(f) = P. Also, let A be a nonempty subset of N. For
every k € N*, let Py (resp., Ay) denote the kth ray of P (resp., A).

(1) If P, € €(ET) for all k € N*, then f € ‘6(EET).

(2) When || f|l < oo, f € €(EET) if and only if Py € 6(ET) for all k € N*.

(3) fa € 6(EET) if and only if Ax € ‘€(ET) for all k € N*.

(4) When || f|l < oo, f € €(EET) if and only if fp € €(EET).

Proof. (1) Let g € & be such that g <« f, with Q = Supp(g) = {q1 < g2 < ---}, and let
F and G be the mass functions of f and g, respectively, so that F(x) < G(x) for x € R*.
There exists ¢ € R™* such that f € ., and therefore cP(x) < F(x) < G(x) < [IgllQ(x) for
x € R* by Proposition 3.3. Now, if ||g]| = o, then s(g) = oo by Corollary 3.4. Otherwise,
let k be a positive integer > ||g||/c. Then P(x) < kQ(x) for x € R", and therefore g, < pk,
for n € N*, that is, Q < Px by Lemma 3.11. Since Py € €(ET), it follows that s(Q) = co
and therefore s(g) = o by Corollary 3.4. Thus f € €(EET).

(2) Assume that || ]| < 0 and f € €(EET). Letk € N* andlet Q = {q; <g> < ---} be
an infinite subset of N such that Q <« P. Then P(x) < kQ(x) + k for x € R* by Lemma
3.11. Thus, by Proposition 3.3, the mass function F of f satisfies F(x) < || f[|[P(x) <
kIl fIIQ(x) + kI f1l for x € R*. Let t = k|| fIl (in R**) and h = tfq +t. Then h € F and
the mass function of A is given by H(x) = tQ(x) + t (by Lemmas 2.2 and 2.4), so it sat-
isfies F(x) < H(x) for x € R*. Hence h < f and since f € €(EET), therefore s(h) = co.
Buts(h) = 2s(fo+1) < £2(s(fq) +s(1) + 2|l foll) = t2(s(Q) + 3) by Lemmas 2.2 and 2.4. It
follows that s(Q) = co. Thus Py € ‘6(ET). This shows that if f € €(EET) then Py € 6(ET)
for all k. The converse follows from (1).

Finally, (3) follows from (2), and (4) follows from (2) and (3). O

Remark 3.13. The results in Theorem 3.12 raise the question of determining the infinite
subsets P of N all of whose rays Py lie in €(ET). In particular, one may ask whether if
P € €(ET), then P, € 6(ET) for all k € N*. A partial answer is provided in what follows.

Definition 3.14. Let P = {p; < p < -+ < p, < - -+ } bean infinite subset of N. The caliber
of P is cal(P) = liminf,_«(pn/n?) in R We say that P belongs to the restricted class
@ (RET) of Erdos-Turdn sets if cal(P) = 0.

Remark 3.15. In [6], we showed that ‘€(RET) is a subset of ‘6 (ET) and that the conjecture
(GET) is equivalent to the assertion that €(RET) & €(ET).

LEMMA 3.16. Let P = {p; < py < -:- < py<---} bean infinite subset of N. For any k €
N*, the caliber of the kth ray Py of P is given by cal(Px) = k*cal(P).
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Proof. Given k € N*, for every integer 0 < i <k, let ¢; = liminf,—c(prns+i/(kn+1i)?).
Since, for all m € N*, inf{p,/n? : n > km} is the minimum of inf { py,+i/(kn+i)* :n >
m},as 0 <i<k—1, then cal(P) = min{¢; : 0 < i< k}. Also cal(Px) = liminf,« (pxn/n*)
= k%cy. Moreover, for any 0 < i < k and n € N*, we have piy < pin+i < Pk(n+1)- Dividing
these inequalities by (kn + i) and passing to the limit, we get liminf,,_« (px./(kn +1)?) <
¢i < liminf,—.o (pr(u+1)/(kn+1i)?). But, since (kn+1i)* ~ (kn)?, asymptotically as n — oo,
we have liminf,,—. . (pxn/(kn +1)?) = liminf,,— o (pxn/(kn)?) = ¢, and similarly liminf,,_ .
(pr(nsny/ (kn+1)?) = ¢o. Therefore ¢y < ¢; < ¢o for all i. Hence cal(P) = min{¢;: 0 <i<
k} = co and cal(Py) = k*cy = k? cal(P). O

CoROLLARY 3.17. If P € G(RET), then Py € €(RET) for all k € N*.

Remark 3.18. If there exist some P € 6(ET) and some k € N* such that Py & G(ET)
(answering a question in Remark 3.13), then P ¢ 6(RET), by Corollary 3.17, so that
%(RET) & 6(ET), and therefore, as noted in Remark 3.15, the conjecture (GET) would
be true.

4. The conjectures

Remark 4.1. We can restate (ET) and (GET) as follows.
(ET) If P is a basis of N, then s(P) = .
(GET) For any infinite subset P = {p; < pp < +-- < p, < ---} of N, if p, < dn?* for
some d € R** and all n € N*, then s(P) = co.
Moreover, since in the condition p, < dn* we can assume that d € N* (upon replacing
d by any integer > d), then, in view of Definition 3.1, (GET) can be restated as follows.
(GET) For any d € N*, the set dS lies in ‘6(ET).

Definition 4.2. Let f = 3., ca,X". We call f a supported basis of N if f is a supported
series such that f2 = > 7  r(f,n)X" has all its coefficients r(f,n) > 0; that is, if f € F
and Supp( f) is a basis of N by Proposition 3.3.

We consider the following analytic versions of the conjectures (ET) and (GET).
(AET) If f is a supported basis of N, then s(f) = .
(GAET) The series fs = >, X belongs to the class ‘6 (EET).

THEOREM 4.3. (1) The conjectures (AET) and (ET) are equivalent.
(2) The conjectures (GAET) and (GET) are also equivalent.

Proof. (1) Assume first that (AET) holds. Let P be a basis of N. Then fp = >.." o yp(n)X"
lies in &, and Supp( fp) = P, so that fp is a supported basis. Therefore, by the assumption,
s(fp) = oo, that is, s(P) = co by Lemma 2.4. Thus (ET) holds.

Conversely, assume that (ET) holds. Let f be a supported basis of N. Then P = Supp(f)
is a basis of N, so that, by the assumption, s(P) = co. Moreover, f € JF,, for some c € R™*.
Therefore s(f) = ¢2s(P) by Proposition 3.3. Hence s(f) = co. Thus (AET) holds.

(2) By Theorem 3.12, (GAET) holds if and only if Sk, which is equal to k%S, lies in
€ 6(ET) for all k € N*. On the other hand, by Remark 4.1, (GET) holds if and only if
ds lies in €(ET) for all d € N*. Thus (GET) trivially implies (GAET). But the latter also
implies the former in view of the fact that if P € €(ET) and if Q is an infinite subset of N



L. Haddad etal. 3777

such that Q < P, then Q € €(ET), as can be easily seen from Definition 3.1. Therefore
for any d € N*, taking k € N* such that k? > d, if kS € €(ET), in virtue of (GAET),
then dS € 6(ET) since dS < k?S. Thus (GAET) is equivalent to (GET). O

Remark 4.4. There is an asymptotic version (ETa) of (ET), which is equivalent to (ET)
(cf. [7]). First, we note that a subset P of N is called an asymptotic basis of N if r(P,n) >0
for all large enough 7 in N. Then, we state the following.

(ETa) If P is an asymptotic basis of N, then s(P) = co.
We can similarly state an asymptotic form of (AET), namely, (AETa).

(AETa) If f is an asymptotic supported basis, that is, if f € F and r(f,n) >0 for all

large enough #, then s(f) = co.

By the same argument as in the proof of Theorem 4.3(1), we see that (AETa) is equivalent
to (ETa), and since (ETa) is equivalent to (ET), then all four statements (ET), (ETa),
(AET), and (AETa) are equivalent.

5. A version of the Erdos-Fuchs theorem

In this section, we present a version of the Erdos-Fuchs theorem for supported series,
along the lines in Newman [12], trying to be as explicit and complete as possible in the
proofs. Namely, we establish the following result.

THEOREM 5.1. Let f = > (a,X" be any supported series in R[[X]]; and let
=2 r(f,mX", (5.1)
n=0

where r(f,n) = X j—naia; (n € N). For any c € R**, if Si_o(r(f,k) —¢) = O(n') for
somet € RT, thent > 1/4.

Remark 5.2. The version of the Erdos-Fuchs theorem given by Newman [12] reads: if A
is a subset of N, and if ¢ € R™ is such that >}_,(r(A,k) — ¢) = O(n') for some t € R,
then t > 1/4. Theorem 5.1 generalizes this result by extending it to all sets (or sequences),
A = {a, : n € N}, of nonnegative real numbers whose nonzero elements are bounded be-
low by a positive constant. This is done by introducing and studying the corresponding
formal power series f = >.." (a,X", having such sequences as coefficients, that we here
call the supported series. The point of this generalization is that such properties, as the
Erdos-Fuchs theorem, are not exclusively characteristic of sequences of natural numbers,
but belong to a much broader class of sequences of real numbers. It is to be further noted
that the version of Newman that we here extend is slightly weaker than the original one by
Erdos and Fuchs [3], which asserts that the relation 3'}_,(r(A,k) — ¢) = o(n"*log™"*n)
is impossible. However, the truly far-reaching generalization of the latter result is the one
presented by Montgomery and Vaughan [11], credited by them to an unpublished manu-
script of Jurkat and described as first appearing in the Ph.D. thesis of Hayashi [8], namely:
for any subset A of N and any ¢ € R™*, the relation > }_,(r(A,k) — ¢) = o(n'/*) is im-
possible. Its extension to our context states that for any supported series f = > (a,X"
in R[[X]], with f2 =7 r(f,n)X", and any c € R**, the relation >;_,(r(f,k) —¢) =
o(n'*) is impossible. This is a natural and more difficult generalization, for another oc-
casion.
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Clearly, if Theorem 5.1 holds for some f € & and all ¢ € R**, then it also holds for
all df , with d € R**. Thus, it is enough to establish it for f € %, that is, we may assume
that f = .7 a,X" satisfies the condition a, = 0 or a, > 1 for all n € N. Throughout this
section, we fix such a series f as well as a constant c € R**. We set A, = >i_o(r(f,k) — ¢)
forallneN, h=3>" A, X", andw= >, ,A2X". We also introduce the series u;(X) =
SasonX" for s € R**, whose radius of convergence in C is obviously 1, and we use
the polynomials p,,(X) = 3}, X* for m € N*. Several technical results will be needed
for the proof of Theorem 5.1. Some are unconditional general properties, while others
require the hypothesis made in the theorem, namely, for a given t € R,

(Hy) Ay = O(n').

We start with a lemma listing two identities and an inequality, which are the analogues
of formulas (1), (2), and (3) in [12], with similar proofs, but in a more general setting.

LEMMA 5.3. The following properties hold:
(1) f(X)? = (1= X)h(X) +c/(1 = X), in R[[X]];
(2) FXPpm(X)? = cpu(X)2/(1 = X) + (1 = X™A(X) p(X), inn R[[X]];
(3) Under the hypothesis (Hy), the radii of convergence of f, f*, h, and w are > 1, and
| f(2) pm(2)1? < cm?/|1 = z| +2|h(2) pm(2)| for all z € C such that |z| < 1.

LEMMA 5.4. Foranys € RY*, us(r) = O((1 —r)~*"1) forreal 0 < r < 1.

Proof. For 0 < r < 1, we have the binomial series expansion (1 —r)~"! = > " ( b,r", with
by=(s+1)(s+2)---(s+n)/n!forall n € N. By a classical formula for the I'-function [2],
limy,_.e(n!-n¥/s(s+1)- - - (s+n)) = T(s). Therefore the sequence (n*/b,) is convergent to
sI'(s) and is thus bounded; that is, there exists a constant C > 0 such that n* < Cb,, for all
n e N. Hence, us(r) = >, on’r" < C> > o byr"=C(1—r) forO<r<1. O

As in [12], we integrate in the complex plane, over a circle C, = {z € C: |z| = r} with
0 < r < 1, relative to the measure y = |dz|/2nr. Thus, for a complex function v(z), inte-
grable in the open unit disk, we set fcy v(z)du = (1/2m) f02" |[v(re™)|dt. The next lemma is
a sharpening of formula (6) in [12]. Similarly, the remaining formulas in [12] have been
adapted or modified to be used in Lemmas 5.7 and 5.8, and in the proof of Theorem 5.1.

LemMA 5.5. Foranyreal 0 <r <1, [ (1/(1 = z))du < —(1/r*)log(1 — r?).

Proof. We have 1/(1 — z) = q(z)?, where q(z) = (1 — z) /2 has the binomial series expan-
sion q(z) = S (7V?)(=2)" = Sy buz” for |z < 1, with b, = [T}, (2k — 1)/2k for all

n € N. Hence ¢ (1/(1 - z))du = (1727) 77 |q(re®) |2dt = 3, b2r*" by Parseval’s iden-
tity [2]. Moreover, by a simple induction, we get b> < 1/(n+1) for all n € N. Hence
Je, (W (1 =2))du < 370 (r*/(n+1)) = (1/r?) X7, (r*"/n) = —(1/r*)log(1 — r?). O

LEMMA 5.6. Let m be an integer > 2. Under the hypothesis (Hy), | f(2) pm(2)|* < cm?/
|1 —z| +2|h(2) pm(2)| for all z € C such that |z| < 1.

Proof. (H;) secures the convergence of f and h for |z| < 1, and then, by Lemma 5.3(2),
we have |f Pm(2) 12 = lepm(2)*/(1 = 2) + (1 — 2")h(2) pm(2)| < clpm(2)1?/|11 — 2] + |1 -
zZm| - Ih(z)pm(z)l. Moreover, |p,(2)| < ZZ’:_OI |zI¥ <m and |1 —2"| < 1+ |z|™ < 2 for
|z| < 1. Hence the inequality. O
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LemMa 5.7. Under the hypothesis (Hy), for any integer m > 2 and any real 0 <r < 1,
FE2) pm(r?) < —(cm?/r?)log(1 — r?) + 2, /w(r2) pm(r2).

Proof. In view of Lemma 5.6,

2 1
Jc, (f(@)pm(2)) du < cm? Jc, I—_Zdy +2 Jc, h(2) pm(z)dp. (5.2)

Clearly, fpm = >,_ocnX", where the coefficients c,, being sums of coefficients ax of f,
satisfy likewise the condition ¢, = 0 or ¢, > 1, so that ¢2 > ¢, for all n € N. Now, by Parse-
val’s identity, [ (f(z)pm(2))*du = (1/2m) 02ﬂ [(fpm)(re)|2dt = 30 gc2r?" = 307 cpr™”
= f(r*)pm(r?). Also, by the Cauchy-Schwarz inequality [2] applied to the real integrals
over [0,27], we get (J¢, h(2) pm(2)du)* < [ h(2)*dy - [¢, pm(2)*du. Moreover, by Parse-
val’s identity, [ h(z)*du = 3,0 Air*" = w(r?) and [ pm(z)*dy = S = p(r2).

Therefore [ h(2)pm(z)du < \|w(r?) pm(r?). Finally, by Lemma 5.5, [ (1/(1 — 2))du <
—(1/r*)1og(1 — r?). Putting together all these inequalities yields the desired result. O

LemMa 5.8. Under the hypothesis (H;), the following properties hold.
(1) There exists b € R™™ such that w(r?) < b/(1 —r?)**! forall reals 0 < r < 1.
(2) If t < 1, then there exist real numbers d >0 and 0 < ry <1 such that f(r?) >
d/N1—r2 forall realsrg <r < 1.
(3) Ift < 1, then there exist real numbers b,d >0 and 0 < ro < 1 such that dmr*"/~\/1 —r2
< —(cm*log(1 —r2)/r?) +2/bm/(1 — r*)* V2 for all integers m > 2 and all reals ro <
r<l.

Proof. By (Hy), there exists a real constant C > 0 such that |A,| < Cn’ for all n € N*.

(1) For 0 < r < 1, we have w(r) = >0 (A2r" < A3+ C2 X nlr" = A3+ CPuy(r), so
that w(r) = O(ux(r)). But, by Lemma 5.4, uy(r) = O((1 —r)7271). So w(r?) = O((1 —
r2)~2=1) for 0 < r < 1, which gives the desired result.

(2) By Lemma 5.3, (1 —r) f(r)?> = ¢+ (1 —r)?h(r). Now, for 0 < r < 1, we have |h(r)| <
S o lAnlr® < |Agl + CY5 onfr" = Ag + Cuy(r), so that h(r) = O(u(r)). Thus, by
Lemma 5.4, h(r) = O((1 — r)~t=1), and then (1 — r)?h(r) = O((1 — r)'~1). Since t < 1,
it follows that lim,_1- (1 — r)?h(r) = 0. Consequently, lim,_;- /1 —r2f(r?) = \/c > 0, so
that v/1 — 72 f (r?) is bounded below in some left neighborhood of 1. Hence the result.

(3) By Lemma 5.7 and (1), (2) above, we have dp,(r*)/~1—12 < f(r})pm(r?) <

—(em?/r¥)log(1 — r})+2\w(r?) pim(r2) < —(cm?/r*)log(1—r?) +2\/W/(l —r2)t+12

for r < r < 1. Moreover, mr?™ < p,,(r*) = S} r* < m for 0 < r < 1. The desired in-
equality follows immediately. O

Proof of Theorem 5.1. We proceed by contradiction. Assume that the hypothesis (Hy)
holds with 0 < ¢ < 1/4. Then there exists a real number 2 < p < 1/2t. For every integer m >
2,letry, = (1 —1/mP)"?, so that0<r,, < 1and r, — 1~ as m — oo. Thus, given 1 < rg < 1
satisfying Lemma 5.8(3), there exists an integer m > 2 such that for all m = my, we have
70 < 7 < 1, and therefore dmr2"/,[1 — 12, < —(cm?log(1 — r2)/r2) + 2:/bm/(1 — r2,) V2,
But /1 — 72 = m P2 and log(1 — r%) = —plogm, so that dm'*P2r2" < cpm?logm/r2 +
2:/bmPHP2H12 that is, dr2" < cpm! P2 logm/r2, + 2./bmP*~12. Moreover, by a simple
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induction, we get (1 —x)™ > 1 —mx for 0 < x < 1 and all m € N*, so that 2" = (1 —
mP)">1-m'"P>1—m~' > 1/2 since p >2 and m > 2. Thus d/2 < cpm'~??logm/
r2, 4 23/bmP*=12 for all m > my. But since 2 < p < 1/2t implies that 1 — p/2 < 0 and
pt —1/2 <0, and since r2, — 1 as m — oo, then both cpm'~?2logm/r2, and 2+/bmP*~1/
approach 0 as m — co, which contradicts the latter inequality for large enough m. Thus
the assumption that t < 1/4 leads to a contradiction, and therefore we must have t >
1/4. ]
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As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

e Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

o Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

e Implementation aspects: decision support systems,

expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

December 1, 2008
March 1, 2009
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