CLASSIFICATION THEOREM ON IRREDUCIBLE
REPRESENTATIONS OF THE g-DEFORMED ALGEBRA Ué(son)

N. Z. IORGOV and A. U. KLIMYK

Received 8 August 2004

The aim of this paper is to give a complete classification of irreducible finite-dimensional
representations of the nonstandard g-deformation U,;(so,,) (which does not coincide
with the Drinfel'd-Jimbo quantum algebra U,(so0,)) of the universal enveloping algebra
U(50,(C)) of the Lie algebra so,(C) when g is not a root of unity. These representations
are exhausted by irreducible representations of the classical type and of the nonclassi-
cal type. The theorem on complete reducibility of finite-dimensional representations of
Uq’(son) is proved.

1. Introduction

Quantum orthogonal groups, quantum Lorentz groups, and the corresponding quantum
algebras are of special interest for modern mathematical physics. Jimbo [19] and Drinfel’d
[3] defined g-deformations (quantum algebras) U, (g) for all simple complex Lie algebras
g by means of Cartan subalgebras and root subspaces (see also [18, 20]). Reshetikhin et
al. [32] defined quantum algebras U,(g) in terms of the quantum R-matrix satisfying the
quantum Yang-Baxter equation. However, these approaches do not give a satisfactory pre-
sentation of the quantum algebra U,(so,) from a viewpoint of some problems in quan-
tum physics and representation theory. When considering representations of the quan-
tum algebras U, (s0,+1) and Uy (so,,1), we are interested in reducing them onto the quan-
tum subalgebra U, (so,). This reduction would give an analogue of the Gel’fand-Tsetlin
basis for these representations. However, the definitions of quantum algebras mentioned
above do not allow the inclusions U, (s0,+1) D Uy(s0,) and Uy(s0,,1) D Ug(so,). To be
able to exploit such reductions, we have to consider g-deformations of the Lie algebra
$0,+1(C) defined in terms of the generators Ixx—1 = Exx—1 — Ex—1,x (where Ejs is the ma-
trix with entries (Ej),+ = 0ir0s) rather than by means of Cartan subalgebras and root ele-
ments. To construct such deformations, we have to deform trilinear relations for elements
I k-1 instead of Serre’s relations (used in the case of the standard quantized universal en-
veloping algebras). As a result, we obtain the associative algebra, which will be denoted as
U,;(so,,).
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This g-deformation was first constructed in [8]. It permits one to construct the re-
ductions of Ué(son,l) and Uq’(so,,+1) onto Ué(so,,). The g-deformed algebra Uq’(son) leads
for n =3 to the g-deformed algebra U, (so3) defined by Fairlie [4]. The cyclically sym-
metric algebra, similar to Fairlie’s one, was also considered somewhat earlier by Odesskii
[31].

In the classical case, the imbedding SO(n) € SU(n) (and its infinitesimal analogue)
is of great importance for nuclear physics and in the theory of Riemannian symmet-
ric spaces. It is well known that in the framework of quantum groups and Drinfel’d-
Jimbo quantum algebras one cannot construct the corresponding embedding. The al-
gebra Uq’(son) allows to define such an embedding [29], that is, it is possible to define
the embedding Ué(so,,) C Uy(sly), where Ug(sl,) is the Drinfel’d-Jimbo quantum alge-
bra.

As a disadvantage of the algebra U‘;(son), we have to mention the difficulties with
Hopf algebra structure. Nevertheless, U(;(so,,) turns out to be a coideal in Ug(sl,) (see
[29]) and this fact allows us to consider tensor products of finite-dimensional irreducible
representations of Ué(son) for many interesting cases (see [13]).

The algebra U, (so,) and its representations are interesting in many cases. Main direc-
tions of interest are the following:

(1) the theory of orthogonal polynomials and special functions (especially, the theory
of g-orthogonal polynomials and basic hypergeometric functions); this direction
is not well worked out; some ideas of such applications can be found in [23];

(2) the algebra Ué (son) (especially its particular case U(;(503)) is related to the algebra
of observables in 2 + 1 quantum gravity on the Riemmanian surfaces (see papers
(2,5, 28]);

(3) a quantum analogue of the Riemannian symmetric space SU(n)/SO(n) is con-
structed by means of the algebra Ué(son); this construction is fulfilled in the pa-
per [29] (see also [24]);

(4) a g-analogue of the theory of harmonic polynomials (g-harmonic polynomials
on quantum vector space RY) is constructed by using the algebra U, (so,); in par-
ticular, a g-analogue of different separations of variables for the g-Laplace oper-
ator on Rf is given by means of this algebra and its subalgebras; this theory is
contained in the papers [17, 30];

(5) the algebra U (so,) also appears in the theory of links in the algebraic topology
(see [1]);

(6) the algebra U, (soy) is connected with Yangians (see [27] and references therein);

(7) a new quantum analogue of the Brauer algebra is connected with the algebra
Ué(son) (see [26]).

A large class of finite-dimensional irreducible representations of the algebra Uy (so,)
was constructed in [8]. The formulas of action of the generators of U, (s0,) upon the basis
(which is a g-analogue of the Gel’fand-Tsetlin basis) are given there. A proof of these for-
mulas and some of their corrections were given in [6]. However, the finite-dimensional
irreducible representations described in [6, 8] are representations of the classical type.
They are g-deformations of the corresponding irreducible representations of the Lie al-
gebra so,, that is, at ¢ — 1 they turn into representations of so,.
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The algebra Uq’(son) has other classes of finite-dimensional irreducible representa-
tions, which have no classical analogue. These representations are singular at the limit
q — 1. They are described in [15]. The description of these representations for the alge-
bra Ul;(503) is given in [9]. A classification of irreducible *-representations of real forms
of the algebra U,;(503) is given in [33]. The representation theory of U(;(so,,) when g isa
root of unity is studied in [16].

In this paper, we deal with classification of finite-dimensional irreducible representa-
tions of the algebra Uy (so,) when g is not a root of unity. As mentioned above, there were
constructed irreducible representations of the algebra U, (so,) belonging to the classical
and to the nonclassical types. However, it was not known that these representations ex-
haust all irreducible finite-dimensional representations. We started to study this problem
in [22]. We show there that these representations are determined by the so-called high-
est weights (which were defined in [22] and differ from highest weights in the theory of
quantized universal enveloping algebras). However, we do not know a correspondence be-
tween known representations of the classical and nonclassical types and highest weights.
In the present paper, we develop an approach to the problem of classification from other
points of view. Namely, we prove that each irreducible finite-dimensional representation
of Uz(so,) belongs to the set of representations of the classical type or to the set of rep-
resentations of the nonclassical type constructed before. For proving this, we use our
previous results on structure of the algebra Uf’l(son) (tensor operators, Wigner-Eckart
theorem, etc.). We also need the theorem on complete reducibility of finite-dimensional
representations of Uy (so). This theorem is proved in this paper. Some ideas from the
theory of representations of the Lie algebra so,(C) and its real forms are also used.

Note that the problem of classification of irreducible finite-dimensional representa-
tions of Uy (so,) is much more complicated than in the case of Drinfel'd-Jimbo quantum
algebras since in U (so0,) we do not have an analogue of a Cartan subalgebra and root
elements. The set of all irreducible finite-dimensional representations of Uq’(son) is wider
than in the case of Uy, (so,).

Everywhere below we assume that g is not a root of unity.

2. The g-deformed algebra Ut;(so,,)

The universal enveloping algebra U(so,(C)) is generated by the elements I;; = E;; — Ej;,
i > j.Butin order to generate the algebra U(so,(C)), it is enough to take only the elements
Ly, I3, Iy 1. It is a minimal set of elements necessary for generating U(so,(C)). These
elements satisfy the relations

2 2
LoD — 21 Liviliio + Ll = — L

Liiodf ;= 2Ll Lo + T3 i = — Loy, (2.1)
Ii,i—llj,j—l _Ij,j—lli,i—l =0 for |Z—]| > 1.

The following theorem is true for U(so,(C)) (see [21]): the enveloping algebra U(so,(C))
is isomorphic to the complex associative algebra (with a unit element) generated by the ele-
ments Ip1,15,...,1nn—1 satisfying the above relations.
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We make a g-deformation of these relations by fulfilling the deformation of the integer
2as2— [2]4:=(¢* —qH)/(q—q ") = q+q'. As aresult, we obtain the relations

L — (q+q D)o Liiliio + Ll = =T (2.2)
Ii,iflli%rl,i - (q+q71)1i+1,i1i,i—11i+1,i+Ii2+1,i1i,i—l = -1, (2.3)
Ii,i—llj,j—l _Ij,j—IIi,i—l =0 for |1—]| > 1. (2.4)

The g-deformed algebra U, (so,) is defined as the complex unital (i.e., with a unit ele-
ment) associative algebra generated by elements I>1,I5,,..., I, -1 satisfying relations (2.2),
(2.3), and (2.4). It is a g-deformation of the universal enveloping algebra U(so,(C)),
different from the Drinfel'd-Jimbo quantized universal enveloping algebra Uy (so,). For
this algebra, the inclusions Ué(so,,) D Ul;(so,,_l) and Ug(sl,) D U(;(so,,) are constructed,
where U, (sl,) is the well-known Drinfel’d-Jimbo quantum algebra (see the introduction).

An analogue of the skew-symmetric matrices I;; = E;; — Ej;, i > j, constituting a basis
of the Lie algebra so,(C), can be introduced into U,;(son) (see [7, 30]). For k > [+1, they
are defined recursively by the formulas

L= (L I ], = g Ik — g VI Iy (2.5)

The elements Iy, k > I, satisfy the commutation relations

Ui Ty =T ko Iee)y = Ty [T D]y =T fork >1>r, (2.6)
[Ii,I:] =0 fork>I>s>r,k>s>r >, (2.7)
[Ikasr]q = (q — qil) (InIis — I Ig)  fork>s>I1>r. (2.8)

For q = 1, they coincide with the corresponding commutation relations for the Lie algebra
50, (C).

The algebra Uy (so,) can be also defined as a unital associative algebra generated by
I, 1 < 1<k < n, satisfying the relations (2.6), (2.7), and (2.8). In fact, the relations (2.6),
(2.7), and (2.8) can be reduced to the relations (2.2), (2.3), and (2.4) for 1, I55,..., Ly 4-1-

The Poincaré-Birkhoff-Witt theorem for the algebra U{;(son) can be formulated as fol-
lows (a proof of this theorem is given in [16]): the elements

Dy I3y ™ e Ly I Dy e T e Ly my = 0,1,2,.0, (2.9)

form a basis of the algebra U (soy).

In Uq’(son), the commutative subalgebra s generated by the elements I, 143, lss, . ..,
Ii-14-2 (or I,—1) can be separated. So, this subalgebra is generated by | n/2| elements,
where | #/2] is an integral part of the number #/2. However, there exist no root elements
in the algebra Ué(son) with respect to this commutative subalgebra. This leads to the
fact that properties of U,(so,) are not similar to those of the Drinfel'd-Jimbo algebra
Uy (sop).
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3. Irreducible representations of the classical and nonclassical types

In this section, we give known facts on irreducible representations of U, (so,), which will
be used below. The corresponding references are given in the introduction.
Two types of irreducible finite-dimensional representations are known for U (s0,):

(a) representations of the classical type;
(b) representations of the nonclassical type.

Known irreducible representations of the classical type are g-deformations of the ir-
reducible finite-dimensional representations of the Lie algebra so,. There is a one-to-one
correspondence between these irreducible representations of the algebra Uy (so,) and ir-
reducible finite-dimensional representations of the Lie algebra so,. Moreover, formulas
for representations of the classical type of U;(so,) turn into the corresponding formulas
for the representations of Lie algebra so, at g — 1.

There exists no classical analogue for representations of the nonclassical type: repre-
sentation operators T(a), a € Ué(son), have singularities at g = 1.

We describe known irreducible finite-dimensional representations of the algebras
Ug(son), n = 3, which belong to the classical type. As in the classical case, they are given
by sets m,, of [ n/2]| numbers my ,,, M2 y,..., M| n2),0 (here | n/2] denotes the integral part
of n/2), which are all integral or all half-integral and satisfy the dominance conditions

M2kl = My pk+] = * * = Mgk = 0,

(3.1)

Mgk = My = * = = = Mk_12k = | Mgkl

for n = 2k + 1 and n = 2k, respectively. These representations are denoted by T, . We take
a g-analogue of the Gel’fand-Tsetlin basis in the representation space, which is obtained
by successive reduction of the representation T, to the subalgebras Uq’ (s04-1), Uq’ (s0u-2),
...,Uq’(503), Uq’(soz) := U(s02). As in the classical case, its elements are labelled by the
Gel’fand-Tsetlin tableaux

my—
{‘xn} = . = {mm“nfl} = {mmmnfly“nfz}’ (3.2)

m;

where, as in the nondeformed case, the components of m; and m;_, satisfy the “between-
ness” conditions

Mipp+1 = Mi2p = Moppi1 = Mopp = = - = Mpoptl = Mpop = —Mpop+is (3.3)
Miop = Mipp-1 = Mppp = Mppp-1 =" ZMp_12p-1= |mp,2p |

Sometimes, the basis elements, defined by a tableau {w,}, are denoted as |«,_;) or as
lm,,_1,a,_2), that is, we will omit the first row m,, in a tableau.
It is convenient to introduce the so-called [-coordinates

Lispri=mjopritp—j+1, Lisp=mjsp+p—j, (3.4)
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for the numbers m; . The operator T, (I>p+1,2p) of the representation Ty, of Uq’(son) acts
upon Gel’fand-Tsetlin basis elements, labelled by (3.2), as

A3 > AZP( )]>‘(

p
Ay
Tm, (Lpt12p) |@n) = Z p 2p—1)
st j=1 J p

a)y) (35

and the operator Ty, (I2p2p-1) acts as

p-1
B2p 1 ‘xn) +j
Tm,, I 2p— “n 77 7 7|\
(ZPZP 1)| Z ]2P 1)[l]2p—1] )( )2p 1>

b Bl ((aw)y) )

S

T DT 17 @)a1) +iCma (@) |an).

(3.6)

In these formulas, (ocn)s means the tableau (3.2) in which jth component m; ¢ in my is

replaced by m; s = 1, respectively. The coefficients Azp, sz 1> C2p-1,aand b in (3.5) and
(3.6) are given by the expressions

Aép((xn)
_ (Hfl [lizps1 +1iop  [lizpe1 = jop — 1] Hf:ll [lizp-1+Liap] [lizp-1 = ljop — 1] ) 172
l_[f; j [lizp +12p I lizp = Lizp ] lizp + Liop + 1] lip — lj2p — 1] ’

(3.7)
B}, (an)

_ Hle [li,2p + lj,Zp—l] [li,Zp - lj,prl] Hf:_ll [li,2p72 + lj,Zp—l] [li,2p72 - lj,prl] >1/2
Hf;jl izp-1+li2p-1 lizp-1=Lizp-1 ] [lizp-1+lj2p-1= 1] [lizp-1=1Lj2p-1—1]

(3.8)
o () = e [lap 1T Thapo] 59
! T2 sz 11 [hzp 1 — 1]
a(ljop) = {(gh* +q 7170 (@b + g 7hn) } 7,
(3.10)

b(linp 1) = ([2L2p1+1][2L2p 1 —1]) .

The numbers in square brackets in formulas (3.6), (3.7), (3.8), and (3.9) mean g-numbers
defined by

(a] = [aly = L1 (3.11)

It is seen from formula (3.9) that the coefficient C,,; vanishes if m, 5, = 1,5, = 0.
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The following assertion is well known [8]: the representations Ty, are irreducible. The
representations Tr, and Ty, are pairwise nonequivalent for m, # m;,

Irreducible finite-dimensional representations of the nonclassical type are given by
sets € := (€2,€3,...,€,), € = =1, and by sets m,, consisting of | n/2 | half-integral (but not
integral) numbers 1y ,,, M3 ,..., M| 4/2),» that satisfy the dominance conditions

Mg =My = = Mp2)n = (3.12)

N | —

These representations are denoted by Te m, -

For a basis in the representation space, we use an analogue of the basis of the previous
case. Its elements are labelled by tableaux (3.2), where the components of m; and m;_,
satisfy the “betweenness” conditions

1
Mi2pr1 = Mip = Moppil = Mopp =+ " " = Mpopr] = Mpop = 3 (3.13)
Migp = Mipp—1 = Mpop = Mpop—1 =" ZMp_12p-1 = Mpp.

The corresponding basis elements are denoted by the same symbols as in the previous
case. The [-coordinates for m; s are introduced by the same formulas as before.

The operator Tem,(I2p+1,2p) of the representation T m, of Uq’(so,,) acts upon the basis
elements |a,) by the formulas

€2p+1
Tem, (12p+1,2p) |‘Xn> = amp‘zp,l/z ﬁDZP oy |‘Xn>

( D, J) (3.14)

p .
AZP(“") ‘ 1) ‘(“n);;>’

Y2 )

j=14

SR e

J2p

where the summation in the last sum must be from 1 to p — 1 if m,,, = 1/2, and the
operator Ty, (I2p2p-1) acts as

Te,mn (IZp,Zp—l) | ‘xn

p—1 j an B
z B,y (an) ] ‘(an)2;71>

— ]2p 1)[lj,2p—1 +

Bép—l((‘xn)zigfl) ) .
(o ] +€ C 1y &),
j=1 12p 1- 1)[lj,2p—1_1]+)( )2P71> 2pCap1( ) | o)

MH

(3.15)

where

(o], = 414" (3.16)
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As before, (ay)s 7 means the tableau (3.2) in which jth component m; ¢ in my is replaced

by m;j¢ = 1, respectively. The expressions for Aép, Bép,l, and b are given by the same
formulas as in (3.5) and (3.6),

a'(Liap) = {(gh* = q ) (ghr —q7hen)} ',

e T [, T [pal,
prl(‘xn) = Sp-1
[Ty [Esop-1l i [hs2p1 — 114
Hle [li,2p+1 - 1/2] 1—[;{:11 [li,zp,l — 1/2]
Hf:ll [li,Zp + 1/2] [li,gp - 1/2] .

>

(3.17)

D,y (an) =

The following assertion is true (see [15]): the representations Te m, are irreducible. The
representations Tem, and Te m, are pairwise nonequivalent for (€,m,) # (€',my,). For any
admissible (€,m,) and m;, the representations T¢m, and Try are pairwise nonequivalent.

Remark 3.1. As in the case of irreducible representations of the Lie algebra so,, it follows
from the explicit description of irreducible representations Tr, and T¢ m, of Ué(so,,) that
the restriction of T, onto the subalgebra U (so,-1) decomposes into a direct sum of
irreducible representations of this subalgebra belonging to the classical type, and the re-
striction of Tem, onto Ug(so,-1) decomposes into a direct sum of irreducible represen-
tations belonging to the nonclassical type. Formulas for the representations determine
explicitly these decompositions.

4. Vector operators and Wigner-Eckart theorem

In this section, we define vector operators for irreducible representations of U (so,) and
give the Wigner-Eckart theorem for them. This information will be used under proving
our main results.

The algebra Uy (so,) is not a Hopf algebra. For this reason, we cannot define a tensor
product of its representations. However, U, (so,) can be embedded into the Hopf algebra
Uy (sl,) (see [29, 30]). Using this embedding, a tensor product of the irreducible repre-
sentations T; and T of Uq’(son) is determined, where T is a vector representation (i.e., a
representation of the classical type characterized by the numbers (1,0,...,0)) and T is an
arbitrary irreducible finite-dimensional representation [13]. The decomposition of this
tensor product into irreducible constituents is given by the formulas as in the classical case
if the representation T belongs to the classical type (i.e., the decomposition of T} ® Ty,
contains the irreducible representations of the classical type characterized by m,’, m,’,
j=1,2,...,1n/2], and also the representation T, if n = 2k + 1 and my 2x+1 # 0). For the
representations T = T¢ m, of the nonclassical type, we have

T1®Tem, = B Temy (4.1)

m),€Se(m,)
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where

P
m2p+1 U { €m2p+1} v U { € m2p+1} {Te M2p+1 }

._.
fu

.

; (4.2)
{ EmZp} v U {Tf»mzp}

j=1

C~

Se (mzp) =

-
Il
—_

As before, m,” is the set of numbers m,, with m in replaced by m;, + 1, respectively. Note
that each representation Tp,, and each representation Te m, for which m;, does not satisfy
the dominance conditions must be omitted. Proofs of these decompositions can be found
in [14]. As in the case of quantized universal enveloping algebras (see [20, Chapter 7]),
decompositions of the above tensor products are fulfilled by means of matrices whose
entries are called Clebsch-Gordan coefficients.

We define a vector operator (it is a set of n operators), which transforms under the
vector representation of the algebra U, (so,). This operator acts on a linear space # on
which some representation T' of Ué(so,,) acts. We will consider only the case when ¥
is a finite-dimensional space. We also suppose that # decomposes into a direct sum of
irreducible invariant (with respect to U (so,)) subspaces, where only irreducible rep-
resentations of the classical type or only irreducible representations of the nonclassical
type are realized. This assumption is explained by the fact that a vector operator cannot
map a subspace on which an irreducible representation of the classical type is realized
into a subspace on which a representation of the nonclassical type is realized, or vise
versa.

The set A,, r = 1,2,...,n, of operators on J€ is called a vector operator for the algebra

U,;(son) if

(A, Ty, = A [T-) A, = Ajs

4.3
[T(Ljj-1),Akl, =0, k#j,j—1, )

where [X,Y]; =q"?XY — q"2YX and T is a fixed representation of U;(s0,) acting on
.

We represent the space # as a direct sum of irreducible invariant (with respect to
U(;(so,,)) subspaces

W= D Vemi (4.4)

€,my,i

where V¢ m,.i is a subspace, on which an irreducible representation of Ué(son) charac-
terized by € and m, is realized, and i separates multiple irreducible representations of
U, (son) in the decomposition. If irreducible representations belong to the classical type,
then € must be omitted.
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We take a Gel’fand-Tsetlin basis in each subspace V'¢ m,.; and denote these basis vectors
by le,m,,i,a), where & = a,,; are the corresponding Gel’fand-Tsetlin tableaux. Then the
subspaces

Ve =B Clemy,ia) (4.5)

can be defined.
The Wigner-Eckart theorem for vector operators {A;} (proved in [14]) states that the
matrix elements of A; are of the form

. . € . .
(€',m,i,a [Aj|€,my i) = Cilnw (€/,my,i | All€,my, i), (4.6)

where C]eenl:n":]aa are Clebsch-Gordan coefficients of the tensor product T} ® T¢ m, (these
coefficients are given in an explicit form in [14]), and (€', m;,_,,i'|Al€, m,_1,i) are called
reduced matrix elements of the vector operator {A;}. These reduced matrix elements de-
pend only on numbers characterizing the representations and on the indices separating
multiple representations, and are independent of basis elements of irreducible invariant
subspaces. They are also independent of the number j of the operator A;. In the above
formulas, € must be omitted if we deal only with representations of the classical type.

Due to the formulas for decompositions of the tensor products T ® Tr, and T; ®
Tem,> we find that matrix elements (€¢’,my,i’,«&’|A;|€,m,,i,a) can be nonvanishing only
if € = € and also m;, = m;* or m;, = m, (since only for these cases, the correspond-
ing Clebsch-Gordan coefficients can be nonvanishing). Due to the above formulas for
decompositions of tensor products of representations, a vector operator cannot map a
subspace of an irreducible representation of the classical type (of the nonclassical type)
into subspaces on which irreducible representations of the nonclassical type (of the clas-
sical type) are realized. Therefore, in matrix elements (4.6), both indices € and €’ exist or
both are absent.

We can define the operators

+j , -J 4

m, . o a o m, . 9 a o m, .o a o
Am: : 0‘/‘e,mﬂ CVe,mn’ Am: Y OVE ij ’ AmZ : OVe,mn oVe m;i ’ (4'7)

» >

€,my,

which have matrix elements coinciding with reduced matrix elements of the tensor oper-
ator {A;}:

(€,m,, i, a| A | €,my,i ) = (€,m,,i'||All€,m,,i),

. +i . .
e,m,,i,a) = (e,m,’,i'||Alle,my,i), (4.8)

(E,ij,i’,oc' |A$EJ

€,m,,i,a) = (e,m,’,i'||All€,m,,i).

(e,m;j,i’,oc’ |A$ij

(The symbol € must be omitted in these formulas if necessary.) It follows from the
Wigner-Eckart theorem that for any irreducible representation Tem, contained in the
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representation T, these operators satisfy the following relations:

Tem,(@)Ap = Ap Tem,(a), a€ Uq’(son),

+ +j , (4.9)
T€,mn(a)A$%JA$:J - A:%jA'mn:)Te,mn(a), ac Uq(so,,),

5 . .
where AE’; JAm: is considered as operators from V¢, into V¢, .
n

ProposITION 4.1. Let § € ¥ belong to a subspace ¥, of the irreducible representation T,
of Uy(s0,). Then Am’:‘]f and Amifg belong to some subspaces ¥ i and ¥ i of I, on which
the irreducible representations T, i and T, -; of U(so,) are realized, respectively. All the

vectors Agf (Tm,(a)§),ac U‘;(son), also belong to these subspaces %mif’ respectively.

Proof. The assertion follows from the definition of vector operators and from formula
(4.6). O

5. Auxiliary propositions

As stated above, the algebra Uy (so,) has a commutative subalgebra s/ generated by the
elements Irsp5-1, s = 1,2,...,7, where r = | n/2] is the integral part of n/2.

ProrositioN 5.1. (a) If T is a finite-dimensional representation of the algebra U (so,),
then the operators

T(Ip1), T(Is3)s. > T (I k1), (5.1)

where n = 2k or n = 2k + 1, are simultaneously diagonalizable.
(b) Possible eigenvalues of any of these operators can be only as i[m], m € (1/2)Z, i =
V=1, or [m]y, m € Z +1/2, where

m _ 4—m m —-m
(m) = [mly =T =L (), =TT (52)
9-9 9-9
Proof. This proposition is true for the algebra U (so3). It follows from complete re-
ducibility of finite-dimensional representations of U,;(s03) (see [12]) and from the fact
that representations of the classical and of the nonclassical types exhaust all irreducible
representations of U,;(503) (see [11]). Each of the elements I1,I43,..., [k 2k—1 can be in-
cluded into some subalgebra U (s03) as one of its generating elements. Therefore, each of
the operators T(I3j2j-1), j = 1,2,... ,k, can be diagonalized and has eigenvalues indicated
in assertion (b). This means that these operators are semisimple. Semisimple operators
on a finite-dimensional space can be simultaneously diagonalized if they commute with
each other. The proposition is proved. O

Eigenvalues of the form i[m] are called eigenvalues of the classical type. Eigenvalues of
the form [m], are called eigenvalues of the nonclassical type.
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Remark 5.2. In the formulation of Proposition 5.1, we could take for the algebra
Ué(502k+1) the operators T(Is2),T(Is4),..., T (Ik+12k) instead of T(Ip1),T(Ls3),...,
T (Lokk-1)-

In Propositions 5.3, 5.4, and 5.5 below, we suppose that the following assumption is
fulfilled: each finite-dimensional representation of Ug(son-1) is completely reducible and
irreducible finite-dimensional representations of Ué(son,l) are exhausted by the irreducible
representations of the classical and nonclassical types described in Section 3. Note that for

U,;(503) and Ué(so;;), this assumption is true (see [10, 11, 12]).

ProposiTiON 5.3. The restriction of any irreducible finite-dimensional representation T of
the algebra U, (so,) onto the subalgebra Ug(so,-1) is completely reducible representation of
Ug(son-1) and decomposes into irreducible representations of this subalgebra which belong
only to the classical type or only to the nonclassical type.

Proof. The restriction of T to the subalgebra U, (so,-1) is completely reducible due to the
assumption. Let T'} Uj(s0,-1) = P, R, where R; are irreducible representations of Ué (s0,-1),
and let # = @;7; be the corresponding decomposition of the space ¥ of the repre-
sentation T. The subspaces V; are invariant with respect to the operators T(I;; 1), j =
2,3,...,n— 1, corresponding to the elements of Uq’(son,l). Only the operator T(I,,,-1)
maps vectors of any of the subspaces V'; to linear combinations of vectors from other sub-
spaces V. Since the representation T is irreducible, then acting repeatedly by T(I,,-1)
upon any vector of any subspace V'; we obtain linear combinations of vectors from all
other subspaces V';. Let some irreducible representation R;, of Ué(son_l) in the decom-
position of T belong to the classical type. We state then that all other representations
R; in the decomposition belong to the classical type. This follows from the following
reasoning. We take the operators T(I,s), s = 1,2,...,n — 1. It follows from the commu-
tation relations (2.6), (2.7), and (2.8) for the elements I, ;, r > s, given in Section 2, that
these operators constitute a vector operator for the subalgebra Uq’(son,l) (generated by
DLy, I5s,...,1,-1,4-2) acting on the space #. Then due to the Wigner-Eckart theorem, the
action of operators T(I,s), s = 1,2,...,n — 1, on vectors of V';, gives linear combinations
of vectors of subspaces ¥'; on which only irreducible representations of the classical type
are realized. Repeated application of T'(I,, ;) again gives representations of the same type.
Therefore, in this case, all representations R; belong to the classical type. If R;, belongs to
the nonclassical type, then (by the same reasoning) all representations R; belong to the
nonclassical type. The proposition is proved. O

We write down the decomposition Ty (so, ) = €;Ri from the above proof in the
form Tl y;(s0, 1) = @m,_, dm, , Tm, , if the decomposition contains representations of the
classical type, where Tm, , are irreducible representations of Ug(so,-1) from Section 3
and dm, , are multiplicities of these representations. If the decomposition contains irre-
ducible representations of the nonclassical type, then T'ly;(so, 1) = DPem,_, dem, s Te;m, 1>
where T¢m, , are irreducible representations of the nonclassical type.

ProrosiTioN 5.4. The action of the operator T(I,,—1) upon a vector of a subspace, on
which the representation Tr, , (the representation Tem, ,) of Uj(son-1) is realized, gives
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a linear combination of vectors belonging only to subspaces of the irreducible representa-
tions of Uy (son-1) contained in the decomposition into irreducible components of the tensor
product Ty ® Tr,_, (of the tensor product Ty ® Tem, , ), where Ty is the vector representation
ofUé(son_l).

Proof. The operators T(I,;), s = 1,2,...,n— 1, constitute a vector operator for the subal-
gebra U, (so,-1). Now the proposition follows from the Wigner-Eckart theorem. O

ProposITION 5.5. Let T be a finite-dimensional irreducible representation of Uy (so,). Then
all operators T (Iyizi-1) from Proposition 5.1 have eigenvalues only of the classical type or only
of the nonclassical type.

Proof. The proposition is true for the algebra Ué(304). Namely, eigenvalues of T'(I3;) and
T(l43) of an irreducible representation T of U, (so4) are of the classical type if T is a rep-
resentation of the classical type and of the nonclassical type if T is a representation of the
nonclassical type (see [10]). We restrict the representation T of U, (so,) successively to
Uq’(son,l ), U,;(son,z),. U[;(so4) and decompose it into irreducible constituents. (More-
over, the chain of these subalgebras can be taken in such a way that the last subalgebra
U, (s04) contains any two fixed neighbouring operators from Proposition 5.1(a).) Ap-
plying Proposition 5.3 at the first step, we obtain in the decomposition of T irreducible
representations of U (so,-1) all belonging to the classical type or all belonging to the non-
classical type. Due to the assumption before Proposition 5.3 and Remark 3.1 at the end
of Section 3, on each next step, we obtain only irreducible representations of the classical
type or only irreducible representations of the nonclassical type, described in Section 3.
Thus, restriction of T onto any subalgebra U; (so4) decomposes into irreducible represen-
tations of U, (so4) all belonging to the classical type or all belonging to the nonclassical
type. Our proposition follows from this assertion. The proposition is proved. O

An irreducible representation T of Ué(son) for which all the operators T(Ipi2i-1),
i=1,2,...,1n/2], have eigenvalues of the classical type (of the nonclassical type) is called
a representation of the classical type (of the nonclassical type). The algebra Uy (so,) does
not have irreducible finite-dimensional representations of other types. In Section 3, ir-
reducible representations of the classical and of the nonclassical type are given. But we
do not know yet that they exhaust all irreducible representations of these types. Our aim
is to prove that the irreducible representations of Section 3 exhaust all irreducible finite-
dimensional representations of Ué(son).

6. Reduced matrix elements for the classical type representations

The theorem on classification of irreducible finite-dimensional representations of the al-
gebra U, (so,) will be proved by means of mathematical induction. Namely, we make an
assumption on irreducible finite-dimensional representations of the subalgebra U (s0,-1)
(which is true for the subalgebra Uq’(504)) and then prove that this assumption is true for
the algebra Uq’(so,,).

Assumption 6.1. Each finite-dimensional representation of U (so,-1) is completely re-
ducible and irreducible finite-dimensional representations of U{;(son_l) are exhausted by
irreducible representations of the classical and nonclassical types described in Section 3.
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This assumption is true for the algebras Uq’(503) and Uq’(504) (see [10, 11]).

As we know from the previous section, irreducible finite-dimensional representations
T of Ug(so,) are divided into two classes—irreducible representations of the classical
type and irreducible representations of the nonclassical type. For deriving the theorem
on classification of irreducible representations belonging to the classical type, we need
the results on reduced matrix elements of the tensor operator T(I,.,), k = 1,2,...,n—1,
for the subalgebra U;I(son_l).

Let T be an irreducible finite-dimensional representation of U (so,) belonging to the
classical type. According to our assumption and Proposition 5.3, this representation de-
composes under the restriction onto the subalgebra Uq’(son,l) as a direct sum of irre-
ducible representations of the classical type from Section 3. For the space ¥ of the repre-
sentation T, we have

%= B Vin, i (6.1)

m,_1,i

where V', ;i is a linear subspace, on which the irreducible representation Ty, , of
U, (son-1) from Section 3 is realized, and i separates multiple irreducible representations
of Uy (s0,-1) in the decomposition. Let

Vi, EB‘an (6.2)

We take a Gel’'fand-Tsetlin basis in each subspace V', ,; and denote these basis vectors
by Imy,_1,7,a), where a = a,,_, are the corresponding Gel’fand-Tsetlin tableaux. Then the
subspaces

mn 1 @Chﬂn 1>l “) (63)

can be defined. We know from Proposition 5.4 that the operator T'(I,,,,,—1) maps the vec-
tor |m,_y,i,&) into a linear combination of vectors of the subspaces V', , and Ve ,
s=1,2,...,k, where n — 1 = 2k or n — 1 = 2k + 1. Since the operator T'(I,,,—1) commutes
with all the operators T'(Iss-1), s = 2,3,...,n — 2 (i.e., with operators corresponding to el-
ements of the subalgebra U; (s0,-2)), it maps the subspace V', | into a sum of subspaces
Vo with the same a.

Due to Proposition 5.4 and Wigner-Eckart theorem (see formula (4.6)), the action of
the operator T(I,,,—1) on the subspace V', = can be represented in the form

P P 1/2
T(12p+2,2p+1) Loy m2p+l = Z <1_[ j2p+1 +lr 2p [lj,2p+l _lr,2p]> Pj (m2p+l)

r=1

P P 1/2
+ z <n iopit Flrop = 1 [Lioper — lrop — 1]) 7j(myp41)

j=1 \r=1

+<1£[ r2p> o (maps1)

r=1

(6.4)
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if n =2p+2 and in the form

p-1 12
( ]2p+lr2p 1 [lj,2p_lr,2p1+1]) P}(mZp)

r=1

H M

T(Lpi1,2p) Wgup =
P p-1 172 (6'5)
+ Z ( [lj,zp + lr,zp—l - 1] [lj,zp - lr,zpl]) T]'- (mzp)

j=1 \r=1

if n=2p+1, where pj(myp1), p;-(mzp), 7j(mypy1), T} (my)), and 0(my)4) are the oper-
ators such that

. a o ! .9 o o
pimapn) Vi = Vi o Pimap) Vi, = Vi,
Tj (m2p+1) :OVlrxnzpﬂ - OV:;;;H 5 TJ,‘ (mZp) :OVmZP - OV 7]3 (66)

O—(m2p+1) . onsz C“/‘{X

mop+1

+j

(they are the operators Am,jl and Am’"} from Section 4). The last summand in (6.4)
must be omitted if /, 5541 = 1 (in this case the representation Tr,,,, does not occur in
the tensor product Ty ® Tr,,,, ). The coefficients in (6.4) and (6.5) are the corresponding
Clebsch-Gordan coefficients of the algebra U’ (so,_;) taken from [14]. As we know from
the Wigner-Eckart theorem, p;(my,1), p}(mzp), 7j(mypy1), T]'»(mzp), and o(myp,;) are
independent of a. A dependence on « is contained in the Clebsch-Gordan coefficients.
We first consider the case of the algebra U{; (s02p+2). We act by both parts of the relation

12p+1,2p122p+2,2p+1 - (q +q_l)12p+2,2p+112p+1,2p12p+2,2p+1 +122p+2,2p+112p+1,2p = —Dpt1,2p>
(6.7)

taken for the representation T, upon vectors of the subspace °sz ., with fixed m;,,
and «, and take into account formula (6.4). Comparing terms with the same resulting
subspaces OV;';;[,H) we obtain for p;(mypy1), 7j(mypy1), and o(mypy), the relations

[li,2p+1 - lj,2p+1 + 1]Pj (mﬂ;ﬂ)Pi(mZpH) - [li,2p+1 - lj,2p+1 - I]Pi(mgﬂ)l)j (m2p+1) =0,
(6.8)

[lizps1 +lj,2p+1]Ti(m¥+1)Pj (mapi1) = [lizps1 +1jope1 — 2]p; (m2_1§+1)7i(m2p+1) =0,
(6.9)

[lizpr1 — Ligpe1 + I]Ti(m;;+1)fj (mopi1) = [liaprr = Lioper = 1]7j(m5p,) 7i(mypir) =0,
(6.10)

[lj,2p+1 + I]U(mgﬂ)P]‘ (m2p+1) - [lj,2p+1 - 1]Pj (m2p+1)0(m2p+1) =0, (6.11)
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[Lapr i (mypi) o (mppir) = [L2pe1 — Z]U(mz_lfﬂ)fj (myp41) =0, (6.12)

P P
2 .
Z [2Li2p41 +1] n( 12p+1 —[lr2p] )Ti(mzjﬂ)Pi(mzPﬂ)
i=1 r=1
r#k

sy

211 2p+1 — 1_[ ( i2p+1 — - [Z'>2P]2>Pi(mgji+1)Ti(m2p+l) (613)
r=1
r#k

P
+] ] lr2p] 2. (my,11) = —E,

r#

e

where i # j, E is the unit operator on V', and k is a fixed number from the set {1,2,...,
p}. Note that the last term on the left-hand side of (6.13) must be omitted if [, 5541 = 1.

The irreducible representations Tm,,., of Uq’(502p+1) under restriction to Uq’(sozp) de-
compose into irreducible representations Tp,, of this subalgebra such that the numbers
my,, satisfy the inequalities determined by the Gel’fand-Tsetlin tableaux (see Section 3).
Under this, each of the numbers [, ;,, runs over a certain set of values. Assuming that none
of I, 2y, 1 # p, is a constant for the representation Tp,,,,, we equate in (6.13) terms with
the same dependence on [l,,zp]z, r=1,2,..., p, and obtain the relations

(—l)P([Zl,»,sz + I]Ti(mﬂm)/’i(mzml) - [21i,2p+1 - 3]Pi(m2_;§+1)7i(m2p+1))

M~

Il
—

(6.14)

= _02(m2p+1):

M~

Il
—_

(12h2per + 1 Eiper P77V ri(mih ) pi (M)

—[2lizpr1 = 3] [Lizps1 — 1] b= 1)Pi(m2_;+1)fi(m2p+1)> =0, v=L2,...,p—2,

p
> ( 2izpi +1][1; 2p+1]2p_2Ti(m3—;;+1)Pi(m2p+1)
5 (6.16)

— [2hape1 = 3] [laper = 1177 2 pi(mif, ) 7i(mapir) ) = E.

If s parameters [, 55, 7 # p, are constant for the representation Tp,,,,, then the correspond-
ing p,;(my,+1) and 7,(m;p41) vanish and the number of the relations (6.15) and (6.16) is
decreased by s.

In a similar way, it is proved that p;(m,,) and 7;(m,,) from formula (6.5) satisfy the
relations



N. Z. Iorgov and A. U. Klimyk 241

[linp = Lip + 1]p} (m3)) pi (map) = [linp = Liop — 1]p; (mg)ﬂ (my,) =0, i#j, (6.17)

[lizp +1jop +1]7/ (m ;;;)P} (myp) = [Ligp +1j2p — 1]p; (m; ) 7, (myy) =0, i#j, (6.18)

[inp = Liop+ 1] 7 (my, )T'( p) = Uiap = ljop = 1]7;(myp) 7/ (myp) = 0, i# j, (6.19)
[2Li2,+2] 2= i

Z (‘ [llzp][zl’m | ([i2p{liop + 1] = [lrpp-1][lr2p-1 = 1]) 77 (m3,) pi (my)
[ZZIZp L

[zZp][IIZp lr:I [li2p][liop — 1] - [lr,Zpl][lr,Zp1—1])Pf(mz})T{(m2p)>=—Ea

(6.20)

and the last equality leads to the system of equations

Z( 2iap+ 2] ([liap ] [lop + 1) 22/ (mi ) (map)

— [2li2p = 2] ([l2p) [li2p = 1) P (my,)7] (mzp)) 0, »=12,...,p-1,
(6.21)

I~

(12820 + 20 ([l + 11)* 7 (m5})pf ()
1 (6.22)

~ [2hap = 2] ([izglhap = 11" 5 () 7} (msy) ) =

1

It follows from the last relations of Section 4 that for any a € U(;(soz p+1) the operators
pi(myp41), Ti(Mype1), and o(my,y ) satisfy the relations

Tinypei (@)0 (M2ps1) = 0 (Mapi1) Ty, (@), (6.23)

Pi (m2_1i+l)‘rl' (m2p+1)Tm2p+1 (a) mzPH( )Pl (m2_1£+1)Ti (m2p+1)- (624)

Similar relations are satisfied by p; (m;,) and 7; (m;,).

Remark 6.2. Relations (6.8), (6.9), (6.10), (6.11), (6.12), and (6.13) and relations (6.17),
(6.18), (6.19), and (6.20) are consequences of the relation (2.3) with i = n — 1. Other
relations from (2.2), (2.3), and (2.4) containing I, ,—; are satisfied by the operators (6.4)
and (6.5). It is a consequence of the fact that I,, ,,; is a component of the vector operator.

ProposiTION 6.3. Let § € I belong to a subspace Hr,,.,, on which the irreducible rep-
resentation T, ,,, of Uq,(SOZP+1) is realized. Then pj(my,1)& € %mgﬂ and 7;(myp1)€ €
%m£;+1) where %mgﬂ are subspaces of ¥, on which the irreducible representations Tosi of
Uq,(502p+1) are realized, respectively. All the vectors p;(myp+1)(Tm,,,, (a)é),a e U‘;(802p+1),
and all the vectors Tj(mpp.1)(Tm,,., (a)é),ac Ué(502p+1), belong to these subspaces %mgﬂ

and ¥ _ S respectively.

This proposition is a corollary of Proposition 4.1.
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THEOREM 6.4. If the above assumption is true, then the restriction of an irreducible repre-
sentation T of Uq’(son) to the subalgebra Uc’j(so,,,l) contains each irreducible representation
of this subalgebra not more than once.

Proof. We prove the theorem for the algebra U(;(sozpﬂ). For the algebra U‘;(502p+1), the
proof is the same. We consider the decomposition

TlUé(SOZPH) = @ dm2p+1 Tm2p+1’ (6.25)

myp+1
where dy,,,, denotes a multiplicity of the representation Tp,,,, in the decomposition. The
decomposition # = P, « V'h,,,, corresponds to the decomposition (6.25), where, as

in Section 4, o numerates elements of the Gel’fand-Tsetlin basis for the representation
Tm,,.,- Let ngpﬂ = Tm‘z“;i‘l be a maximal irreducible representation of Ué(SOZP+1) in the
decomposition (6.25), that is, such that p; (mépﬂ) =0, j=1,2,...,p. Due to the relations
(6.8), (6.9), and (6.10), the operators p; and pj, as well as the operators p; and 7j, i # j,
and the operators 7; and 7;, commute (up to a constant) with each other. For this reason,
each of the parameters [;p11, i = 1,2,..., p, in the set of the representations T, from
the decomposition (6.25) runs over some set of numbers independent of values of other
parameters [j p+1, j # i.

We take one of the subspaces Vﬁiépﬂ, where mj,,; = m3}};. Its dimension is equal
to the multiplicity dm;,,, of the representation Ty, ,, in the decomposition (6.25). Then
o(mj,,;) is an operator on OVf‘n/ZPH. Clearly, 0(mj,,,) has at least one eigenvector & in

’
2p+1

OVﬁiéw' According to (6.23), all the vectors Ty, (a)éy, a € Uq’(sozp+1), are eigenvectors

of o(mépﬂ). The vectors T, (a)éy,a e U‘;(sozpﬂ), constitute a subspace OV;;épu’ where

the irreducible representation Ty, ,, of Ug(s02p+1) is realized. Let &; = 7j(mj,. )&, j =

1,2,...,p. Then &; € °V;';,2,j and, due to (6.9), pi(m';;H) =0 for i # j. It follows from

pt1 .
(6.12) that &; is an eigenvector of the operator a(m’;}fﬂ). Due to Proposition 6.3, the

vector T, (a)&o is mapped by the operator 7;(m;,,,) into the subspace 0‘/:1'; e Hence,

the operator 7;(mj, ;) maps OVE{ZM into {0} or into the subspace °Vi; ;i > on which the
2p+1

irreducible representation Tm’z]fﬂ is realized.

Under a restriction to Uy (s0zp), the representation Twy,,,, decomposes into a sum of
irreducible representations Tr,,, map = (M1,2p,...,Mp2p). With the numbers m;, we as-
sociate numbers [;;,, (see Section 3). Suppose that none of I, is a constant for the rep-
resentation Tm'zp We apply both sides of the relations (6.14), (6.15), and (6.16) to the
vector & and obtain p equations with p unknown pi(m’2_1§+1)ri(m'2p+1)fo, i=12,...,p.
(Note that pj(m),,;) = 0, j = 1,2,..., p.) Since Li 2p11 > bopr1 > - =+ > 1p2pe1 and q is not
a root of unity, the form of coefficients in (6.14), (6.15), and (6.16) shows that the deter-
minant of this system is not equal to 0. (In fact, this determinant is proportional to the
Vandermond determinant for [li,zpﬂ]z, i=1,2,...,p.) Solving this system, we obtain its
(unique) solution. Since the right-hand side of (6.13) is —E, this means that the vectors
pi(m’£;+1)r,-(mép+l)fo, i=1,2,..., p, are multiple to the vector &. Since 7;(mj, ;)& = &,

+1°

the vector p;(m’;, ;+ 1)&; is a multiple to the vector &,. Therefore, due to (6.24), the operator
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pi(m’z_;H) maps the subspace V;,EI;H into {0} or into VI, spur- 1 some of the parameters
l;2p are constant, then the number of (6.14), (6.15), and (6.16) is smaller than p. As it
is easy to see, in this case, the system of equations also has a unique solution and the
conclusion remains true.

Let & = Tj(m’£;+1)fi, i=1,2,...,p. As above, it is shown that the subspace °V“ i

mpi
spanned by the vectors T _, i xf ;i 1s irreducible for U’ (s02p+1) and consists of eigenvec-
tors of the operator o(m’, 2pr1 ). Itis mapped by the operator p J(m 2p+1 ') into {0} or into
°I/'i;,,i . Moreover, due to (6.9), up to a constant we have

2p+l1

Tj (m,;;+l)£ &ii= 7;(m’ 2p+1)£ §ij. (6.26)

Hence, the subspaces constructed by means of the vectors £ ; and ; ; coincide. Note that if
m’; ;+1 , m’;IfH, and m’,, ;;}’ satisfy the dominance conditions, then the constant in (6.26)
is not vanishing.

We continue this reasoning further applying successively the operators 7; and p; with
appropriate values of the numbers my,.1. Due to the relations (6.8), (6.9), and (6.10),
the operators p; and pj, as well as the operators p; and 7}, i # j, and the operators 7; and
7j, commute (up to a constant) with each other. Therefore, as a result of such contin-
uation, we obtain the set of subspaces °Vm2 ,, of the representation space ¥, on which
nonequivalent irreducible representations of the subalgebra Uq,(502p+1) are realized and
which consist of eigenvectors of the operators 0(m;,+1). These subspaces are mapped by
the operators p; and 7; into subspaces of this set. We consider the subspace ' of the space
J€, which is a direct sum of these subspaces °Vm2 ,,- It follows from the expression (6.4)
for T(Iyp+2,2p+1) that this operator leaves #" invariant. Due to irreducibility of the repre-
sentation T', we have #’ = #. This completes the proof for the algebra U (s025+2). As is
noted above, for U,;(sozpﬂ ), the proof is the same. The only difference is that instead of
relations (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.14), (6.15), and (6.16), we have to
use relations (6.17), (6.18), (6.19), (6.20), (6.21), and (6.22). The theorem is proved. [J

The fact that any irreducible representation T of Ug(so,) contains each irreducible
representation of the subalgebra U‘;(son_l) not more than once means that the operators
pi(mypy1), Tj(Mypy1), 0j(Mype1), p}(mzp), and ‘r]'»(mzp) in (6.4) and (6.5) are numerical
functions. Thus, the formula (6.4) can be represented in the form

P 1/2 )
T(Izp+22p+1 |m2p+la Z(n( sz+1 - lr2p]2)> Pj(m2p+l)|m;;)+1>a>

r=1

P 172 A
+ Z 1_[ < Js2p+tl - [lr,ZP]Z)) Tj (m2p+1) |m2_;+1,06>

r=1

j
P i
+ (n r,2p ) m2p+1) |m21]7+1>“>

r=1

//

(6.27)
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and the formula (6.5) in the form

pl 2 o 12
1 1 ) ,
T(Lpr12p) [ mpp ) = > (l_[ ([lj,zp + E] - |:lr,2p71 - E] )) p(my,) [my),a)
j r=1
pol 2 1 2 1/2 A
Z( _1<[12p ] —[lr,zp—l—i] )) T]’»(mzp)|m2_;,(x>’

(6.28)

where pj(myp1), 7j(mMyp11), 0j(Mypy1), p} (my,), and T}(m2P+1) are appropriate numeri-
cal functions.

Remark 6.5. We have seen under proving Theorem 6.4 that in the set of the representa-
tions Tmzp+1 from the decomposition (6.25) each of the parameters m;zp41, i = 1,2,..., p,
runs over some set of numbers independent of values of other parameters m; i2ptls +i.
It is easy to show by means of formula (6.27) that in an irreducible representation T
of U/ (sozp+2) each m;zpi1, i = 1,2,..., p, takes all values from the set m{%lgﬂ,m,)zpﬂ +
L,...,mj55, without any omitting. A similar assertion is true for irreducible finite-

dimensional representations of Ué(sozpﬂ).
We find an explicit form of the functions pj, 7, o, p} and T]'» from (6.27) and (6.28).
We first consider the case of Ué(sozpu). From (6.11), we obtain the relation [lj 2,41 +

1]0(m;1];+1) = [lj,2p+1 - 1]0(m2p+1)- This means that Hf:l [lj,2p+1] [lj,2p+1 -1]- U(m2p+1)
is independent of [; 5541, j = 1,2,..., p, that is,

S

m2p+1 1_[ 12P+1 ]zp+1 - 1])_1 -0, (6.29)

where ¢ is a constant. (Note that if [, 5,41 = 1, then o(myp;) =0.)
We derive from (6.8), (6.9), and (6.10) the relation

[li,2p+l - lj,2p+1 +1] [li,2p+l + lj,2p+1 + 1]Pj (m;1i+1)T] (m;]l)-:-]l) (6.30)
= [li,zpﬂ - lj,2p+1 — 1][li,zp+1 +lj,2p+1 - I]Pj (m2p+1)Tj (m;;;+1)a

which shows (after multiplication of both sides by [li’2p+1]2 - [lj’2p+1]2) that the expres-
sion

([li,2p+l]2 - [lj,2p+1]2) ([li,2p+1 -1 - [Zj,2p+1]2>Pj (myp11)7; (mﬂ,}l) (6.31)

is independent of [; 55+1. Therefore, the expression

Bj(Lizp+1) = pj(mapir) 7 (mLfﬂ) [iopr ) (2L 2ps1 — 1] [2Lj2ps1 +1]

X 1_[ ( fZP*1 — U 2p+1]2> ([lr,2p+1 - 1]2 - [lj,zpﬂ]z) (6.32)
r#j

depends only on [j5541.
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In order to find f;(lj2p+1) we rewrite the relations (6.14), (6.15), and (6.16) for
Billizp+1):

P

> G

2 2
1:1 B2p+1 1] ([li,2p+1] Ci(li,2p+1) [li,2p+1 —1] Ci(li,2p+1 -

Bi(lizp+1) Bi(lizps1 — 1) )
1)

2 (6.33)
= (-1 7 5
- [lopi1] [lropi — 1]

ﬁ: 1 ([li,2p+1]zvﬁi(li,2p+1) B [lizp+1 — 1]2Vﬂi(li,2p+1 - 1)) o
) [2li2p1 — 1] ci(lizpi1) ci(lizpr1 —1) ’ (6.34)

v=0,1,2,...,p— 3,
i <[li’2"*‘]2p4ﬁi(la2p+1) * [iaper = 1177 Bi(linper — U) =1, (6.35)

1:1 211 2p+l 1] Ci(li,2p+1) C,‘(Zi,sz — l) i ’
where

2 2 2 2
ci(hapet) = [T (Trapn]* = lizp 1) ([lraper = 117 = [lizpea]?)- (6.36)
r#i
For each fixed o, this system of equations has a unique solution ﬁi(li,zpﬂ ),i=1,2,...,p,
since the determinant of this system is nonvanishing. In order to give this solution, we
take into account the constants

l?’+1,2p+2 = 1;1:121;+1 - 1) r= 1)2)~--)p) (6'37)

where [ zlpﬂ, =1,2,..., p, are minimal values of I, 5,41 in the decomposition (6.25), and
represent o (without loss of a generality) in the form

ptl

o=i[][l2pse]; (6.38)
r=1

where [} 55+, is a number, which is determined by o.
From the definition of numbers [, 551, r = 2,3,...,p + 1, and from Remark 6.5 after
Theorem 6.4, it follows that

bopia >Bopi2 > > pi1pio. (6.39)

PROPOSITION 6.6. Solutions of the system (6.33), (6.34), and (6.35) are given by the expres-
sions

p+l
Billizprr) = [T ([l2per]* = [lrapea]’)
r=1
= 2 2 2j
Z ]ep ]+1( L 2p+2] a-~-:[lp+1,2p+2] )[li,2p+1] >

(6.40)

where e, (X1,...,xp+1) are elementary symmetric polynomials in xy,...,Xp41.
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Proof. In order to prove this proposition, we use the relations

z z" 3 1 ifm=s-1, (6.41)
i=1l_[5r=1,r#i (zi—z) |o ifo<sm<s-2, '
: 1 (=1t

= (6.42)
izlzll_[r lr%l( Zr) 210 Zs

(see, e.g., [25]). We put in these relations s = 2p and use the notations z; = x;,zi1, = yi,
i=1,2,...,p. Then they can be written as

p m
2 ( Xi _ i )
i Hr#z (%, —xi) ()’r xi) Hr%i (xr_yi) (yr_)/i)
(6.43)
1 itm=2p-1,
_{O if0<m=<2p-2,
i ( 1 B 1 )
S xi = yi \xi [l (o —xi) (= x3) il (e = i) (e = 32) (6.44)

-1
xl...xpyl...yp.

We put into the relations (6.33), (6.34), and (6.35) L 2541 = ;?Zi?,ﬂ,j =1,2,..., p, where
l;nzlg +1 is @ minimal value of [; 5,11 in the decomposition (6.25). Taking into account that
Bi( }‘E‘;,H -1)=0,j=12,...,p, we see that (6.33), (6.34), and (6.35) turn into a system
of p equations for f3;( ;1"‘2“1‘,“ ), j = 1,2,..., p. We substitute into this system the express.ions
(6.40) for fi( f‘i‘;’H ) and then cancel p — 1 multipliers from the expression for B;(I5p,1)
with the corresponding parts of the expressions for ¢;(I}5 2‘;,‘+1) which are in the denom-
inators. As a result, we obtain a system of relations, which contains only the multiplier
([hopea]® = [ {Eigﬂ] ) from fi( {31;;“ ). Our expressions for f3;( $%+1) are correct if these
relations are true. It is easy to see that they are reduced to the relations (6.41) and (6.42)
ats = pifwesetz = [[55,,1%i=1,2,...,p.

Further we prove the correctness of the expressions (6.40) for fBi(l;2p+1) by induc-
tion. Namely, we first put [j 2,41 = l;“;‘; +1» j # 1, and successively conduct the proof for
Bi( fzi?,ﬂ +1),5:( {‘}Zi?,ﬂ +2),... Prli5a = 1). Then we put [jspi = l;{‘j‘f‘,ﬂ,j # 1,2, and
conduct the proof for B> (135,, + 1), Ba( l;‘g‘;ﬂ )>--+>f2(l33541 — 1) under any value of
L1 2p+1. We continue this procedure up to 3, lp’2P+1 ). On each step, this proof is conducted
by using the relations (6.43) and (6.44). Namely, we put in these relations x; = [lizp+1]?
and y; = [lizp+1 — 1]%, then multiply each of them by the corresponding symmetric poly-
nomial from (6.40), and sum up them termwise in order to obtain the relation (6.33),
then the relations (6.34) for v =0, 1,2,..., p — 3, and at last the relation (6.35). This proves
that B;(lj2p+1), j = 1,2,..., p, for given values of I; 5,41 satisfy the relations (6.33), (6.34),
and (6.35). Note that /3,(1,";“52r1 = 0 since in this case p;(m3py;) = 0. The proposition is
proved. O
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Thus, we have found the expressions for 8;(l; 2p+1), j = 1,2,..., p, depending on I} 52,
and the corresponding values of ¢. In order to separate p;(myp4;) and Tj(m;rgﬂ) in ex-
pression (6.32) for f8;(I;2p+1), we note that these functions are not determined uniquely
by the representation. Ambiguity in a choice of p;(my,+;) and Tj(mg;ﬂ) is related to a
choice of basis elements. Namely, in the basis

p
|m2p+1305>, = nwr(lr,2p+1) - | myppar,a), (6.45)

r=1

where w,(l;2p+1) is a numerical multiplier depending only on I, 5,1, we obtain some-
what different formulas for the operator T(Lp+2,2p+1). Actually, if to pass to the basis
{Imy,;1,a)'} in formula (6.27), then the coefficient o(mypy;) remains without any
change, and pj(m;,;1) and 7j(m;,;) are transformed into

w;j(lj2p+1)

Pilmapin) = e+ 1P 2001 )
IR (6.46)
7i(mapi1) =7wj(lj’2‘”“) 7;(mypi1)
P w0 (ligpe = 1) T
Moreover, we have
~ A~ +7j +j
pj(mapi1)7; (mzéﬂ) = pj(myp)7; (mzzj,ﬂ). (6.47)

It is clear that the multiplier w(lj,p+1) can be chosen in such a way that pj(my,1) =
A +j .
—Tj(mzlj,ﬂ), that is,

w;j (ap+1) _wi(liapr +1)

+j
@; (g + 1) P12 = 7j(mgp). 6.48
@; (Liaps1 + 1)P1( 2p+1) ©;(Lipe1) j(myp,) (6.48)
We obtain from here that
wj(ljops1) ? T (mgﬂ)
- : (6.49)
©j(li2pr1 +1) pj(mzp1)

Taking this relation for [; 5541 = ;{‘Zigﬂ, ;nzlr;m +1, ;"2";,+1 +2,..., we find that

lj,2p+]71 p(m2 1) 172
+
j(ljpr) = ¢ i (6.50)
1= Tj (m2p+l)
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where ¢ is a constant. Thus, we may consider that from the very beginning we have a basis
for which

pi(mapr) = —7;(my),). (6.51)
Then it follows from (6.32), (6.40), and (6.51) that

-2 1 ) 12
[lj,2p+1] [21j,2p+1—1 P+ < r2p+2 - ]2p+1])

[Liopr + 1] TT 4 ([lr,2p+1]2 -1, 2p+1]2) ([lr 2p+1 — 1° - [lj,2p+1]2)

pj(mypi) =

>

(6.52)

where [-+12p12 = lﬁf‘zigﬂ - 1,r=12,...,p, and [, 5y, is a parameter which together with
lLiap+2, ¥ =2,3,..., p+ 1, must determine irreducible representations. In the next section,
we will find a domain of the parameters [, 5p42, 7 = 1,2,...,p+ L.

Substituting the expressions (6.51) and (6.52) for p;(my,+1) and 7;(m;,4 ) into (6.27),
we obtain

)

Bz 1 (mypy1)
T(Lpi22p+1) | Mops1,ax) Z s P m;;,H, )

— ]2p+1)[l],2p+1] |

(6.53)

i BZp+1(m;[£+l) |m «)
2p+1>

]2p+1 1) [lj,2p+1 - 1
+ 1C2p+1 (m2p+l | m2p+1a“>a

where b(lj2p41) = ([21j2p+1 +1][2]j2p+1 — 1])"? and

Bépﬂ (m2p+1)

1 12
T2 (iope + Liopsr liopez = Lopen ) T [lizp + Liop 1 [lizp — Liopen ]
l'lf;j [lizpr1+ljopst ) izpr1 =Liopei Hlizpriljoprn =1 lizpr1=lj2pr —1] ’

T2 Uoapra ] T2 2]
e, [ls2ps1]lls2prn — 1]

C2p+1 (m2p+1) =

(6.54)

This formula coincides with (3.6) if we replace p + 1 by p. We have to determine admis-
sible values of the parameters l;2512, i = 1,2,...,p + 1.

Now we consider the case of Uq’(sozp+1). We have to find possible expressions for
p;(mzp) and T]'-(mzp) in (6.28).

We derive from (6.17), (6.18), and (6.19) the relation

(izp +Liopllizp = Lizp = lhi2p + L2p + ULi2p — Li2plpj (map) T (mzzjv)

= [li,2p + Zj,2p] [Zi,zp - l]',zp - 1] [li,2p + lj,2p - ][li,2p - Zj,Zp ]P] (m2p)T (m21;+])’

(6.55)
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which shows that the expression

([2p) iz = 11 = [B2p [l2p + 11) (Ui + 11 [i2p] = [Li2p] (L2 + 1) () 7} ()
(6.56)

is independent of [; . Therefore, the expression

B (Lj2p) = pj(may)7 (m2p) ("2 +q7hor) (gh*! + gl 1)

X [T Urap ) lrzp = 1] = Wiap  [jap + 11) ([lr2p + 1 Lrap] = [2p] [Li2p +11)
r#j
' (6.57)

depends only on [;;,. Then we rewrite the relations (6.21) and (6.22) for ﬁ}(lj,zp) and
in the same way as in Proposition 6.6, using the equalities (6.41) and (6.43), derive the
following proposition.

PROPOSITION 6.7. Solutions of the system of equations for ;(Ij2p) are given by the expres-
sions

I
I~

Bji(liap) (Li2p [ Tj2p + 1] = [Iraprr [l 2per = 11)
r=1
p
= n [lr,2p+1 + lj,2p] [lr,2p+1 - lj,2p - 1]
r=1
P ) .
= Z(— I)P_]ep—j([ll,ZpH] [l1,2p+1 - 1];- (K} [lp,2p+1] [lp,2p+1 - 1]) ([lj,2p] [lj,2p+1])],
j=0

(6.58)
where lippn1 = I35 +1,i=1,2,...,p, and e;(x,...,xp) are elementary symmetric polyno-

mials in xi,...,Xp.

Separating pj(m;,) and 7; (m;r;,) from f3;(lj»,) as in the previous case, for the operator
T(Iypt1,2p) of an irreducible representation T of Ué(sozpﬂ ), we obtain

$ Aylmap) | )3 é" ) |t ), (659)

T(Iz 1,2 )|m2 0() = o
prlep P a(lj,Zp) 2}7’ le ]Zp_l 2p

j=1

where a(lj,,) = {(gh* + g b2 =1)(ghe +q7h2)} V2 and

Aép (m2p)

_ 12
_ Hle [lizps1 +1j2p [liope1 — Ljop — 1] Hlel [lizp-1 +Lioplllizp—1 — Ljnp — 1]
Hf;]- [lip + Lioplizg = Liop [lizp +12p + 1[lizp — Ljnp — 1] .

(6.60)
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Thus, we derived an explicit form of the operator T(I,,,—1) of an irreducible represen-
tation of U, (son). In order to obtain a classification of irreducible representations of the
classical type, we have (by using (6.53) and (6.59)) to derive a domain of the parameters
lln,lzn,...,lpn, p= ln/2].

7. Reduced matrix elements for the nonclassical type representations
We assume that Assumption 6.1 of Section 6 is acting.

ProposiTioN 7.1. Let T be an irreducible finite-dimensional representation of Uy (so,) be-
longing to the nonclassical type. Then the decomposition of T\ us(so,.,) into irreducible con-
stituents contains irreducible representations Tem, , with the same €.

Proof. The proposition follows from Proposition 5.4 and from the fact that the decom-
position of the tensor products T; ® Tem, , (Where T is a vector representation) into ir-
reducible constituents contains irreducible representations of the nonclassical type with
€ coinciding with € in Te m, ,. The proposition is proved. O

Let T be such as in Proposition 7.1 and let # be a space on which T acts. Let

W= D Ve, i (7.1)

my_1,i

where V¢, i is a linear subspace, on which an irreducible representation Tem, , of
Ug(son-1) is realized, and i separates multiple irreducible representations in the decom-
position. We also introduce the subspaces

oVe,mﬂ,l = @Vs,mn,l,i, (7-2)
i

We take a Gel’fand-Tsetlin basis in each subspace V'¢ m, ,.; and denote the basis vectors by
le,my,_1,i,a), where a = a,,_, are the corresponding Gel’fand-Tsetlin tableaux. Let

OV?,mn,l = @C\E,mn,bi’(x>. (73)

We know from Proposition 5.4 that the operator T(I,,,,—1) transforms the vector |€,m,,_j,
i,a) into a linear combination of vectors of the subspaces V¢ i, , and Ve s, s = 1,2,...,
k, where k = | (1/2)(n — 1)]. Since the operator T(I,,-;) commutes with all the oper-
ators T(Iss-1), s = 2,3,...,n — 2 (i.e., with operators corresponding to elements of the
subalgebra Uy (so,-2)), it maps subspaces V¢, | into a sum of subspaces V¢ . with
the same a.
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Due to Wigner-Eckart theorem (see formula (4.6)), the action of the operator
T(Iy,-1) on the subspace V¢, can be represented in the form

P P 1/2
T(I2p+2 2p+1 anfmsz Z (n j2p+l +1 2p [lj,2p+1 - lr,2p]) Pj (E:m2p+1)

j=1 \r=1

P P 1/2
+Z<l—[ Linpr1 +10p — 1][lj,2p+1_lr,2p_1]> 7j(€,myp41)

j=1 \r=1

+(ﬁ [1r.2p] ) (€;myp),

r=1

(7.4)
if n =2p+2 and in the form
P p-1 172
T(I2p+l,2p) lngmep = Z (1_[ [lj,zp +lr,2p71][lj,2p — lr,2p—1 + 1]) p; (€>m2p)
e (7.5)

p-1

12
z (n i2p +hrap1 = 1][1j2p — lr,2p—1]) 7;(€,myp)

if n=2p+1, where p;(€,my,11), pj(€,m2,), 7j(€,myp11), 7j(€,my;), and o(€,myp41) are
the operators such that

. .9ra e . L9ra 9
Pj (€)m2p+1) . oVe,mzpﬂ OVE m;‘,}m > P] (E,mzp) . 0‘/’E,mzl,, OVE m;}}))
. —_ o .
T] (€’m2p+l) '0V€ym2p+l €;m;;+1)
o 3
T]’-(e,mzp) T s, —»°[/vf e if j# pormpy,y = > (7.6)
1
4 .
Tp(6>m2p) :Ongzp - OngzP’ lme’ZP = E’
o
(E m2p+1) 0‘/5 My OVG Mopi

The coefficients in (7.4) and (7.5) are the corresponding Clebsch-Gordan coefficients of
the algebra U’(so0,-1) taken from [14]. As we know from the Wigner-Eckart theorem,
pil€,my,p), p](e my,), Tj(€,mMypy1), T (e my, ), and o (€, myp ;) are independent of a. A
dependence on « is contained in the Clebsch Gordan coefficients.

We first consider the case of the algebra U, (s02+2). We act by both parts of the relation

12p+1,2p122p+2,2p+1 —(q+q ) Lpr2zpr1lpr1zphprazpt +122p+2,2p+112p+1,2p =—Dpnap (7.7)

upon vectors of the subspace V¢ 1, | with fixed €, m,.1, a and take into account formula
(7.4). As a result, we obtain for p; (e my,.1), Tj(€,mMypy1), and o(€,m;yp4 ) the relations



252  Classification theorem on irreducible representations

[li,zp+1 - lj,2p+l + l]Pj(Eam;;;+1)Pi(€>m2p+l)

4 (7.8)
—[lizpt1 = ljopr1 — I]Pi(E,mZm)Pj(E)mzpﬂ) =0,
[li,2p+1 + lj,2p+1]Ti(€>m;1]7+1)Pj(€3m2p+1) (7.9)
- [li,2p+1 + lj,2p+1 - Z]Pj (G)m£i+1)Ti(€,m2p+l) =0,
p
[li,2p+1 - lj,2p+1 + l]Ti(Gamz_gﬂ)Tj (E,m2p+l) (7.10)
—[lizp+1 = ljops1 — I]Tj(€>m££+1)7i(€)m2p+l) =0, .
[Liap+1 + 1]+0(€sm;;]>+1)/)j(€’m2p+l) (7.11)
— Lj2p+1 — L pj(€,Mp1 )0 €, Myt ) = U,
[1 1].p;i( )o( )=0
[lj,2p+l]+Tj (E)m2p+1)0(€;m2p+l) (7.12)
- [lj,2p+1 - 2]+0(€)m2_};]+1)7:j (€)m2p+1) =0, .
p P 5 )
z [2li2p1 +1] n( 12p+1 - erp]+) ti(€,m3p, 1) pi(€,maps1)
o Tk
P
2llZp+1 1_[( i,2p+1 — - [lr2p] )p;(E m2p+1)Tl(E m2p+1) (713)
]
p
-110 r2p (€;mypy) = —E,
]

and k is a fixed number from the set

where i # j, E is the unit operator on V¢,

{L,2,...,p}.

The irreducible representations Tem,,,, of U[;(sozpﬂ) under restriction to U,;(sozp)
decompose into irreducible representations Te m,, of this subalgebra such that the num-
bers my, satisfy the inequalities determined by the Gel’fand-Tsetlin tableaux. Under this,
each of the numbers I, runs over a certain set of values. Assuming that none of /5,
r # p, is a constant for the representation Tem,,,,, we equate in (7.13) terms with the
same dependence on [/, zp] and obtain the relations

p
Z [21; 2p+1 +1]7i(e, m2p+1)Pl(€ m2p+1) [ZZi,2p+1 —3]Pi(€>m2}i+1)T,‘(E,mzpﬂ))
i=1
= (-1)Po?(e,myp11),
(7.14)

I~

([2li,2p+l + 1] [li,2p+1]i(p_v_l)Ti(E,m;;;+1)Pi(€)m2p+1)
1

1

. , (7.15)
—[2Lap1 = 3] [Lizpsr — 17 v 1)P (E,m£1§+1)Ti(€,m2p+1)) =0,

V= 1,2)--':p_2>
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p
2p-2 ;
Z ( 2l; 2p+1 T 1 l, 2p+1]+p Ti(E’m;;H)Pi(EymZpH)
i=1 (716)

— [2li2p+1 = 3] [Li2p1 — l]ip_zpi(fam£1§+1)7i(G)m2p+1)) =E.

If k parameters I, 2, r # p, are constant for the representation Te m,,,,, then the number
of the relations (7.14), (7.15), and (7.16) is decreased by k.

In a similar way it is proved that p;(€,m;,) and 7;(€,m;,) from formula (7.5) satisfy
the relations

[liop = Liop+ I]P] (e, mz;:)P; (€,my))
(7.17)
—[lizp — Ly — 11pi (€:my) i (6,map) =0, i # j, -
[liop +1i2p+1]7 (€, mZu)P}(G,mzp) (7.18)
—[liap+1inp = 1pj(€,myy) 7/ (€,myy) = 0, i # j,
[li,zp—lj,zp-l-l] (6 m2p)T,(e’m2P) (7.19)
—[lizp = ljop — 1177 (€, mzp)‘r (€;myp) =0, i#j, '
’ (26, +2] 2
_— I; lirp+1
;( zzp] [Zz,2p+1]+ rl:[1 ([ ,2P]+[ 2P ]+
~[lap-1], [hap1 = 11,) 7/ (e;mi5) pj (€,ma)
[2L;2p — pl
+7[li,2p] [l,zp + 1:[( 12p 12p_1]+
—hr2p-1i[lr2p-1 = 1]+)P§(€)m££)T{(€’m2p) = —E.
(7.20)

If Ippp = mp,p = 1/2, then pP(E mzf) Ig(e,mzp) must be replaced by (TI’J(E,mzp))Z. The
last relation implies the equalities

p—v—Z ’ i ’
([2hip +21 ([hiap) [hizp +11.) 7 (€mih) pi (€,map)

M~

1

r (7.21)
— [2liop = 2] ([lip) Loy = 11,) " “pi(emz}) 7] (e,map) ) = 0,
v=12,...,p—1,
P p-2 .
Z [211 2p +2] [lijzp]Jr[li,zp + I]Jr T;(E,m-{;)P; (E,mzp)
(7.22)
i=1 .

P*Z ’ —1 ’
— [2h2p = 2] ([hapl, lliop = 11,)" pi(€m3)) 7/ (€,;map) ) = E.
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THEOREM 7.2. The restriction of a nonclassical type irreducible representation T of Ug(son)
to the subalgebra Uj(son-1) contains each irreducible representation of this subalgebra not
more than once.

This theorem is proved (by using relations (7.8), (7.9), (7.10), (7.11), (7.12), (7.13),
(7.14),(7.15), (7.16), (7.17), (7.18), (7.19), (7.20), (7.21), and (7.22)) in the same way as
Theorem 6.4 and we omit this proof.

According to this theorem, the operators p;(€,mz,1), P}(E,mzp), 7i(€,myp11), T]'-(e,
my,), and o(€,my,;1) are numerical functions. We have to find possible expressions for
these functions.

First we consider the case of U‘;(sozﬁz). We obtain from (7.11) that

P -1
m2p+1 1_[ ( ]2p+1 ]2p+1 - 1]+) -0, (723)
j=1

where ¢ is a constant. As in the case of the representations of the classical type, from
relations (7.8), (7.9), and (7.10) we derive that the expression

,Bj(lj,2p+1) PJ(E m2p+1) (E m2p+1)[lj,2p+1]i[21j,2p+l -1] [le,2p+1 +1]

X H( ’2P+1 - 12p+1]2) ([lr,2p+1 - 1]2 — [lj,2p+1]2) (7.24)
r#j

depends only on [j 5,41.
We rewrite the relations (7.14), (7.15), and (7.16) for f8;(l;j2p+1) and introduce the
notations

brapr2 =550 =1, r=12,...,p. (7.25)

Then we represent o (without loss of a generality) in the form

ptl

0 = €ps2 n [Lr2pi2]s (7.26)
r=1

where [} 5,1, is a number, which is determined by o.

ProposITION 7.3. Solutions of the system of equations for Bj(lj2p+1) are given by the ex-
pressions

ptl

Bi(linp+1) = 1_[ ([li,2p+1]2 - [lr,2P+2]2)

r=1
p+l

= n ( 12p+1 r2p+2]i) (7.27)

p+l

= Z (1) ep—jn ([l1,2p+2]_2p---) [lp+l,2p+2]i> ([lj,2p+1]_2,.)])

j=0

where e, (X1,...,Xp+1) are elementary symmetric polynomials in xy,...,Xp41.
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This proposition is proved in the same way as Proposition 6.6 by using relations (6.41),
(6.42), (6.43), and (6.44). ‘

Separation of p;(€,m;,.1) and 7; (e,mgﬂ) from B;(lj2p+1) are fulfilled in the same
way as in the case of formula (6.32) and we obtain the following formula for T(I>p4+22p+1):

L B m + )
2p+1 2p+1 +j
E €, m o
]2p+1)[lj,2p+1]+| I >

Bz +1(mz_j+1) (7.28)
. . ] |€m2p+lr >

T(Izp+2,2p+1) | €M) 1,Q
]:1

+€2pC2p+1(m2p+l |mypi1,a),

(Ligpe1 = D) [L2pr1 — 1

where Bépﬂ (my,41) and b(lj,2p+1) are given by the same expressions as in (6.53) and

T [oapea ] T2 ooy
Hle [ls,2p+1]+[ls,2p+1 - 1]+

ézp+1 (mypi1) = . (7.29)

This formula coincides with (3.15) if we replace p + 1 by p.
Now we consider the case of U{;(302p+1). We derive from the relations (7.17), (7.18),
and (7.19) that

Bi(1i2p) = pi(€;mup) 7} (€,my)) (ghr — g lior) (gliart! — g her 1)

X 1_[ ( r2p r2p - 1]+ - [lj)ZP]+[lJ')2P t 1]+> (7.30)
r#j

< ([nap + 11l = izp) iz + 1)

depends only on [;;, (we used here the relation [x][x — 1] — [y][y — 1] = [x]+[x — 1] —
[y]+[y — 1]+). Then we rewrite the relations (7.21) and (7.22) for ﬁ}(lj,zp) and, using the
equalities (6.41) and (6.43), derive the following proposition.

PROPO?ITION 7.4. Solutions of the system of equations for fB(l;2p) are given by the
expression

=]

ﬁ] ]2p 1_[( ]2p ]2p+1]+_[lr,2p+l]+[lr,2p+1_l]+)) (7-31)

r=1

where lizp41 = lﬁa;‘+ Li=12,...,p.
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We separate p; “(m;,) and T (m ) from [3] (Ij2p) and obtain for the operator T (I>p+1,2p)
of an irreducible representatlon T of U’ (sozPH) the expression

€2p+1
T(Lps12p) | €;myp,a) = 5mp,2,,,1/2ql/+}1/2D2p(0€n) |€,myp,ax)
j j .32
[ Ay (may) ‘ ;p m2;> oy T
Z ’ Z 6 mzp,OC),
ioa (lj,zp) iz -1)

where €5, takes one of the values +1, Aép(mzp) is given by the same expression as in
the case of the formula (6.59), a’(l;2,) is such as in (3.14) and

[, [lzzp+1 -1/2] Hl 1 [li,2p—l -1/2]
Hi:l [ i2pt 1/2] [li,2p - 1/2]

sz (mzp) = (733)

8. Complete reducibility

In this section, we prove complete reducibility of finite-dimensional representations of
U,;(son) if Assumption 6.1 of Section 6 is true. For the algebras Ué(503) and Ué(so4), this
assumption is fulfilled (see [10, 12]).

TaeOREM 8.1. If Assumption 6.1 of Section 6 is true, then each finite-dimensional represen-
tation of U, (son) is completely reducible.

Proof. To prove the theorem, it is enough to show that every finite-dimensional represen-
tation T of U, (so,), containing two irreducible constituents, is completely reducible. We
represent the space ¥ of the representation T in the form H = J€; @ %, such that 3¢, and
J€, are invariant with respect to U,;(son_l) and on %, and 9€/¥, irreducible representa-
tions of U(;(son) are realized (we denote them by T, and T, resp.). We have to consider
three cases.

Case 1. One irreducible constituent of T is of the classical type and another of the non-
classical type.

Case 2. Both irreducible constituents of T are of the classical type.

Case 3. Both irreducible constituents of T are of the nonclassical type.

Proof of Case 1. We restrict the representation T onto Ué(son_l) and decompose it into
a direct sum of irreducible representations of U, (s0,-1). Then ¥ is the direct sum % =
9, ® ¥, where ¥, and ¥, are sums of the linear subspaces on which irreducible rep-
resentations of U (so,-1) are realized, which belong to the classical type and to the non-
classical type, respectively. Let & € 9€; transform under an irreducible representation
of Uc’l(son,l). Then due to Proposition 5.4 and the statements of Section 4 on decom-
position of tensor products of irreducible representations, T(I,—1)& € 9€;. Similarly, if
& € ¥, transforms under an irreducible representation of U‘;(son, 1), then by the same
reason T(I,,—1)& € 3,. Therefore, 3, and ¥, are invariant (with respect to Ué(son))
subspaces of (. This means that the representation T is completely irreducible. O
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Proof of Case 2. Under restriction of the representation T upon Uq’(son,l), its irreducible
constituents T} and T, decompose into a direct sum of irreducible representations of this
subalgebra. We denote the corresponding collections of numbers, characterizing these
representations of U‘;(son_l), by m,_; and m,_,, respectively. The corresponding sets of
m,_; and of m,_; will be denoted by Q; and Q,, respectively. Since for m,_; € Q, each
min-1 runs over values independent of values of m;, 1, j # i, then in Q; there exists a
single maximal m,_; denoted by m;®]. Similarly, in ), there exists a single m;*}. We
divide Case 2 into four subcase.
Subcase 1. There exists no irreducible representation Ty, , of Ué(soy,,l) withm,_; € O
such that m)*f = m,,_;.
Subcase 2. The representation Tymx is equivalent to some irreducible representation
Tm, ,,Mmu_; € Ql and M)} # m)*}.
Subcase 3. m;*f = m)*} and T is not equivalent to T5.
Subcase 4. T; is equlvalent to T,.

We conduct the proof for the representations of the algebra Ué (s02p+2). For the algebra

U’ (502P+1) the proof is similar and we omit it.

Let & be a vector of the subspace lrrrszi( on which the irreducible representation Ty,

of Ug(s02p+1) is realized. A multiplicity of Tiags, in the representation T'ly;(soy,,) is one.
Therefore, § is an eigenvector of the operator o(mj}}, ). We follow the reasoning of the
proof of Theorem 6.4 acting successively upon & by the operators p; and 7; of Section 6
(corresponding to the appropriate values of mypy;). As a result, we obtain an invariant
(with respect to U’(Sozp+2)) subspace % of ¥, which is a direct sum of nonequivalent
irreducible (with respect to the subalgebra U/ (502p+1)) subspaces Yir  On ¥ the ir-

my,+1
reducible representation T, of U, (502p+2) is reahzed Therefore, T is apdlrect sum of its
subrepresentations T} and T5.

In Subcase 2, mg}fj‘l is not a maximal set of (#112p11,...,M2p+1) for the representation
T. Therefore, there exists j, 1 < j < p, such that p;(m3};) # 0. This operator has one-
dimensional kernel 3. We take a vector ¢ € . Thus, pj(mg}ff])f = 0. Due to relation
(6.11), & is an eigenvector of the operator o(mzpy,), and due to (6.8) p,(m%afl)f
1 <i < p. Now a proof is conducted in the same way as in the previous subcase (by usmg
the reasoning of the proof of Theorem 6.4).

Since T; is not equivalent to T, in Subcase 3, we easily derive from the results of
Section 6 that for irreducible representations T; and T, the corresponding values
o(mypy;) and o(myyY,) are different. Therefore, the operator o(m3py;) for the whole
representation T is diagonalizable. We take eigenvectors &; and &, belonging to differ-
ent eigenvalues. Then pj(m%a}r‘l)fs =0, s = 1,2, for all values of j. We act upon &; and
& by the operators p; and 7; and then, in the same way as in the proof of Theorem 6.4,
obtain two linear invariant (with respect to U,;(sozpﬂ)) subspaces ¥, and ¥, of ¥ such
that 3¢ = ¥, @ J€,. This proves the theorem for Subcase 3.

For simplicity of notations, in Subcase 4, we set

myp41 = (m1,2p+1)-~>mp,2p+1) =m= (mly---)mp)) (8.1)
(ll,2p+1>~--)lp,2p+1) = (L,... ) '
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The operators o(m), p;(m), and 7;(m) for the representation T of UL;(SOZP+2) will be

denoted by (T (m), p;T) (m), and T](»T) (m), respectively. In Subcase 4, these operators are
of the form

_ (o(m) &(m) (1), _ (Pi(m)  pj(m)
am(m)_< 0 U(m))’ i (m)_<]0 Pj‘(m)>’ (8.2)

where o(m), p;(m), 7;(m) 6(m), 5;(m), and 7;(m) are usual functions. Moreover, o(m),
pj(m), and 7;(m) are functions from Section 6, corresponding to the irreducible rep-
resentation Tj. Substituting these expressions for ¢(™(m) and p;T)(m) into (6.11), we
obtain identities for elements o(m) and p;(m), coinciding with (6.11), and the identities

[1;-+1] (o (m*);(m) + & (m*) p;(m) = [1; ~ 1](5;(m)o(m) + p; (m)(m)). ~ (8.3)

The function o(m) corresponds to an irreducible representation of the algebra UL; (502p+2)
and is given by (6.29) and (6.38). Using the relation [; + 1Jo(m*/) = [l; — 1]o(m), fol-
lowing from (6.11), we derive from (8.3) that [[; + 1]6(m*/) = [l; = 1]6(m). Thus, simi-
larly to the case of 0(m) in Section 6, we derive

p
gm)=a[ [ (415 -1]) ", (8.4)

j=1

where G is a constant. We state that & = 0. In order to show this, we remark that if (m) =
0 for some m, then & = 0, and then ¢(m) = 0 for all m.

In the case when [,112p+2 = 0, the representation T} ~ T, contains representations of
Uq’(sosz) with [, = 1. In this case, 0 = 5 = 0.

Let lp11,2p+2 > 0. It this case, 0 # 0. From the relation (6.13), written for the represen-
tation T of U,;(sozpﬂ), we derive that

P p-1 p-1
(= 204 0T (1 D) om) + 2431 T (0= 1= D) m)
i=1 r=1 r=1
(8.5)
where
Fi(m) := 7;(m"") 5;(m) + %;(m*") p;(m). (8.6)

We consider representations Ty, of Uq’(sosz) from TlU;,(sozPH) with my,...,m, tak-
ing their minimal values. If all [;5,, s = 1,2,..., p, are not fixed for these representations,
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we have

[2l +1]F, (ml,mzmi“,...,mf;i“) —[2l; = 3]F (m; — 1,m§nin,...,mrpnin)

P
Z [21; + 1] F; (my, my™n,. .,mg‘in)

= (—1)P+120(m1,m2 i“,...,mgﬁ“)&(ml,mgni“,...,mgﬁn),
(2L + 1] (L] Fy (my,m0,om™) = [21 = 3][1 = 17 Fy (my — 1m0, mi)

p
+> [26+ 1] (L] Fi (my, myin, . Lmp®) =0, v=12,.,p—L
i=2

(8.7)

We sum each equation in (8.7) over I; from [

cients [2]; — 1] and obtain

lmax

= bopio +1 to IT™ with weight coeffi-

» I
D Gi=2(=1)7" Y [2h = 1o (my,my™,. ., mp™) & (my, mpn,. . ,mp"),  (8.8)
i=2 11=li“in
! 2
SIE7Gi=0, v=1,2,...,p—1, (8.9)
i=2
where
o
Gi= > [2L = 1][2Li+ 1]F;(my,m5™, ... m3™™). (8.10)

I =Iin
Since the system of homogeneous equations (8.9) for G;, i = 2,3,..., p, has nonvanishing
determinant, we get G; = 0 and, therefore, (8.8) gives

max
i

> [2h = 1o (my,my™, . mp™) 6 (my, myn,...,m5") = 0. (8.11)
L=Ipin
Taking into account (6.29) and (8.4), we get

_ T [an-1]
ll%m[ L]’ [h-1)°

max
i

Il
Q
Qu

LI 12> (8.12)
Jy —pin (h-11" [4]

—a&( 1 — 1 )
[hopal” (717

Since [I7™*]? # [L2p+2]? and o # 0, we obtain & = 0.
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If the values of [, are fixed in the considered representations of Uq’(sozp+1 ), then the
number of relations, which follow from (8.5) and the number of G; are decreased by the
number of fixed [;»,. Thus, as before, we get G; = 0, i = 2,3,..., p and, therefore, & = 0.

We have proved that (m) = 0 for all irreducible representations Ty of U{;(Sozp+1),
contained in the representation T’ y;(so,)- This means that all operators o™ (m) are diag-
onal and the further proofs of complete reducibility are conducted in the same way as in
the previous subcase. O

Case 3 is proved in the same way as Case 2 and we omit this proof. The theorem is
proved. O

Corovrrary 8.2. Ifirreducible finite-dimensional representations of Ug(so,-1) are exhausted
by irreducible representations of Section 3, then each finite-dimensional representation of
Uy (son) is completely reducible.

9. Classification theorems
Suppose that Assumption 6.1 of Section 6 is acting.

ProrosITiON 9.1. If Assumption 6.1 of Section 6 is true, then irreducible finite-dimensional
representations T of Uy (so,) such that the restriction Ty, (so,.,) contains in the decomposi-
tion into irreducible components only representations of the classical type of U;(so,-1) are
exhausted by the representations of the classical type from Section 3.

Proof. We prove the proposition when n = 2p + 2. For n = 2p + 1, the proof is similar.

Let T be a representation of Ué(sozp+2) from the formulation of the proposition.
Then the functions f;(li2p+1), defined by the formula (6.32), are given by (6.40). It was
shown above that TlU‘;(sozpﬂ) = EBmsz Twm,,., and in this decomposition each ;3,11
runs over the values m§?§2+l,m§f‘2ir1‘,+1 +L...,m755,, where lf,‘zigﬂ = l412p+2 + 1. Due to
the properties of the functions p;, 3,( {f‘zigﬂ +s)#0fors=0,1,.... 750, - ;"‘Zigﬂ —1and
Br(I755+1) = 0. Then it follows from (6.40) that I35, | = I,2p+2, 7 # 1. Since B, (I55,,) = 0,
we find from (6.40) that l{‘?ﬁ"p‘ﬂ coincides with I 551, or with —I; 5,1,. Therefore, [ 551>
is an integer (a half-integer) if li2/+2, i = 2,3,..., p + 1, are integers (half-integers). More-
over, l12p+2 may be positive or negative. We see that the formula for the operator
T(Iyp12,2p+1) does not change if we replace li 5p42 and lpy12p42 by L 2p12 and 111 2p12,
respectively. Therefore, we may consider that [} 5,45 is positive and [y;15,+> takes positive
and negative values. Now taking into account admissible values for [; 551, i = 1,2,...,p +
1, and formula (6.53) for T(I5p+2,2p+1), We see that the representation T coincides with
one of the irreducible representations of the classical type from Section 3.

In order to prove the proposition for representations of the algebra UL; (502p+1), We use
the formula of Proposition 6.7 and formula (6.59) instead of formulas (6.40) and (6.53).
The proposition is proved. O

ProrosITION 9.2. If Assumption 6.1 of Section 6 is true, then irreducible finite-dimensional
representations T of Uy (so,) such that the restriction Ty, (so,.,) contains in the decomposi-
tion into irreducible components only representations of the nonclassical type of Uj(s0,-1)
are exhausted by the representations of the nonclassical type of Section 3.
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The proof of this proposition is the same as that of Proposition 9.1.

Tueorem 9.3. Irreducible finite-dimensional representations of the algebra U, (so,) are ex-
hausted by representations of the classical type and of the nonclassical type from Section 3.

Proof. For the algebra U{;(son_l) = U,;(504), Assumption 6.1 of Section 6 is true (see
[10]). Now the theorem is easily proved by induction taking into account Theorem 8.1
and Propositions 9.1 and 9.2. The theorem is proved. O

CoroLLARY 9.4. Each finite-dimensional representation of U (son) is completely reducible.

Proof. This assertion follows from Corollary 8.2 of Section 8 and from Theorem 9.3. [
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