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Consider a Benjamin-Ono-Boussinesq system ηt +ux + auxxx + (uη)x = 0, ut +ηx +uux +
cηxxx −duxxt = 0, where a, c, and d are constants satisfying a= c > 0, d > 0 or a < 0, c < 0,
d > 0. We prove that this system is locally well posed in Sobolev space Hs(R)×Hs+1(R),
with s > 1/4.

1. Introduction and main results

We consider the Cauchy problem for a Benjamin-Ono-Boussinesq system:

ηt +ux + auxxx + (uη)x = 0, t > 0, x ∈R,

ut +ηx +uux + cηxxx −duxxt = 0, t > 0, x ∈R,

η|t=0 = f (x), u|t=0 = g(x),

(1.1)

where a, c, and d are constants satisfying

a= c > 0, d > 0 or a < 0, c < 0, d > 0. (1.2)

The system is called a Benjamin-Ono-Boussinesq system because it can be reduced to a
pair of equations whose linearization uncouples to a pair of linear Benjamin-Ono equa-
tions.

Equations of type (1.1) are a class of essential model equations appearing in physics
and fluid mechanics. To describe two-dimensional irrotational flows of an inviscid liquid
in a uniform rectangular channel, Boussinesq in 1871 derived from the Euler equation
the classical Boussinesq system:

ηt +ux + (uη)x = 0, t > 0, x ∈R,

ut +ηx +uux +
1
3
ηxxt = 0, t > 0, x ∈R. (1.3)

In [1], Bona et al. derived by considering first-order approximations to the Euler equation
the following alternative (a four-parameter Boussinesq system) to the classical Boussinesq
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system:

ηt +ux + auxxx + (uη)x− bηxxt = 0,

ut +ηx +uux + cηxxx −duxxt = 0,
(1.4)

where the constants obey the relations

a+ b = 1
2

(
θ2− 1

3

)
, c+d = 1

2

(
1− θ2)≥ 0, a+ b+ c+d = 1

3
, (1.5)

with θ ∈ [0,1]. The system (1.1) is one of the four-parameter systems associated with
b = 0. When b = 0, Bona et al. in [1] determined exactly that the four-parameter systems
are linearly well posed if and only if a, c, and d satisfy the relation (1.2). The local well-
posedness of the nonlinear system (1.1) is considered in [2]. They prove that the system
(1.1) associated with (1.2) is locally well posed in the Sobolev space Hs(R)×Hs+1(R),
with s≥ 1. In this work, we will give some local well-posedness for the Cauchy problem
(1.1) in the Sobolev space Hs(R)×Hs+1(R), with s > 1/4, by using the so-called Lp − Lq
smoothing effect of the Strichartz type.

Denote by J the Fourier multiplier with symbol (1 + ξ2)1/2, and denote by � the usual
Hilbert transform. Our result is the following.

Theorem 1.1. Fix s > 1/4. Then, for every ( f (x),g(x)) ∈ Hs(R)×Hs+1(R), there exist
T > 0 depending only on ‖ f (x)‖Hs + ‖g(x)‖Hs+1 and a unique solution of (1.1) on the time
interval [0,T] satisfying (

J−1�η,u
)∈C([0,T], L2(R)×L2(R)

)
,(

J−1�ηx,ux
)∈C([0,T], L∞(R)×L∞(R)

)
.

(1.6)

Moreover, for any R > 0, there exists T depending on R such that the nonlinear map
( f (x),g(x))→ (η,u) is continuous from the ball of radius R ofHs(R)×Hs+1(R) to C([0,T];
Hs(R)×Hs+1(R)).

In the sequel, we say that the pair (p,q)∈R2 is admissible if it satisfies

2
p

+
1
q
= 1

2
, p > 4. (1.7)

We denote by J the Fourier multiplier with symbol (1 + ξ2)1/2, denote by � the usual
Hilbert transform, and denote by m(D) the Fourier multiplier associated with symbol
m(ξ). We also denote the dyadic integers 2k, k ≥ 0, by λ or µ. Whenever a summation
over λ or µ appears, it means that we sum over the dyadic integers. The notation A� B
(resp., A� B) means that there exists a harmless positive constant C such that A ≤ CB
(resp., A ≥ CB). We denote by L

p
TX (resp., L

p
I X) the space of X-valued measurable and

p-integrable functions defined on [0,T] (resp., I), equipped with the natural norm. We
also use the notation ‖(u1,u2, . . . ,uk)‖X = ‖u1‖X + ···+‖uk‖X .

The rest of this paper is organized as follows. In Section 2, we prove some Strichartz-
type estimates for smooth solutions of (1.1). In Section 3, we give the proof of the local
well-posedness of the Cauchy problem (1.1).
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2. Some estimates

In this section, we give some smoothing effects for (1.1). These estimate will be the main
ingredient in the proof of local well-posedness of the Cauchy problem (1.1). Consider the
following linear system:

ηt +ux + auxxx = F(x, t), t > 0, x ∈R,

ut +ηx + cηxxx −duxxt =G(x, t), t > 0, x ∈R. (2.1)

Let

σ(ξ)=
[(
aξ2− 1

)(
cξ2− 1

)
dξ2 + 1

]1/2

, h(ξ)=
[(
aξ2− 1

)(
dξ2 + 1

)
cξ2− 1

]1/2

. (2.2)

Consider the change of variables

η = h(D)(v+w), u= v−w, η̃ = h−1(D)η = v+w, (2.3)

where h(D) (resp., h−1(D)) is the Fourier multiplier with the symbol h(ξ) (resp., h−1(ξ)).
Then we have

vt + σ(D)∂xv = 1
2
h−1(D)F +

1
2

(
1 +dD2)−1

G,

wt − σ(D)∂xw = 1
2
h−1(D)F − 1

2

(
1 +dD2)−1

G.
(2.4)

Rewrite σ(ξ)= (ac/d)1/2|ξ|+ γ(ξ) with

γ(ξ)= d− (ac+ ad+dc)ξ2

d
[(
aξ2− 1

)(
dξ2 + 1

)(
cξ2− 1

)]1/2
+ (acd)1/2|ξ|(dξ2 + 1

) . (2.5)

Let Γ(D) be the Fourier multiplier with the symbol iξγ(ξ), which is a skew-adjoint oper-
ator in L2(R) and is bounded from Lp(R) to Lp(R) for 1 < p < +∞. Then

vt +
(
ac

d

)1/2

�∂xxv = Γ(D)v+
1
2
h−1(D)F +

1
2

(
1 +dD2)−1

G,

wt −
(
ac

d

)1/2

�∂xxw =−Γ(D)w+
1
2
h−1(D)F − 1

2

(
1 +dD2)−1

G.

(2.6)

Using the Strichartz inequality for the Benjamin-Ono equation, we deduce from (2.6),
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for admissible pair (p,q),

‖v‖LpI Lq � ‖v‖L∞I L2 +
∥∥∥∥−Γ(D)v+

1
2
h−1(D)F +

1
2

(
1 +dD2)−1

G
∥∥∥∥
L1
I L2

� ‖v‖L∞I L2 +‖v‖L1
I L2 +

∥∥∥h−1(D)F +
(
1 +dD2)−1

G
∥∥∥
L1
I L2

�
(
1 + |I|)‖v‖L∞I L2 +

∥∥h−1(D)F
∥∥
L1
I L2 +

∥∥∥(1 +dD2)−1
G
∥∥∥
L1
I L2

,

(2.7)

and similarly

‖w‖LpI Lq �
(
1 + |I|)‖w‖L∞I L2 +

∥∥h−1(D)F
∥∥
L1
I L2 +

∥∥∥(1 +dD2)−1
G
∥∥∥
L1
I L2
. (2.8)

Thus by (2.3),

∥∥(η̃,u)
∥∥
L
p
I L

q �
(
1 + |I|)∥∥(η̃,u

)∥∥
L∞I L2 +

∥∥h−1(D)F(x, t)
∥∥
L1
I L2

+
∥∥∥(1 +dD2)−1

G(x, t)
∥∥∥
L1
I L2
.

(2.9)

Consider a standard Littlewood-Paley decomposition:

u=
∑
λ

uλ, η=
∑
λ

ηλ, η̃ =
∑
λ

η̃λ, (2.10)

where

uλ = ∆λu, ηλ = ∆λη, η̃λ = ∆λη̃, (2.11)

∆λ are the Fourier multipliers with symbols φ(ξ/λ) when λ = 2k with k ≥ 1, and χ(ξ)
when λ= 1, and where the nonnegative functions χ ∈ C∞0 (R) and φ ∈ C∞0 (R) satisfy

χ(ξ) +
∑
λ

φ(ξ/λ)= 1,

φ(ξ)=


0, if |ξ| ≤ 5

8
or |ξ| ≥ 2,

1, if 1≤ |ξ| ≤ 5
4
.

(2.12)

For a dyadic integer λ, we set

∆̃λ =
∆λ/2 +∆λ +∆2λ, if λ > 1,

∆1 +∆2, if λ= 1.
(2.13)

Lemma 2.1. Let {aλ}, {dλ}, and {δλ} be three sequences indexed on positive dyadic integers
λ. Assume that there exist two positive constants 1 < κ1 < κ2 such that κ1δλ ≤ δ2λ ≤ κ2δλ.
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Then

∑
λ

δλ
∑
µ≥λ/8

aµdλ �
(∑

λ

δ2
λa

2
λ

)1/2(∑
λ

d2
λ

)1/2

, (2.14)

and hence by duality,

∑
λ

δ2
λ

( ∑
µ≥λ/8

aµ

)2

�
∑
λ

δ2
λa

2
λ. (2.15)

Proof. Note that κ1δλ ≤ δ2λ ≤ κ2δλ implies δλ/δ2kλ ≤ κ−k1 . Using the Cauchy-Schwarz in-
equality, we get

∑
λ

δλ
∑
µ≥λ/8

aµdλ =
∑
λ

δλ

∞∑
k=−3,2kλ≥1

a2kλdλ =
∞∑

k=−3

κ−k1

∑
λ≥2−k

δ2kλa2kλdλ

≤
∞∑

k=−3

κ−k1

( ∑
λ≥2−k

δ2
2kλa

2
2kλ

)1/2( ∑
λ≥2−k

d2
λ

)1/2

�
(∑

λ

δ2
λa

2
λ

)1/2(∑
λ

d2
λ

)1/2

.

(2.16)

�

Lemma 2.2. Fix T > 0 and σ > 1/2. Let (η,u) be a smooth solution of the system (1.1). Then
for every admissible pair (p,q),

{∑
λ

λ2σ
∥∥(�η̃λ,uλ

)∥∥2
L
p
TL

q

}1/2

� (1 +T)1/p
(

1 +
∥∥Jσu∥∥L∞T L2

)
×
(

1 +
∥∥(u,ux,�η̃,∂x�η̃, η̃

)∥∥
L1
TL∞

)(∑
λ

λ2/p+2σ
∥∥(�η̃λ,uλ

)∥∥2
L∞T L2

)1/2

,

(2.17)

where η̃ = h−1(D)η, η̃λ = h−1(D)∆λη, h−1(D) is the Fourier multiplier with the symbol
h−1(ξ) defined in (2.2).

Proof. Let (η,u) be a smooth solution of the system (1.1). Then (ηλ,uλ) satisfies the fol-
lowing system:

(
ηλ
)
t +

(
uλ
)
x + a

(
uλ
)
xxx =−

(
uh(D)η̃λ +

[
∆λ,uh(D)

]
η̃λ
)
x, t > 0, x ∈R,(

uλ
)
t +

(
ηλ
)
x + c

(
ηλ
)
xxx −d

(
uλ
)
xxt =−

(
u
(
uλ
)
x +

[
∆λ,u∂x

]
u
)

, t > 0, x ∈R. (2.18)
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Using (2.9) to the system (2.18) and choosing the interval I satisfying |I| ≤ 1 and |I| ≤
1/λ, we get

∥∥(�η̃λ,uλ
)∥∥

L
p
I L

q

�
∥∥(η̃λ,uλ)∥∥LpI Lq

�
(
1 + |I|)∥∥(η̃λ,uλ)∥∥L∞I L2 +

∥∥∂xh−1(D)
(
uh(D)η̃λ +

[
∆λ,uh(D)

]
η̃λ
)∥∥

L1
I L2

+
∥∥∥(1 +dD2)−1(

u
(
uλ
)
x +

[
∆λ,u∂x

]
u
)∥∥∥

L1
I L2

�
(
1 + |I|)∥∥(η̃λ,uλ)∥∥L∞I L2 +

∥∥uh(D)η̃λ
∥∥
L1
I L2

+
∥∥[∆λ,uh(D)

]
η̃λ
∥∥
L1
I L2 +

∥∥u(uλ)x∥∥L1
I L2 +

∥∥[∆λ,u∂x]u∥∥L1
I L2

�
(
1 + |I|)∥∥(η̃λ,uλ)∥∥L∞I L2 +

∥∥u∥∥L∞I L∞∥∥h(D)η̃λ
∥∥
L1
I L2

+
∥∥[∆λ,uh(D)

]
η̃λ
∥∥
L1
I L2 +‖u‖L∞I L∞

∥∥(uλ)x∥∥L1
I L2 +

∥∥[∆λ,u∂x]u∥∥L1
I L2 .

(2.19)

By the Sobolev embedding, |I| ≤ 1 and |I| ≤ 1/λ,

‖u‖L∞I L∞ �
∥∥Jσu∥∥L∞I L2 ,∥∥h(D)η̃λ

∥∥
L1
I L2 �

∥∥η̃λ∥∥L1
I L2 +

∥∥∂xη̃λ∥∥L1
I L2 � |I|∥∥η̃λ∥∥L∞I L2 + |I|λ∥∥η̃λ∥∥L∞I L2 �

∥∥η̃λ∥∥L∞I L2 ,∥∥∂xuλ∥∥L1
I L2 � |I||λ|∥∥uλ∥∥L∞I L2 �

∥∥uλ∥∥L∞I L2 .
(2.20)

Then, we deduce from (2.19)

∥∥(�η̃λ,uλ
)∥∥

L
p
I L

q �
(

1 +
∥∥Jσu∥∥L∞I L2

)∥∥(�η̃λ,uλ
)∥∥

L∞I L2

+
∥∥[∆λ,uh(D)

]
η̃λ
∥∥
L1
I L2 +

∥∥[∆λ,u∂x]u∥∥L1
I L2 .

(2.21)

Partition [0,T]=⋃
k Ik, where each interval Ik is of size ≤min{1/λ,1}. We can choose Ik

such that their number is bounded by (1 +T)λ. Therefore by (2.21), we obtain

∥∥(�η̃λ,uλ
)∥∥

L
p
TL

q � (1 +T)1/pλ1/p
(

1 +
∥∥Jσu∥∥L∞T L2

)
×
(∥∥(�η̃λ,uλ

)∥∥
L∞T L2 +

∥∥[∆λ,uh(D)
]
η̃λ
∥∥
L1
TL2 +

∥∥[∆λ,u∂x]u∥∥L1
TL2

)
.

(2.22)

To estimate the terms ‖[∆λ,uh(D)]η̃λ‖L1
TL2 and ‖[∆λ,u∂x]u‖L1

TL2 , we introduce the follow-
ing estimates which come from [3, Lemmas 4.2 and 4.3]:

∥∥[∆λ,v∂x]w∥∥L2 �
∥∥vx∥∥L∞‖w‖L2 ,

∥∥[∆λ,v]w∥∥L2 � ‖v‖L∞‖w‖L2 . (2.23)
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Then, for λ≥ 4,

∥∥[∆λ,uh(D)
]
∆̃λη̃

∥∥
L2 =

∥∥∥∥[∆λ,u∂x]h(D)
iD

∆̃λη̃
∥∥∥∥
L2

�
∥∥ux∥∥L∞∥∥∥∥h(D)

iD
∆̃λη̃

∥∥∥∥
L2

�
∥∥ux∥∥L∞∥∥∆̃λη̃∥∥L2 ,

(2.24)

and for λ= 1,2,

∥∥[∆λ,uh(D)
]
∆̃λη̃

∥∥
L2 =

∥∥[∆λ,u]h(D)∆̃λη̃
∥∥
L2

� ‖u‖L∞
∥∥h(D)∆̃λη̃

∥∥
L2 � ‖u‖L∞

∥∥∆̃λη̃∥∥L2 ,
(2.25)

so we get

∥∥[∆λ,uh(D)
]
∆̃λη̃

∥∥
L1
TL2 �

(
‖u‖L1

TL∞ +
∥∥ux∥∥L1

TL∞

)∥∥∆̃λη̃∥∥L∞T L2 . (2.26)

Now we consider the term ‖[∆λ,uh(D)](Id−∆̃λ)η̃‖L2 , that is, ‖∆λ(uh(D)(Id−∆̃λ)η̃)‖L2 .
Note that the frequencies of order ≤ λ/8 in the Littlewood-Paley decomposition of u do
not contribute, therefore

∥∥∆λ(uh(D)
(

Id−∆̃λ
)
η̃
)∥∥

L1
TL2 =

∥∥∥∥∥∆λ ∑
µ≥λ/8

uµh(D)
(

Id−∆̃λ
)
η̃

∥∥∥∥∥
L1
TL2

�
∑
µ≥λ/8

∥∥∆λh(D)
(

Id−∆̃λ
)
η̃
∥∥
L1
TL∞

∥∥uµ∥∥L∞T L2 .
(2.27)

Denote

A(ξ)= h(ξ)−
(
ad

c

)1/2

|ξ|

= (ad+ ac− cd)ξ2− c
c
[(
aξ2− 1

)(
cξ2− 1

)(
dξ2 + 1

)]1/2
+ (acd)1/2|ξ|(cξ2− 1

) . (2.28)

Let ψ(ξ)∈ C∞(R) be a nonnegative function satisfying ψ(ξ)= 1 for |ξ| > 2 and ψ(ξ)= 0
for |ξ| ≤ 1. It is obvious that ψ(ξ)A(ξ)ξ/|ξ| ∈ S−1; that is, ψ(ξ)A(ξ)ξ/|ξ| ∈ C∞(R) satis-
fies

∣∣∂αξ ψ(ξ)A(ξ)ξ
|ξ|

∣∣�
(
1 + ξ2)(−1−α)/2

(2.29)

for any nonnegative integers α. Let Λγ be the Lipschitz space defined by

Λγ =
{
f : there exists a positive constant A such that ‖ f ‖L∞ ≤ A,

∥∥∆λ f ∥∥L∞ ≤ Aλ−γ}.
(2.30)
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Stein [4, Chapter 6, Section 5.3, Proposition 6] shows that ψ(D)A(D)� is a bounded
mapping from Λ1/2 to Λ3/2. We have

∥∥∆λh(D)ψ(D)
(

Id−∆̃λ
)
η̃
∥∥
L1
TL∞

�
∥∥((ad

c

)1/2

∂x�ψ(D) +A(D)ψ(D)
)(

Id−∆̃λ
)
η̃
∥∥
L1
TL∞

�
∥∥ψ(D)∂x

(
Id−∆̃λ

)
�η̃

∥∥
L1
TL∞

+
∥∥A(D)ψ(D)�

(
Id−∆̃λ

)
�η̃

∥∥
L1
TL∞

�
∥∥∂x(�η̃

)∥∥
L1
TL∞

+
∥∥A(D)ψ(D)��η̃

∥∥
L1
TΛ3/2

�
∥∥∂x(�η̃

)∥∥
L1
TL∞

+
∥∥�η̃

∥∥
L1
TΛ1/2

�
∥∥∂x(�η̃

)∥∥
L1
TL∞

+
∥∥�η̃

∥∥
L1
TL∞

,∥∥∆λh(D)
(

Id−ψ(D)
)(

Id−∆̃λ
)
η̃
∥∥
L1
TL∞

�
∥∥h(D)

(
Id−ψ(D)

)
η̃
∥∥
L1
TL∞

�
∥∥η̃∥∥L1

TL∞
,

(2.31)

because of h(ξ)(1−ψ(ξ))∈ C∞0 (R). Hence, we get

∥∥∆λh(D)
(

Id−∆̃λ
)
η̃
∥∥
L1
TL∞

�
∥∥∆λh(D)ψ(D)

(
Id−∆̃λ

)
η̃
∥∥
L1
TL∞

+
∥∥∆λh(D)

(
Id−ψ(D)

)(
Id−∆̃λ

)
η̃
∥∥
L1
TL∞

�
∥∥∂x(�η̃

)∥∥
L1
TL∞

+
∥∥�η̃

∥∥
L1
TL∞

+
∥∥η̃∥∥L1

TL∞
.

(2.32)

A combination of (2.26) with (2.27) and (2.32) yields

∥∥∆λ(uh(D)
(

Id−∆̃λ
)
η̃
)∥∥

L1
TL2

�
(∥∥∂x�η̃

∥∥
L1
TL∞

+
∥∥�η̃

∥∥
L1
TL∞

+
∥∥η̃∥∥L1

TL∞

) ∑
µ≥λ/8

∥∥uµ∥∥L∞T L2 , (2.33)

and so

∥∥[∆λ,uh(D)
]
η̃λ
∥∥
L1
TL2 �

(
‖u‖L1

TL∞ +
∥∥ux∥∥L1

TL∞

)∥∥∆̃λη̃∥∥L∞T L2

+
(∥∥∂x(�η̃)

∥∥
L1
TL∞

+‖�η̃‖L1
TL∞ +‖η̃‖L1

TL∞
) ∑
µ≥λ/8

∥∥uµ∥∥L∞T L2 .

(2.34)

Similarly,

∥∥[∆λ,u∂x]u∥∥L1
TL2 �

∥∥ux∥∥L1
TL∞

∥∥∆̃λu∥∥L∞T L2 +
∥∥ux∥∥L1

TL∞
∑
µ≥λ/8

∥∥uµ∥∥L∞T L2 . (2.35)
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It follows from (2.22), (2.34), and (2.35) that

∥∥(�η̃λ,uλ
)∥∥

L
p
TL

q

� (1 +T)1/pλ1/p
(

1 +
∥∥Jσu∥∥L∞T L2

)
×
(∥∥(�η̃λ,uλ

)∥∥
L∞T L2 +

∥∥[∆λ,uh(D)
]
η̃λ
∥∥
L1
TL2 +

∥∥[∆λ,u∂x]u∥∥L1
TL2

)
� (1 +T)1/pλ1/p

(
1 +

∥∥Jσu∥∥L∞T L2

)
×
(∥∥(u,ux

)∥∥
L1
TL∞

∥∥(∆̃λ�η̃, ∆̃λu
)∥∥

L∞T L2 +
∥∥(�η̃λ,uλ

)∥∥
L∞T L2

+
∥∥(�η̃,∂x�η̃, η̃,ux

)∥∥
L1
TL∞

∑
µ≥λ/8

∥∥uµ∥∥L∞T L2

)
.

(2.36)

Hence,

∑
λ

λ2σ
∥∥(�η̃λ,uλ

)∥∥2
L
p
TL

q

�
∑
λ

(1 +T)2/pλ2/p+2σ
(

1 +
∥∥Jσu∥∥L∞T L2

)2

×
∥∥(u,ux

)∥∥2
L1
TL∞

∥∥(∆̃λ�η̃, ∆̃λu
)∥∥2

L∞T L2 +
∥∥(�η̃λ,uλ

)∥∥2
L∞T L2

+
∥∥(�η̃,∂x�η̃, η̃,ux

)∥∥
L1
TL∞

( ∑
µ≥λ/8

∥∥uµ∥∥L∞T L2

)2


� (1 +T)2/p
(

1 +
∥∥Jσu∥∥L∞T L2

)2(
1 +

∥∥(u,ux,�η,∂x�η, η̃
)∥∥2

L1
TL∞

)
×
∑

λ

λ2/p+2σ(∥∥(�η̃λ,uλ
)∥∥2

L∞T L2 +
∥∥(∆̃λ�η̃, ∆̃λu

)∥∥
L∞T L2

)

+
∑
λ

λ2/p+2σ

( ∑
µ≥λ/8

∥∥uµ∥∥L∞T L2

)2


� (1 +T)2/p
(

1 +
∥∥Jσu∥∥L∞T L2

)2(
1 +

∥∥(u,ux,�η̃,∂x�η̃, η̃
)∥∥2

L1
TL∞

)
×
∑
λ

λ2/p+2σ
∥∥(�η̃λ,uλ

)∥∥2
L∞T L2 ,

(2.37)

where we have used the inequality due to Lemma 2.1:

∑
λ

λ2/p+2σ

( ∑
µ≥λ/8

∥∥uµ∥∥L∞T L2

)2

�
∑
λ

λ2/p+2σ
∥∥uλ∥∥2

L∞T L2 , (2.38)
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and the inequality

∑
λ

λ2/p+2σ
∥∥(∆̃λ�η̃, ∆̃λu

)∥∥
L∞T L2 �

∑
λ

λ2/p+2σ
∥∥(�η̃λ,uλ

)∥∥2
L∞T L2 . (2.39)

Thus we get

∑
λ

λ2σ
∥∥(�η̃λ,uλ

)∥∥2
L
p
TL

q � (1 +T)2/p
(

1 +
∥∥Jσu∥∥L∞T L2

)2

×
(

1 +
∥∥(u,ux,�η̃,∂x�η̃, η̃

)∥∥2
L1
TL∞

)∑
λ

λ2/p+2σ
∥∥(�η̃λ,uλ

)∥∥2
L∞T L2 .

(2.40)

We complete the proof. �

Lemma 2.3. Let 1 ≤ κ1 ≤ κ2, and let {δλ} be the dyadic sequence of positive numbers sat-
isfying κ1δλ ≤ δ2λ ≤ κ2δλ and λ≤ δλ ≤ λ2 for all dyadic integers λ. Then for all τ, t ∈ I , the
smooth solution (η,u) of (1.1) satisfies

∑
λ

δ2
λ

∥∥(η̃λ(t),uλ(t)
)∥∥2

L2 �
∑
λ

δ2
λ

∥∥(η̃λ(τ),uλ(τ)
)∥∥2

L2 exp
(

2
∥∥(u,ux,�η̃,∂x�η̃

)∥∥
L1
I L∞

)
.

(2.41)

Proof. Let F =−(uη)x andG=−uux in (2.6), and without loss of generality assume τ < t.
Multiplying (2.6) by (∆λvλ,∆λwλ) and integrating by parts, we get

1
2
d

dt

∥∥vλ(t)∥∥2
L2∥∥wλ(t)
∥∥2
L2

= Re
d

dt


∫
v̂λv̂λ dξ∫
ŵλŵλ dξ



= Re

−
∫ [

h−1(D)
(
(uη)x

)
λ +

(
1 +dD2)−1(

uux
)
λ

]
vλ dx

−
∫ [

h−1(D)
(
(uη)x

)
λ−

(
1 +dD2)−1(

uux
)
λ

]
wλdx

 ,

(2.42)

where we denote (v̂λ,ŵλ) = �x(vλ,vλ). Using (h−1(D)η,u) = (v +w,v −w) = (η̃,u), we
get

d

dt

(∥∥vλ(t)∥∥2
L2 +

∥∥wλ(t)
∥∥2
L2

)
= 2Re

(
−
∫
h−1(D)

(
(uη)x

)
λη̃λ dx−

∫ (
1 +dD2)−1(

uux
)
λuλ dx

)
,

(2.43)
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and so for the dyadic sequence {δλ}, we get

∑
λ

δ2
λ

∥∥(η̃λ(t),uλ(t)
)∥∥2

L2

�
∑
λ

δ2
λ

(∥∥vλ(t)∥∥2
L2 +

∥∥wλ(t)
∥∥2
L2

)

�
∑
λ

δ2
λ

(∥∥vλ(τ)
∥∥2
L2 +

∥∥wλ(τ)
∥∥2
L2

)
+
∫ t

τ

∣∣∣∣∣∑
λ

∫
δ2
λh
−1(D)

((
u(σ)η(σ)

)
x

)
λη̃(σ)λ dx

∣∣∣∣∣dσ
+
∫ t

τ

∣∣∣∣∣∑
λ

∫
δ2
λ

(
1 +dD2)−1(

u(σ)ux(σ)
)
λu(σ)λ dx

∣∣∣∣∣dσ
�
∑
λ

δ2
λ

∥∥(η̃λ(τ),uλ(τ)
)∥∥2

L2 + I + II ,

(2.44)

with

I =
∫ t

τ

∣∣∣∣∣∑
λ

∫
δ2
λh
−1(D)

(
(uη)x

)
λη̃λ dx

∣∣∣∣∣dσ ,

II =
∫ t

τ

∣∣∣∣∣∑
λ

∫
δ2
λ

(
1 +dD2)−1(

uux
)
λuλ dx

∣∣∣∣∣dσ.
(2.45)

The estimate of II. Using λ≤ δλ ≤ λ2, we have

II �
∑
λ

∫ t

τ

∥∥δ2
λuλ

∥∥
L2

∥∥δ2
λJ
−2(uux)λ∥∥L2 dσ

�
∫ t

τ

(∑
λ

δ2
λ

∥∥uλ∥∥2
L2

)1/2(∑
λ

δ2
λ

∥∥∥J−2(uux)λ∥∥∥2

L2

)1/2

dσ

�
∫ t

τ

(∑
λ

δ2
λ

∥∥uλ∥∥2
L2

)1/2(∑
λ

λ4
∥∥∥J−2(uux)λ∥∥∥2

L2

)1/2

dσ

�
∫ t

τ

(∑
λ

δ2
λ

∥∥uλ∥∥2
L2

)1/2∥∥uux∥∥L2 dσ �
∫ t

τ

(∑
λ

δ2
λ

∥∥uλ∥∥2
L2

)1/2

‖u‖L2

∥∥ux∥∥L∞ dσ
�
∫ t

τ

∥∥ux∥∥L∞∑
λ

δ2
λ

∥∥uλ∥∥2
L2 dσ.

(2.46)

The estimate of I. To estimate the term I , we introduce

B(ξ)= h−1(ξ)−
(
c

ad

)1/2

|ξ|−1, (2.47)
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with

B(ξ)= (cd− ac− ad)ξ2 + c{
ad|ξ|[(aξ2− 1

)(
dξ2 + 1

)(
cξ2− 1

)]1/2
+ (acd)1/2

(
aξ2− 1

)(
dξ2 + 1

)}|ξ| .
(2.48)

For λ > 2,

∣∣∣∣∣∑
λ>2

∫
δ2
λh
−1(D)

(
(uη)x

)
λη̃λ dx

∣∣∣∣∣
�
∣∣∣∣∣∑
λ>2

∫
δ2
λ

(
c

ad

)1/2 1
|D|

(
(uη)x

)
λη̃λ dx

∣∣∣∣∣+

∣∣∣∣∣∑
λ>2

∫
δ2
λB(D)

(
(uη)x

)
λη̃λ dx

∣∣∣∣∣.
(2.49)

Using |φ(ξ/λ)B(ξ)|� λ−3 for λ > 2, we have

∣∣∣∣∣∑
λ>2

∫
δ2
λB(D)

(
(uη)x

)
λη̃λ dx

∣∣∣∣∣
�
∑
λ>2

δ2
λ

∥∥B(D)
(
(uη)x

)
λ

∥∥
L2

∥∥η̃λ∥∥L2

�
{∑
λ>2

δ2
λ

∥∥B(D)
(
(uη)x

)
λ

∥∥2
L2

}1/2{∑
λ>2

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2

�
{∑
λ>2

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2{∑
λ>2

λ−2
∥∥((uη)x

)
λ

∥∥2
L2

}1/2

�
{∑
λ>2

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2∥∥uη∥∥L2 .

(2.50)

By (2.28),

‖uη‖L2 = ∥∥u ·h(D)η̃
∥∥
L2 =

∥∥u · (A(D) +
(
ad

c

)1/2

|D|)η̃∥∥L2

�
∥∥uA(D)η̃

∥∥
L2 +

∥∥u(|D|η̃)∥∥L2 � ‖u‖L∞
∥∥A(D)η̃

∥∥
L2 +

∥∥u(�η̃
)
x

∥∥
L2

� ‖u‖L∞
∥∥η̃∥∥L2 +

∥∥u(�η̃
)∥∥

H1 +
∥∥ux(�η̃

)∥∥
L2

� ‖u‖L∞
∥∥η̃∥∥L2 +‖u‖L∞

∥∥�η̃
∥∥
H1 +

∥∥ux∥∥L∞∥∥�η̃
∥∥
L2

�
(
‖u‖L∞ +

∥∥ux∥∥L∞)
{∑

λ

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2

.

(2.51)
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A combination of (2.50) with (2.51) yields

∣∣∣∣∣∑
λ>2

∫
δ2
λB(D)

(
(uη)x

)
λη̃λ dx

∣∣∣∣∣�
(
‖u‖L∞ +

∥∥ux∥∥L∞)∑
λ

δ2
λ

∥∥η̃λ∥∥2
L2 . (2.52)

Using (2.28) again, we get

∣∣∣∣∣∑
λ>2

∫
δ2
λ

1
|D|

(
(uη)x

)
λ · η̃λ dx

∣∣∣∣∣=
∣∣∣∣∣∑
λ>2

δ2
λ

∫
�
(
u
(
A(D) +

(
ad

c

)1/2

|D|)η̃)λ · η̃λ dx
∣∣∣∣∣

�
∣∣∣∣∣∑
λ>2

δ2
λ

∫
�
(
u|D|η̃)λ · η̃λ dx

∣∣∣∣∣
+

∣∣∣∣∣∑
λ>2

δ2
λ

∫
�
(
uA(D)η̃

)
λ · η̃λ dx

∣∣∣∣∣.
(2.53)

A(ξ)∈�−1 and the inequality λ≤ δλ ≤ λ2 imply

∣∣∣∣∣∑
λ>2

δ2
λ

∫
�
(
uA(D)η̃

)
λ·η̃λ dx

∣∣∣∣∣
�
{∑
λ>2

δ2
λ

∥∥�
(
uA(D)η̃

)
λ

∥∥2
L2

}1/2{∑
λ>2

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2

�
{∑
λ>2

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2∥∥uA(D)η̃
∥∥
H2

�
{∑
λ>2

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2(∥∥uA(D)η̃
∥∥
L2 +

∥∥∂x(u·A(D)η̃
)∥∥

H1

)

�
{∑
λ>2

δ2
λ

∥∥η̃λ∥∥2
L2

}1/2(
‖u‖L∞

∥∥A(D)η̃
∥∥
L2+

∥∥ux∥∥L∞∥∥A(D)η̃
∥∥
H1+‖u‖L∞

∥∥∂x(A(D)η̃)
∥∥
H1

)
�
(
‖u‖L∞+

∥∥ux∥∥L∞)∑
λ

δ2
λ

∥∥η̃λ∥∥2
L2 ,

(2.54)∣∣∣∣∣∑
λ>2

δ2
λ

∫
�
(
u|D|η̃)λ · η̃λ dx

∣∣∣∣∣
=
∣∣∣∣∣∑
λ>2

δ2
λ

∫ (
u∂x�η̃

)
λ·�η̃λ dx

∣∣∣∣∣
≤
∣∣∣∣∣∑
λ>2

δ2
λ

∫
u∂x�η̃λ·�η̃λ dx

∣∣∣∣∣+

∣∣∣∣∣∑
λ>2

δ2
λ

∫ [
∆λ,u∂x

]
�η̃·�η̃λ dx

∣∣∣∣∣
�
∣∣∣∣∣∑
λ>2

δ2
λ

∫ ((
�
(
η̃
))

λ

)2·ux dx
∣∣∣∣∣+

∑
λ>2

δ2
λ

∥∥[∆λ,u∂x]�η̃
∥∥
L2 ·

∥∥�η̃λ
∥∥
L2

�
∥∥ux∥∥L∞ ∑

λ>2

δ2
λ

∥∥�η̃λ
∥∥2
L2 +

∑
λ>2

δ2
λ

∥∥[∆λ,u∂x]�η̃
∥∥
L2 ·

∥∥�η̃λ
∥∥
L2 .

(2.55)
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Using (2.23), we obtain

∥∥[∆λ,u∂x]�η̃
∥∥
L2 �

∥∥[∆λ,u∂x]∆̃λ�η̃
∥∥
L2 +

∥∥[∆λ,u∂x](Id−∆̃λ
)
�η̃

∥∥
L2 ,∥∥[∆λ,u∂x]∆̃λ�η̃

∥∥
L2 �

∥∥ux∥∥L∞∥∥∆̃λ�η̃
∥∥
L2 .

(2.56)

Then we get

∑
λ>2

δ2
λ

∥∥[∆λ,u∂x]∆̃λ�η̃
∥∥
L2

∥∥�η̃λ
∥∥
L2 �

∥∥ux∥∥L∞ ∑
λ>2

δ2
λ

∥∥�η̃λ
∥∥2
L2 . (2.57)

Now we estimate the term ‖[∆λ,u∂x](Id−∆̃λ)�η̃‖L2 . Let u=∑
µ uµ. We have

∥∥[∆λ,u∂x](Id−∆̃λ
)
�η̃

∥∥
L2 =

∥∥∆λ(u∂x(Id−∆̃λ
)
�η̃

)∥∥
L2

�
∑
µ≥λ/8

∥∥uµ∂x(Id−∆̃)�η̃
∥∥
L2 �

∑
µ≥λ/8

∥∥∂x�η̃
∥∥
L∞
∥∥uµ∥∥L2 ,

(2.58)

and then by using Lemma 2.1,

∑
λ>2

δ2
λ

∥∥[∆λ,u∂x](Id−∆̃λ
)
�η̃

∥∥
L2

∥∥�η̃λ
∥∥
L2

�
∥∥∂x�η̃

∥∥
L∞

∑
λ>2

δ2
λ

∥∥�η̃λ
∥∥
L2

∑
µ≥λ/8

∥∥uµ∥∥L2

�
∥∥∂x�η̃

∥∥
L∞

{∑
λ

δ2
λ

∥∥�η̃λ
∥∥2
L2

}1/2{∑
λ

δ2
λ

∥∥uλ∥∥2
L2

}1/2

�
∥∥∂x�η̃

∥∥
L∞

(∑
λ

δ2
λ

∥∥η̃λ∥∥2
L2 +

∑
λ

δ2
λ

∥∥uλ∥∥2
L2

)
.

(2.59)

It follows from (2.55), (2.57), and (2.59) that

∑
λ>2

δ2
λ

∫ (
�u

((
ad

c

)1/2

|D|
)
η̃
)
λ
· η̃λ dx

�
(∥∥ux∥∥L∞ +

∥∥∂x�η̃
∥∥
L∞

)(∑
λ

δ2
λ

∥∥η̃λ∥∥2
L2 +

∑
λ

δ2
λ

∥∥uλ∥∥2
L2

)
.

(2.60)

What remains is to estimate the term |δ2
λ

∫
h−1(D)((uη)x)λ · η̃λdx|, with λ = 1 or 2.

Let χ(ξ)∈ C∞0 (R) satisfy χ(ξ)= 1 for |ξ| < 10 and χ(ξ)= 0 for |ξ| > 20. Since λ= 1 or 2
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implies ‖∂xη̃λ‖L2 � ‖η̃‖L2 and χ(D)((uη)x)λ · η̃λ = ((uη)x)λ · η̃λ, we get

∣∣∣∣δ2
λ

∫
h−1(D)

(
(uη)x

)
λ · η̃λ dx

∣∣∣∣
=
∣∣∣∣δ2

λ

∫
h−1(D)∂xχ(D)(uη)λ · η̃λ dx

∣∣∣∣
�
∣∣∣∣∫ h−1(D)∂xχ(D)

[(
u ·h(D)χ(D)η̃

)
λ · η̃λ +

(
u ·h(D)(Id−χ(D)

)
η̃
)
λ · η̃λ

]
dx

∣∣∣∣
�
∥∥(u ·h(D)χ(D)η̃

)
λ · η̃λ

∥∥
L1 +

∥∥∥∥∥
(
u · ∂x h(D)

(
Id−χ(D)

)
iD

η̃
)
λ
· η̃λ

∥∥∥∥∥
L1

� ‖u‖L∞‖η̃‖2
L2 +

∥∥∥∥∥
(
∂xu · h(D)

(
Id−χ(D)

)
iD

η̃
)
λ
· η̃λ

∥∥∥∥∥
L1

+

∥∥∥∥∥
(
u · h(D)

(
Id−χ(D)

)
iD

η̃
)
λ
· ∂xη̃λ

∥∥∥∥∥
L1

�
(
‖u‖L∞ +

∥∥ux∥∥L∞)∥∥η̃∥∥2
L2 �

(
‖u‖L∞ +

∥∥uxv‖L∞)∑
λ

δ2
λ

∥∥(η̃λ,uλ)∥∥2
L2 .

(2.61)

A combination of (2.52), (2.60), and (2.61) with (2.49) yields

∣∣∣∣∣∑
λ

δ2
λ

∫
h−1(D)

(
(uη)x

)
λ · η̃λ dx

∣∣∣∣∣�
∥∥(u,ux,�η̃,∂x�η̃

)∥∥
L∞
∑
λ

δ2
λ

∥∥(η̃λ,uλ)∥∥2
L2 , (2.62)

and so

I �
∫ t

τ

∥∥(u,ux,�η̃,∂x�η̃
)∥∥

L∞
∑
λ

δ2
λ

∥∥(η̃λ,uλ)∥∥2
L2 dσ. (2.63)

Hence, by (2.44), (2.46), and (2.63)

∑
λ

δ2
λ

∥∥(η̃(t),uλ(t)
)∥∥2

L2

�
∑
λ

δ2
λ

∥∥(η̃(τ),uλ(τ)
)∥∥2

L2 +
∫ t

τ

∥∥(u,ux,�η̃,∂x�η̃
)∥∥

L∞
∑
λ

δ2
λ

∥∥(η̃,uλ
)∥∥2

L2 dσ.
(2.64)

The Gronwall inequality implies

∑
λ

δ2
λ

∥∥(η̃(t),uλ(t)
)∥∥2

L2 �
∑
λ

δ2
λ

∥∥(η̃(τ),uλ(τ)
)∥∥2

L2 exp
(

2
∥∥(u,ux,�η̃,∂x�η̃

)∥∥
L1
I L∞

)
.

(2.65)

We complete the proof. �
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Theorem 2.4. Fix T > 0 and 1 < σ ≤ 2− 1/p. Let (η,u) be a smooth solution of (1.1). Then
for every admissible pair (p,q),

∥∥Jσ(η̃,u)
∥∥
L
p
TL

q � (1 +T)1/p
(

1 +
∥∥Jσu∥∥L∞T L2

)∥∥Jσ+1/p(η̃,u
)∥∥

L∞T L2

×
(

1 +
∥∥(u,ux,�η̃,∂x�η̃, η̃

)∥∥2
L1
TL∞

)
.

(2.66)

Proof. If (p,q) is an admissible pair, then both p and q are greater than or equal to
two and different from infinity. Therefore Minkowski inequality, Littlewood-Paley square
function theorem, and Mikhlin-Hörmander theorem show

∥∥Jσ(η̃,u)
∥∥2
L
p
TL

q �
∑
λ

∥∥Jσ(η̃λ,uλ)∥∥2
L
p
TL

q �
∑
λ

λ2σ
∥∥(η̃λ,uλ)∥∥2

L
p
TL

q . (2.67)

By Lemma 2.2,

∑
λ

λ2σ
∥∥(η̃λ,uλ)∥∥2

L
p
TL

q �
(
1 +T)2/p

(
1 +

∥∥Jσu∥∥L∞T L2

)2(
1 +

∥∥(u,ux,�η̃,∂x�η̃, η̃
)∥∥2

L1
TL∞

)2

×
∑
λ

λ2σ+2/p
∥∥(η̃λ,uλ)∥∥2

L∞T L2 .

(2.68)

Choosing τ = 0, δλ = λσ+1/p, and I = [0,T] in (2.64), we get

∑
λ

λ2σ+2/p
∥∥(η̃λ,uλ)∥∥2

L∞T L2

�
∑
λ

λ2σ+2/p
∥∥(η̃λ(0),uλ(0)

)∥∥2
L2

+
∫ t

0

∥∥(u,ux,�η̃,∂x�η̃
)∥∥

L∞
∑
λ

λ2σ+2/p
∥∥(η̃λ(τ),uλ(τ)

)∥∥2
L2 dτ

�
(

1 +
∥∥(u,ux,�η̃,∂x�η̃

)∥∥2
L1
TL∞

)∥∥Jσ+1/p(η̃,u
)∥∥

L∞T L2 .

(2.69)

Theorem 2.4 follows from (2.67), (2.68), and (2.69). �

3. The local well-posedness

3.1. Uniqueness. Let (η1,u1) and (η2,u2) be two solutions of the system (1.1). Let ηj =
h(D)(vj +wj) and uj = vj −wj ( j = 1,2). Then (v1− v2,w1−w2) satisfies the system (2.6)
associated with F =−(u1η1−u2η2)x and G=−(u1∂xu1−u2∂xu2). Multiplying the equa-
tion satisfied by v1 − v2 (resp., w1 −w2) with v1 − v2 (resp., w1 −w2) and integrating by
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parts easily yield

1
2
d

dt

∥∥(v1− v2,w1−w2
)∥∥2

L2

=−
∫
Γ(D)

(
v1− v2

) · (v1− v2
)
dx+

∫
Γ(D)

(
w1−w2

) · (w1−w2
)
dx

− 1
2

∫ [
h−1(D)

(
u1η1−u2η2

)
x

]
· (η̃1− η̃2

)
dx

− 1
2

∫ [
1

1 +dD2

(
u1∂xu1−u2∂xu2

)] · (u1−u2
)
dx

�
∥∥(η̃1− η̃2,u1−u2

)∥∥2
L2 + III + IV ,

(3.1)

with

III =−1
2

∫
∂xh

−1(D)
[(
u1−u2

)
η1 +u2

(
η1−η2

)] · (η̃1− η̃2
)
dx

= 1
2

∫ (
u1−u2

)
η1 · ∂xh−1(D)

(
η̃1− η̃2

)
dx− 1

2

∫
∂xh

−1(D)
(
u2
(
η1−η2

)) · (η̃1− η̃2
)
dx,

IV =−1
2

∫
1

1 +dD2

[(
u1−u2

)
∂xu1 +u2

(
∂xu1− ∂xu2

)] · (u1−u2
)
dx.

(3.2)

It is obvious that

|IV |� ∥∥(∂xu1,∂xu2
)∥∥

L∞
∥∥u1−u2

∥∥2
L2 . (3.3)

By (2.28), we have

h(ξ)=
(
ad

c

)1/2

|ξ|+
(|ξ|+ 1

) A(ξ)
1 + |ξ| . (3.4)

Moreover, A(ξ)/(1 + |ξ|) ∈H1(R) and A(ξ)sgn(ξ)/(1 + |ξ|) ∈H1(R) decay like |ξ|−2 at
infinity, and so they define some L∞-multipliers. Thus,

∥∥η1
∥∥
L∞ =

∥∥∥∥((adc
)1/2

∂x +
A(D)

1 + |D|∂x −
A(D)�
1 + |D|

)
�η̃1

∥∥∥∥
L∞

�
∥∥�η̃1

∥∥
L∞ +

∥∥∂x�η̃1
∥∥
L∞ ,

(3.5)

and so ∣∣∣∣∫ (
u1−u2

)
η1 · ∂xh−1(D)

(
η̃1− η̃2

)
dx

∣∣∣∣
�
∥∥η1

∥∥
L∞
∥∥(η̃1− η̃2,u1−u2

)∥∥2
L2

�
[∥∥�η̃1

∥∥
L∞ +

∥∥∂x�η̃1
∥∥
L∞

]∥∥(η̃1− η̃2,u1−u2
)∥∥2

L2 .

(3.6)



3626 Benjamin-Ono-Boussinesq systems

To bound the term
∫
∂xh−1(D)(u2(η1−η2)) · (η̃1− η̃2)dx, we use (2.28) again and get

∣∣∣∣∫ ∂xh−1(D)
(
u2
(
η1−η2

)) · (η̃1− η̃2
)
dx

∣∣∣∣
=
∣∣∣∣∫ ∂xh−1(D)

[
u2

((
ad

c

)1/2

|D|+A(D)
)(
η̃1− η̃2

)] · (η̃1− η̃2
)
dx

∣∣∣∣
=
∣∣∣∣∣
∫ [(

c

ac

)1/2

� + ∂xB(D)

][
u2

(
ad

c

)1/2

|D|(η̃1− η̃2
)] · (η̃1− η̃2

)
dx

∣∣∣∣∣
+
∣∣∣∣∫ ∂xh−1(D)

[
u2A(D)

(
η̃1− η̃2

)] · (η̃1− η̃2
)
dx

∣∣∣∣
�
∣∣∣∣∫ [

u2∂x�
(
η̃1− η̃2

)] ·�
(
η̃1− η̃2

)
dx

∣∣∣∣
+
∣∣∣∣∫ ∂xB(D)�

[
u2∂x�

(
η̃1− η̃2

)] · (η̃1− η̃2
)
dx

∣∣∣∣
+
∥∥u2A(D)

(
η̃1− η̃2

)∥∥
L2

∥∥η̃1− η̃2
∥∥
L2

�
∣∣∣∣∫ ∂xu2

[
�
(
η̃1− η̃2

)]2
dx

∣∣∣∣+
∣∣∣∣∫ ∂2

xB(D)�
[
u2�

(
η̃1− η̃2

)] · (η̃1− η̃2
)
dx

∣∣∣∣
+
∣∣∣∣∫ ∂xB(D)�

[
∂xu2�

(
η̃1− η̃2

)] · (η̃1− η̃2
)
dx

∣∣∣∣+
∥∥u2

∥∥
L∞
∥∥η̃1− η̃2

∥∥2
L2

�
[∥∥∂xu2

∥∥
L∞ +

∥∥u2
∥∥
L∞

]∥∥η̃1− η̃2
∥∥2
L2 .

(3.7)

It follows from (3.1)–(3.7) that

d

dt

∥∥(v1− v2,w1−w2
)∥∥2

L2 �
[

1 +
∥∥(�η̃1,∂x�η̃1,u2,∂xu2

)∥∥
L∞

]∥∥(η̃1− η̃2,u1−u2
)∥∥2

L2 .

(3.8)

By the Gronwall lemma,

∥∥(η̃1− η̃2,u1−u2
)
(t)

∥∥
L2

�
∥∥(η̃1(0)− η̃2(0),u1(0)−u2(0)

)∥∥
L2 exp

(
1 +

∥∥(�η̃1,∂x�η̃1,u2,∂xu2
)∥∥

L1
TL∞

)
,

(3.9)

which clearly implies the uniqueness.

3.2. Existence. Without loss of generality, we assume 1/4 < s < 1. Let (η,u) be a smooth
solution of the system (1.1). Setting σ = s+ 3/4, δλ = λs+1, and I = [0,T] in Lemma 2.3,
we deduce that

∥∥J s+1(η̃(t),u(t)
)∥∥2

L∞T L2 �
∥∥Js+1(η̃(0),u(0)

)∥∥2
L2 exp

(
2
∥∥(u,ux,�η̃,∂x�η̃

)∥∥
L1
TL∞

)
. (3.10)
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If (p,q) is an admissible pair, then σ + 1/p < σ + 1/4= s+ 1 < 2. Therefore using Theorem
2.4 and (3.10), we get that for every admissible pair (p,q) and every T > 0,

∥∥Jσ(η̃,u)
∥∥
L
p
TL

q � (1 +T)1/p
(

1 +
∥∥Jσu∥∥L∞T L2

)(
1 +

∥∥(u,ux,�η̃,∂x�η̃, η̃
)∥∥2

L1
TL∞

)
×∥∥Js+1(η̃(0),u(0)

)∥∥
L2 exp

(
2
∥∥(u,ux,�η̃,∂x�η̃, η̃

)∥∥
L1
TL∞

)
.

(3.11)

Using the Sobolev embedding in the spatial variable together with the Hölder inequality
in time variable, we can choose an admissible pair (p,q) such that

∥∥(u,ux,�η̃,∂x�η̃, η̃
)∥∥

L1
TL∞

� T1−1/p
∥∥Jσ(η̃,u

)∥∥
L
p
TL

q . (3.12)

A combination of (3.12) with (3.11) yields

∥∥(u,ux,�η̃,∂x�η̃, η̃
)∥∥

L1
TL∞

� T1−1/p(1 +T)1/p
(

1 +
∥∥Jσu∥∥L∞T L2

)(
1 +

∥∥(u,ux,�η̃,∂x�η̃, η̃
)∥∥2

L1
TL∞

)
×∥∥J s+1(η̃(0),u(0)

)∥∥
L2 exp

(
2
∥∥(u,ux,�η̃,∂x�η̃, η̃

)∥∥
L1
TL∞

)
.

(3.13)

Choosing δλ = λs+1, τ = 0, and t = T in (2.64), we deduce

∥∥J s+1(η̃(t),u(t)
)∥∥2

L∞T L2 �
∥∥Js+1(η̃(0),u(0)

)∥∥2
L2

+
∥∥Js+1(η̃(t),u(t)

)∥∥
L∞T L2

∥∥(u,ux,�η̃,∂x�η̃
)∥∥

L1
TL∞

.
(3.14)

Then there exists a positive constant C0 so small that

∥∥J s+1(η̃(t),u(t)
)∥∥

L∞T L2 � 1
1−C0

∥∥J s+1(η̃(0),u(0)
)∥∥

L2 for t ∈ [0,T] (3.15)

providing that ‖(u,ux,�η̃,∂x�η̃, η̃)‖L1
TL∞ ≤ C0. Let H(T) = ‖(u,ux,�η̃,∂x�η̃)‖L1

TL∞ .
Equations (3.13) and (3.15) imply that

H(T) �
(

1 +
1

1−C0

∥∥Js+1(η̃(0),u(0)
)∥∥

L2

)∥∥J s+1(η̃(0),u(0)
)∥∥

L2

×T1−1/p(1 +T)1/p(1 +H2(T)
)

exp
(
2H(T)

) (3.16)

providing thatH(T)≤ C0. For every R > 0, we choose a positive constant TR such that for
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all T ∈ [0,TR],

(
1 +

1
1−C0

R
)
RT1−1/p(1 +T)1/p(1 +C2

0

)
exp

(
2C0

)
<
C0

2
. (3.17)

Then for ‖(η̃(0),u(0))‖Hs+1 ≤ R, we deduce from (3.16) that, for all T ∈ [0,TR],

H(T)≤ C0 implies H(T)≤ 1
2
C0. (3.18)

Note that H(0)= 0. A straightforward continuity argument shows that H(T)≤ C0/2 for
all T ≤ TR � ‖(η̃(0),u(0))‖−1

Hs+1 . Using (3.10), we obtain that if (η,u) is a smooth solution
of the system (1.1), then it satisfies

∥∥(u,ux,�η̃,∂x�η̃
)∥∥

L1
TL∞

≤ C ∀T ≤ TR, (3.19)∥∥(η̃λ,uλ)∥∥L∞T Hs+1 �
∥∥(η̃(0),u(0)

)∥∥
Hs+1 ∀T ≤ TR. (3.20)

The bounds (3.19) and (3.20) enable us to perform a standard compactness argument.
More precisely, consider that the smooth sequence { fn(x),gn(x)} satisfies ‖( f̃n,gn)‖Hs+1

≤ R for some positive constant R, which converges to ( f (x),g(x)) in Hs(R)×Hs+1(R),
where we denote by f̃n = h−1(D) fn. Let {ηn,un} be the solution of the system (1.1)
with data ( fn(x),gn(x)) which exists globally in time due to [2, Theorem 3.5]. We will
prove that {ηn,un} converges and the limit object is a solution of the system (1.1) with
data ( f (x),g(x)). Indeed, (3.20) implies that {ηn,un} converges in weak∗-topology of
L∞([0,TR] : Hs ×Hs+1) to some limit (η,u). Using (3.9), we deduce that {ηn,un} con-
verges strongly to (η,u) in L∞([0,TR] : H−1 × L2), and therefore (unηn)x and un(un)x
converge to (uη)x and uux, respectively, in a distributional sense. This proves that the
limit (η,u) satisfies the system (1.1) in a distributional sense. The map [0,TR] 	 t 
→
(η(t),u(t))∈Hs(R)×Hs+1(R) is weakly continuous. Lemma 2.3, with δλ = λs+1, implies
that the map [0,TR] 	 t 
→ ‖η(t)‖Hs + ‖u(t)‖Hs+1 is continuous because exp(C‖(u,ux,
�η̃,∂x�η̃)‖L1

I L∞) tends to one as τ tends to t if I = [τ, t]. Hence [0,TR]	 t 
→ (η(t),u(t))∈
Hs(R)×Hs+1(R) is continuous.

3.3. Continuous dependence on the data. We present a proof of continuous dependence
on the data based on Lemma 2.3.

Lemma 3.1. Fix s ∈ [0,1). Suppose that (νn,γn)→ (ν,γ) in Hs+1. Then there exists a se-
quence {δλ} of positive numbers which satisfies 2s+1δλ ≤ δ2λ ≤ 4δλ, λ≤ δλ ≤ λ2, and δλ/λs+1

→∞ such that supn
∑

λ δ
2
λ‖(∆λνn,∆λγn)‖2

L2 < +∞.

Proof. For λ = 2 j , set anj = λ2(s+1)‖(νnλ ,γnλ)‖2
L2 , aj = λ2(s+1)‖(νλ,γλ)‖2

L2 . The assumptions
imply that {anj } j∈N→ {aj} j∈N in �1(N). Then for all k ∈N, there exists Nk such that

Nk ≥ k, sup
n

∞∑
j=Nk

anj < 2−2k. (3.21)
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For a fixed j ∈N, there exists a unique k ∈N such that Nk−1 ≤ j < Nk. We set µj = 2k(1−s)

and δλ = λs+1µj for λ= 2 j . Obviously 2s+1δλ ≤ δ2λ ≤ 4δλ and δλ/λs+1 → +∞, and

sup
n

∑
λ

δ2
λ

∥∥(∆λνn,∆λγn
)∥∥2

L2 ≤
∞∑
j=1

µja
n
j ≤

∞∑
k=0

Nk+1∑
j=Nk

µja
n
j

≤
∞∑
k=0

2k(1−s)
Nk+1∑
j=Nk

anj ≤
∞∑
k=0

2k(1−s)2−2k < +∞.
(3.22)

Let {(ηn,un)} be a sequence of solutions in C([0,T];Hs−1×Hs) with (ηn(0),un(0))→
(η(0),u(0)) in Hs×Hs+1. As in the proof of the existence of solutions, we have

(
η̃n(t),un(t)

)−→ (
η̃(t),u(t)

)
in C

(
[0,T];L2×L2). (3.23)

Using Lemmas 3.1 and 2.3, we deduce

sup
n

sup
0≤t≤T

∑
λ

δ2
λ

(∥∥(η̃nλ(t),unλ(t)
)∥∥2

L2 +
∥∥(η̃λ(t),uλ(t)

)∥∥2
L2

)
< +∞. (3.24)

Set η̃Λ =
∑

λ≤Λ η̃λ, uΛ =
∑

λ≤Λuλ. Fix ε > 0, there exists by (3.24) a Λ such that for every
t ∈ [0,T],

sup
n

{∥∥(η̃nΛ(t)− η̃n(t),unΛ(t)−un(t)
)∥∥

Hs+1 +
∥∥(η̃Λ(t)− η̃(t),uΛ(t)−u(t)

)∥∥
Hs+1

}
<
ε
2
.

(3.25)

By (3.23), there exists n0 such that for n≥ n0 and 0≤ t ≤ T ,

∥∥(η̃nΛ(t)− η̃Λ(t),unΛ(t)−uΛ(t)
)∥∥

Hs+1 ≤ (2Λ)s+1
∥∥(η̃nΛ(t)− η̃Λ(t),unΛ(t)−uΛ(t)

)∥∥
L2 <

ε
2
.

(3.26)

Therefore, we get for n≥ n0 and 0≤ t ≤ T that

∥∥(η̃nΛ(t)− η̃(t),unΛ(t)−u(t)
)∥∥

L∞T Hs+1

≤ ∥∥(η̃nΛ(t)− η̃Λ(t),unΛ(t)−uΛ(t)
)∥∥

L∞T Hs+1

+
∥∥(η̃nΛ(t)− η̃n(t),unΛ(t)−un(t)

)∥∥
Hs+1

+
∥∥(η̃Λ(t)− η̃(t),uΛ(t)−u(t)

)∥∥
L∞T Hs+1 < ε.

(3.27)

We complete the proof of the continuous dependence on the data. �
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