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We explicitly compute the spectrum and eigenfunctions of the magnetic Schrodinger
operator H (A,V) = (iV + A)2 + V in L2(R?), with Aharonov-Bohm vector potential,
A_.(xl,xz) = a(—x3,x1)/|x|?, and either quadratic or Coulomb scalar potential V. We also
determine sharp constants in the CLR inequality, both dependent on the fractional part
of a and both greater than unity. In the case of quadratic potential, it turns out that the
LT inequality holds for all y > 1 with the classical constant, as expected from the non-

magnetic system (harmonic oscillator).

1. Introduction

The main aim of this paper is to determine explicit constants in the Lieb-Thirring (LT)
and Cwikel-Lieb-Rozenblyum (CLR) inequalities for a class of exactly solvable quantum-
mechanical models. We consider the magnetic Schrodinger operator

H(A,V) = (iV+A?+V (1.1)

in L?(R?) with Aharonov-Bohm vector potential,

, a€R\Z, (1.2)

and with two different choices of scalar potential. In both cases, the optimal CLR constant
depends on |« — m; |, where m; is the best integer approximation of a.

We initially use a quadratic scalar potential, V (x1,x2) = 8|x|?, where € R, = (0,00).
The operator is then unitarily equivalent to the two-dimensional harmonic oscillator if
the magnitude « is an integer. Such an operator has already been considered, for in-
stance, in [2, 6]. In the latter work, the authors construct a solution of the time-dependent
Schrodinger equation. In the corresponding classical system, whose trajectories are given
by Hamilton’s equation, the particles move in periodic orbits around the singularity,
unaffected by the Aharonov-Bohm field. Quantum-mechanically, however, the effect of
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the magnetic field can be observed in the solutions of the Schrédinger equation. It turns
out that the spectrum and eigenfunctions of the operator (1.1) can be computed explicitly
(Theorem 2.1). Here again, one sees a contribution of the Aharonov-Bohm effect insofar
as the eigenfunctions differ from those of the harmonic oscillator when the magnitude «
is noninteger.

We moreover prove that the LT inequality, that is,

Ry

. y
Tr(H(A,V)-1)" < n)

[ ], @t -2 axet, (13)
R2 JR?2

holds true for the operator with the classical constant R, = 1 for all y > 1 (Theorem 2.3).
Such a result could not have been deduced from the results in [3] or [5], where the authors
consider nonmagnetic Schrodinger operators. It is known that nonmagnetic systems can-
not satisfy the CLR inequality (y = 0) in two dimensions. With the Aharonov-Bohm field,
however, this inequality is sharp with

;2 ifO< |a—m| <324,
(I+|a—my])
Ry = (1.4)

1
if —4<|a- <
(1-(1/2) [a—m |)? if3v2 -4 < fa—m|

1
2)

which is always greater than unity (Theorem 2.2).

Parallel results are obtained in the second part for the Coulomb potential, V (x;,x;) =
—p/1x|. Unlike the quadratic potential it is not confining, and consequently the point
spectrum is entirely negative (Theorem 3.1). The LT inequality is trivial if y > 1, and we
establish (Theorem 3.2) that the sharp CLR constant is

1
5 if0<|0c—m1|$2f—é>
(12+ |a—my|) 2

Ry = (1.5)

2 . 5
G2 Tazm])? 1f2ﬁ—55 la—m| <

1
>
Again Ry > 1 for all a.

2. Quadratic potential

2.1. Spectrum and eigenfunctions. In this section, we will see that the eigenvalue prob-

lem for H(A, V') with quadratic potential can be reduced to Whittaker’s differential equa-
tion. The spectrum of the operator turns out to have a close connection with that of the
harmonic oscillator.

2.1.1. Separation of variables. We may use the decomposition

I2(R?) = I2(R rdr)®L2(§1)—@(L2([R rdr)®[eime]> 2.1)
- v _mel v \/E ’ .
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where [ -] denotes the linear span, to express the Aharonov-Bohm operator as

- ? 10 1/(.0 S
H(A’V)__ﬁ_;a_r-i_r_z(l%—'—a) +/J)T _@(Hm®lm))

me’l
where I, is the identity on [¢"/./27] and

2 1d 1
Hy=-5— -+ +5

_ _ 2 Y 2
dr? rdr+r(“ m)"+pre.

To remove the weight r, we introduce the unitary mapping

U:L*(Ry,rdr) — L2(Ry,dr),
fr)— Jrf(r),

which transforms H,, into

2 (a—-m)*—-1/4
=

& -1_ Y 2
H, =UH,U __drz 2 ,Br.

Following (2.1), we write

[

u(r,0) = > um(r)e™,

m=—oo

and the corresponding quadratic form decomposes accordingly:

(&9

5[”]2 z 5m[um])

m=—o0
where

2+(0c—m)2—1/

~ _ (7 (| du 4 2 2 z)
am[u]—L (‘dr 2 [ul* + Br=|ul® |dr.
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(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

The operator H (A: V) will be considered as the Friedrichs extension of the differential
expression (2.2) on Ci°(R?\ {0}). By an application of the classical Hardy inequality

=S} 2 0
|, %drsjo I Pdr VfeH(R,),

(2.9)

(and a standard density argument), one can prove that its domain consists of all H} func-

tions such that the quadratic form (2.7) is finite.

2.1.2. Eigenfunctions. The spectrum of this operator is discrete and can be calculated

explicitly. Our goal is to find all eigenfunctions of H (A, V), that is, all ¢me™? which are

eigenfunctions of H,, ® I,,,. Taking into account the mapping (2.4), we have

Hm¢m = E(/)m S I_Nlm(zm = E$m>

(2.10)
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where ¢,, = U¢,,.. Substituting further

$m(r) = (2.11)

in (2.10), we obtain the equation

4r2[$”(r2>+ <_/-3+%+ 1/4- ‘(“"”’/2)2)“ (ﬂ)} _o

4 r2 r4

o [RB (-§o R  NE ()o

Setting z = \/Brz, we see that this is exactly Whittaker’s equation,

N 1 A 1/4—p*\%

¢m(z)+(—1+;+ = >¢>m(2)=0 (2.13)
with parameters A = E/4\/B, p = (1/2)|a — m|. As shown by Whittaker and Watson [7],
when 2u ¢ Z \ {0} this differential equation has two linearly independent solutions,
namely,

M)L,i,,(z)zzi““/zeﬁ/zd)( p—A+= 2y+1z) (2.14)

where O is a hypergeometric series given by

Yz y(y+1)é y(y+1)(y+2) 23
P82 =1t St oD 2 T 60+ 1)(0+2) 31 (2.15)
We deduce that
N M (1/2) r?
f/’;f,(r) _ E/4,/B,x(1/2)] \(\/ﬁ ) (2.16)

\/?

form a fundamental set of solutions of (2.10). These solutions are, however, not necessar-
ily eigenfunctions of the Friedrichs extension. We will now examine this via the quadratic
form.

It is easy to see that

My, (2) = 2472 (14 0(2))? = O(z°#+12) (2.17)

for small z. Hence,

(/)iir(r) _ @((rZ)i(1/2)‘“*”’|+1/2r73/2) _ @(rtlafm\*l/Z) (2.18)
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and

d$7in _ —1/2+|a—m|
2o 0(r ). (2.19)

Asr® € L*([0,1],dr) ifand only if a > —1/2, the quadratic form (2.7) is unbounded for all
¢,,» which therefore cannot be eigenfunctions. Indeed, linear combinations a.¢;, +a_¢;,

can also be excluded, since (5,*,1 is always integrable at the origin and no cancellation can
occur.
For large z, the Whittaker functions have the following asymptotics [7]:

eI (2u+1)
T(u—A+1/2)

in(y—l+l/2)1"(2 +1)

_\—ALz2 e U A ,—z/2 -1

(—z) ¥+ FutA+1/2) Z'e )(1+@(z ).
(2.20)

M)L,y (Z) = (

We deduce that

o e EAVBIT (| — m| +1) _ 2 ENE i e
¢"’(’)‘(r((1/z)|a—m|—E/4 L JBrt) e

in((1/2)|a—m|~E/4,/B+1/2) _
46 VB T(la—m[+1) <\/Br2>E/4\/Fr‘1/2e‘\/ﬁ’2/2> (221)
T((1/2)la = m| + E/4\[B+1/2)

x (1+0(r72)).

The first term in this expression is not integrable. To make it vanish, we choose E in order
that the denominator’s gamma function be singular, that is,

%Ia—ml—$+%=—n<:>E=2\/E(1+|0c—m)+4\/En (2.22)

for some n in Ny = {0,1,2,...}. With this choice of E, we obtain the finite number

(2.23)

e T (la—m|+1) ( -1 )"
I(1+|a—m|+n)

1+ |a—m)|

as a coefficient of the integrable term. It remains to verify that the derivative is also inte-
grable for large r. Differentiating the second term in (2.21) gives us two terms of the form
rae~/Fr'/2_Clearly both terms are square integrable away from zero.

The preceding discussion can be summarised in the following theorem.

Tueorem 2.1. The L?(R?) eigenfunctions of the operator (1.1) with
> V(xl)xZ) :/3|X|2, (224)

wherex € R\ Z and f € R, are

eim@

M s B(1/2)la-mi (\/Erz)’ (2.25)
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Figure 2.1. The first eigenvalues, normalised by \/ﬁ

where m € 7 and M), is defined in (2.14). The eigenvalues are

E(m,n)=2\/ﬁ(l+|(x—m|+2n), n € Ny. (2.26)

The multiplicity of a given eigenvalue equals the number of times it appears as m runs over
7 and n over N.

2.1.3. Eigenvalues. For future convenience, we will write the eigenvalues as two increasing
sequences:

Ejp=¢; +2\ﬁp, j=12, peNo. (2.27)

Here €; denotes the lowest eigenvalues,

€1 =rr£16ir112\/B(1+|oc—m|) =2\/E(1+ o —my]),

(2.28)
€= min 24B(1+|a—m|) =6, —¢€1,
m#me’
which coincide if « is a half-integer. In fact,
l+la—m[+2n=€j+m +2n=€;+p, (2.29)

and since p = m’ +2n has | p/2] + 1 solutions in Ny X Ny, the multiplicity of the eigen-
value E; , willbe N(p) = [ p/2] + 1.

In Figure 2.1, we have plotted the first eigenvalues. The spectrum has a close connec-
tion with that of the two-dimensional harmonic oscillator,

Eh.o.(p) = 2P> Nh.o.(p) = P» p= 1,2,.... (230)

The eigenvalues have moved apart from their original positions by a distance which is
proportional to the fractional part of a.

2.2. Eigenvalue inequalities. We now consider the two-dimensional Lieb-Thirring in-
equality

Tr (H(A, V) -2)! <

R
oo ot ek
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which is known to hold for all y > 0 for the harmonic oscillator in the absence of a mag-
netic field. In this case, the constant R, = 1 if y > 1 [3], but as a general fact R, > 1
if y <1 [4]. In the special case y = 0, the inequality is usually named for Cwikel, Lieb,
and Rozenblyum. It fails for nonmagnetic systems unless the number of dimensions is at
least 3.

By unitary equivalence, (2.31) holds for the Aharonov-Bohm operator if the magnetic
potential has integer magnitude «. We will address the question whether this is true also
in the case of noninteger magnitude. We are led to study the cases y = 0 and y = 1 by the
above prediction and the well-known result by Aizenman and Lieb [1]: if R, is finite for
somey =0, then Ry <R, forally’ = y.

2.2.1. Right-hand side. Let us first calculate the right-hand side of (2.31). The Schrédinger
operator H(A, V) is a pseudodifferential operator with symbol

ax, Xy

2
a(x,f)=( & — 2’ E+W) +Blx|%. (2.32)

By means of the substitution,

ax, X1

= \ﬁxl, Y2 = \/[?xz, m=—& - PR &+ X2’ (2.33)

the symbol simplifies to 7% + | y|%. The integral is therefore zero for A < 0. For positive
A, we have

J,. [t -0 axag= 5 | [ (e P -0 dyay

1
] A— 2 _ 2 Vd d
ﬁH\yIZHansA( lyl* = In1%) dydy

(2m)*
= JJ r,p=0 (A - _pz)yrpdrdp
ript<) (2.34)
2 rn/2 VA
_ (@m) J cosu/sinl//de (A R2)’R*R
B Jo Jo )
(U2 B(y+1,2)
/\y+2
=Q2n) .
TS
The result is independent of the magnetic field.
2.2.2. Left-hand side, case y = 0. The left-hand side can be written as
2 )
Tr (H(A, => > N(p)(A-Ejp), (2.35)

j=1p=0
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Figure 2.2. Plots of A%/8 and N, on the interval [4n —2,4n+2].

which, if y = 0, is simply the number N, of eigenvalues (counted with their multiplicities)
less than or equal to A. For any y, we can restrict the computations to the case f =1
because >.; , N(p)(A — Ej,P)K < RyAV*2/4(y +1)(y +2) implies that

y
SN \BE;p) =7 S N(p) (i - Ej,p)
b b \/E N (2.36)

+2
< R, (A/ \/B)y _ R
U A+ D(y+2)  4B(y+D(y+2)

Since 2 < €; < 3 irrespectively of a, there is exactly one point in the spectrum between
two consecutive integers. The sum (2.35) is particularly easy to compute if A is an even
integer. Recall that the spectrum begins at 2 and that the interval [4p — 2,4p + 2] contains
four eigenvalue points, each with multiplicity p. Thus, if A = 4n+2,

N,lzpilélp:Zn(n—kl):(%—1)(%(%—1)+1)=%—%. (2.37)

Similarly, if A = 4n,

n AZ
Ny= > dp—2n=2n"= 5 (2.38)
p=1

Figure 2.2 contains all the information needed to determine a lower bound on the
constant

— s
Ry = Sl)ltp /8 (2.39)
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N) being non-decreasing, this supremum is necessarily attained at some point of the spec-
trum, where N) has a jump increase. Formulae (2.28) tell us that, for example,

Ne,+4(n-1) 8(2n? —n) 2n(2n—1)
— = ;= 5. (2.40)
(e1+4(n—1))7/8 22(1+2(n—-1+|a-m )" @u-1+|a-m])
Hence, the interval [4n — 2,4n + 2] provides the bound
_ 2
o= m"‘x{ 2 WT . N 2 |4n >
n—1+|a—m n—la—m
! ! (2.41)
2n(2n+1) 4n(n+1) )g
Qn+la-m|) @n+l-]a—m|)")
We may view these expressions as functions of n = 1,2,3,.... They are decreasing if, re-
spectively,
- -1 — 1-|la—
n> oo m | n>0, n> o= | ; n>M (2.42)

22]la=—my| 1)’ 2—4la—m|’ 2la—my|
A somewhat lengthy but altogether elementary examination of all possible cases shows
that it is enough to consider n = 1, that is, to solve the maximisation problem on the

interval [2,6]. The conclusion is the following theorem.

THEOREM 2.2. When y = 0, inequality (2.31) is sharp with

(1.{.’062_1/,1”2 if0<|(x—m1|s3\/§—4,
Ry = ! (2.43)

0=
1 .

3V2-4< |la— <

(1—(1/2)|(X—WI1|)2 if3v2 = m|

1
>

Apparently Ry is always greater than or equal to 2(1 +/2)%/9 ~ 1.295 (which indeed
confirms the result in [4]) and Ry 1 2 as « approaches an integer. This fact can also be
established by direct calculations with the nonmagnetic eigenvalues (2.30).

2.2.3. Left-hand side, case y = 1. We attempt to show that R; = 1, as in the case of the har-
monic oscillator. Taking 8 = 1 as previously, we will prove that the quantity (2.35) does
not exceed A*/24. Since each point in the spectrum stays between the same consecutive
integers when « varies, and because €, + €, = 6, the sum is independent of « when A is an
even integer. We will compute the sum for such A and then use convexity to determine
the value of the constant.

Consider first A = 4n + 2 and write [2,4n+2] = U;:1 [4p —2,4p +2]. The four points
in the spectrum located on [4p — 2,4p + 2] all have multiplicity p. They contribute to
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the sum in the following way:

4(p—-1) +ey,
4p-1)+6—¢€,
4(p-1)+2+e€y,
4(p-1)+8—¢€y,

(2.44)

give, respectively,

p(4n+2—(4(p—-1)+e€1)) =p(dn—p)+6—¢€1),

p4n+2—(4(p-1)+6—¢€1)) = p(4(n—p)+e1),
p4n+2—(4(p—1)+e€1+2)) = p(4(n—p)+4—-e),
p(4n+2—(4p-1)+8—e1)) = p(4(n—p) —2+e1).

(2.45)

The sum of these terms is 8((2n+ 1) p — 2p?). Summing over all intervals, we get

j=1p=0 p=1
:8<(2 +1)n(n2+1) _2<(n;1)3 B (nJ;l)2 N (n;rl)))
(24542

(2.46)

Next, to treat A = 4n, we split [2,4n] = U;;i [4p —2,4p+2] U [4n — 2,4n]. On each of
the subintervals [4p — 2,4p + 2], where the multiplicity is p, we note that
4(p-1)+ey,
4(p-1)+6—¢€y,
4(p-1)+2+e€y,
4(p-1)+8—¢y,

(2.47)

give, respectively,

4(n
4(n
4(n
4(n

p +4—-€),
p

p
p)—4+e€r).

)

—2+€1),
(2.48)

)

)

+2—€;

s

(4(n—p)
(4(n-p)
(4(n—p) ,
(4(n—p)

a~)

These terms sum to 16p(n — p), and in all we get

n—1

> 16p(n—p) = 87"(;12—1). (2.49)
p=1
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Finally on [4n — 2,4n], the eigenvalues 4n — 4 + €; and 4n + 2 — €;, each with multiplicity
n, contribute

n(dn— (4n—4+¢))+n(dn— (4n+2—-¢€;)) =2n. (2.50)
Thus,
S 8n nwoon
N(p)(4n—Ej,), = —(n*— D +2n=8(— - —= ). (2.51)
;gop” w)e =5 " (3 12)

If we substitute # as a function of A in (2.46) or (2.51), we obtain

2 o AS b
> Z (P(A=Ejp), =5, -5 1fA=2,46,... (2.52)
j=1p=0

in both cases. (Actually (2.46) and (2.51) are only valid if n > 1 but a simple calculation
shows that A = 2 need not be excluded.) In the intervals between even integers, we can
prove the same thing by convexity. The Lieb-Thirring sum is a piecewise affine function
of A, and since the first-order coefficient equals the number of eigenvalues below A, it
is also convex. Assume that A is an even integer and let A = 1 +2¢, 0 < t < 1. By Jensen’s
inequality,

2 @ B A+2)* 1+2
3 SNGI-Bie), = (55~ 5 )u -0+ (57 -5

_ (A+2t)3

vh(0, whereh( =~ +1( -2 E_l)
24 5 where = 3 > 6(

Noting that 4’ (f) = —12 +A(1/2 — t), we see that h has a local maximum in (0,1), namely

h( ! )=— A+2 <0 Vize >2 (2.54)
1+

\1+2/A 6(1++/1+2/0)°

Hence,

22 )P( 4(1+2) )
N A E l-—F. 2.55
]Z 2N(pY(A-Epp), <5 I - (2.55)

3(14+4/1+2/0)°

The last factor will tend to one as A — co, which proves the following theorem.

TaEOREM 2.3. When y = 1, inequality (2.31) is sharp with R, = 1.

3. Coulomb potential

3.1. Spectrum and eigenfunction. Treating now the case of Coulomb scalar potential,
we will see that the eigenvalue problem can again be reduced to Whittaker’s equation.
The spectrum is, however, very dissimilar to what was found in the case of the quadratic
potential.
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3.1.1. Preparations. Using again the decomposition (2.1), we obtain the differential ex-
pression

. ? 19 1/.9 B
H(A,v>——ar2—rar+,z(lae+“)‘r—%(H"“@Im)’ G
where
&2 1d 1 , B
Hm__dr2_rdr+r2(“_m) o -2

As earlier, the first-order term can be removed by unitary equivalence under the mapping
(2.4). One then obtains

~ - & (a-m3?-1/4 f
= UHuU ™ = 54 2 2 (3.3)

This allows us to define the quadratic form of the operator in the Coulomb case:
aul = Y Gwlum], (3.4)

m=—0oo

where

r2

~ “(ldu|® (a—m)*—1/4 2
am[u1=f0 (\df +(‘“’”|u|2—/3'“r')dr. (3.5)

Using the one-dimensional classical Hardy inequality, one can easily show that the qua-
dratic form (3.4) is lower semibounded and closed on the domain H{ (R?). This observa-
tion will simplify the examination of which formal solutions are actually eigenfunctions
of the Friedrichs extension of (3.1). We then merely have to verify that the solutions be-
long to H{ (R?).

3.1.2. Eigenfunctions. We now turn to the equation
ﬁm(’/\;m = E$m’ $m = U¢m- (36)

It is equivalent to

~ —(a—m)2\ ~
¢;,;(r)—4E(—i—/3/fE 1 4(E‘"r2 m) >¢m(r)=0. (3.7)

Since the Coulomb potential is not confining, E > 0 corresponds to scattering states and
so we can restrict our study to E < 0. We then have

~, 1 B 1/4 - (a—m)?\ ~ B
‘/’m(’”‘”E'(‘Z+4|E|r+ 4EIP )‘b’”(”‘o’ (38)
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which can be rewritten as Whittaker’s equation,

~,, 1 A 1/4—(a—m)
¢ (2)+ (— 1 + . + = )¢m(z) (3.9)
with z = 24/[E|r, A = ,8/2\/@, and y = |a — m|. Its solutions are (cf. Section 2.1.2) M) ,(z)
and M), _,(z), the latter of which is not defined if 2u € Z \ {0}. With the new definition
of u, the exceptional case occurs whenever « is a half-integer, but as only either of the
solutions obtained for each m is integrable, this will not cause any difficulties.

We know that a fundamental system of solutions is

Gn(r) = %Mhﬂ(z\/ﬁr). (3.10)

We use the same approach as in Section 2.1.2 to check that these functions lie in the
domain of the Friedrichs extension, that is, in the closure of Cf° (R? \ {0}) with respect to
(3.4) or, equivalently, the H} norm. For small r,

(p;_;l :@(rtla—mHl/Z), dg% :@(r—l/zz\oc—ml), (3.11)

and hence $;, can be excluded for all m. On the other hand, when r is large,
o eI (2]la—m|+1)
) = IE
‘/’m(r)_(r(m—m\ A+1/2) (-2 )

ein(\a—m\—/\H/Z (2|(X m|+1 =
T T (a—ml+A+172) (21l ) )”@( H).

(3.12)

Repeating our argument from Section 2.1.2, finiteness of the quadratic form requires that

P 1_ _ (L
WiE 2T e R a2

2
lo—m| ) neN,. (313

Clearly, the operator H,, has a sequence of negative, discrete eigenvalues starting at

—(B/2(la — m| +1/2))? and accumulating towards zero.
Winding up, we arrive at the following theorem.

THEOREM 3.1. The L*(R?) eigenfunctions of the operator (1.1) with

- o — x2,x1)

A(Xl,XZ) = ﬁ, (3.14)

, V(x1,x2) = T

[x]?
wherex € R\ Z and f € R, are

eim@

WMﬁxzm,m_m\ (2 |E(m,n)| r), (3.15)
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where m € 7 and M), is defined in (2.14). The eigenvalues are

B2

2
_ € Ny. 1
n+|(x—m|+1/2> > 0 (3.16)

E(m,n) = —(

The multiplicity of a given eigenvalue equals the number of times it appears as m runs over
Z and n over Nj.

3.2. Eigenvalue inequalities. In this section, we return to Lieb-Thirring’s inequality
(2.31) and examine when it holds for the Aharonov-Bohm operator with Coulomb po-

tential. Since the discrete spectrum is entirely situated on the negative real axis, only neg-
ative values of A are interesting.

3.2.1. Right-hand side. The symbol of the operator is now

x|

alnd) = (- T2 »:+|"‘x|;) B (3.17)

Proceeding the same way as in Section 2.2.1, we obtain forallA <0and 0 <y <1

[ e
-ﬁzJWW———w

/A oA+ —1/A y+l1
= (271f3) J J (A PPt = )rpdrdp y+1) ( /\) rdr

B Qrp)? (> o B (2nB)? L oym y+1 ) E 2 yr .
_2(y+l)Io (s—/\)3ds 2(y+1)| " sinymr 2 =(m) (2) s1ny7r| I

(3.18)

(To compute the last integral, we used a contour situated on both sides of the branch cut.)
The integral diverges for y > 1, and then the Lieb-Thirring inequality is trivial.

3.2.2. Left-hand side, case y = 0. As in the case of quadratic potential, we will write
the eigenvalues (3.16) in an “ordered” way, by giving new meaning to the notation in
Section 2.1.3. We redefine

. 1
€ =minla—ml+==|la—m |+,
mez 2

2
X (3.19)
€= min |la—-m|l+=-=2—-€; = €.
mi#melz 2
The eigenvalues can then be written in the following way:

B/2 )2 .
Ei,=— , =1,2, p e Ny, 3.20
inp ( ¢ 1p J pENo (3.20)
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with multiplicity N(p) = [ p/2] + 1. The eigenvalues define the subintervals

Lip = [ELP’EZ,P)ﬂ Ly = [Ez,paEl,pH), (3.21)

which clearly constitute a partition of the interval [E; ,0). If « is a half-integer, E; , and
E,, coincide so that I; , = &. In the other limiting case, when & approaches an integer,
E, , will tend to Ej 41, thus making I, , vanish.

The problem is to find a constant Ry such that

2
N, 5R0(§> Al vi<o, (3.22)

or, equivalently, to determine
/3 2
Ry = <7> sup Ny . (3.23)
2 A<0

By an argument similar to that in Section 2.2.2, R is independent of 8. To simplify the
calculations, we therefore assume 3 = 2.
We first consider p = 0. On I,y we have N = 1, so that necessarily

1
Ry > supNAIAI = |E1)()| = . (3.24)
I €]
From I, where N, = 2, we obtain the lower bound
2
RQZSUPN,\l/U :2|E2,0| =—"7. (325)
Iz_g (2 - 61)

Actually the supremum will always be attained either on I or L. To see this, we will
prove an upper bound on such values of Ry that are obtained upon maximising (3.23)
with A restricted to intervals I; 5, p > 1. We have

Sl 2] 2 e,
. (3.26)
%2<[%J+1> iflely,.

Since z‘szolq/zj < p*/4, we readily obtain

2 2
NA|)L|SP+3P+3< L ) ifA e,

: arp (3.27)
2 2 .
Nms(p”)( =) - L iflen,
2 €+p 2(1—€1/(p+2))

Clearly both bounds decrease as functions of p. It is also easy to verify that the value of
Ry, asin (3.24) and (3.25), is always greater than that in (3.27) (with p = 1) for a given €.



3766  Schrodinger operator with Aharonov-Bohm magnetic field

Hence,

1 2

Ry = max{—z,iz}. (3.28)
€1 (2 - 61)

Writing €; explicitly, we can state the following theorem.

THEOREM 3.2. When y = 0, inequality (2.31) is sharp with

1 . 5
Wzt lazm) 1f0<|oc—m1|s2\/——§,
- 1
Ry = (3.29)
: 22— 2 = [a—m| =1
(B/2-|a—m|)? 2 e

We note that Ry > (v/2+1)/2 ~ 1.207 and Ry 1 4 when « tends to an integer. Another
remark is that the leading term in the expansion of N is A/2, independently of « and f3.
This fact is suggested by the bounds (3.27) and we have been able to verify it by deriving
closed expressions for finite sums over the multiplicities. Due to the positive higher-order
terms, Ry is however strongly influenced by the location of the lowest eigenvalues.
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