

CONTINUITY FOR MAXIMAL COMMUTATOR OF BOCHNER-RIESZ OPERATORS ON SOME WEIGHTED HARDY SPACES

LIU LANZHE AND TONG QINGSHAN

Received 17 May 2004 and in revised form 3 November 2004

We show the boundedness for the commutator of Bochner-Riesz operator on some weighted H^1 space.

1. Introduction

Let b be a locally integrable function. The maximal operator $B_{*,b}^\delta$ associated with the commutator generated by the Bochner-Riesz operator is defined by

$$B_{*,b}^\delta(f)(x) = \sup_{r>0} |B_{r,b}^\delta(f)(x)|, \quad (1.1)$$

where

$$B_{r,b}^\delta(f)(x) = \int_{R^n} B_r^\delta(x-y) f(y) (b(x) - b(y)) dy \quad (1.2)$$

and $(B_r^\delta(\hat{f}))(\xi) = (1 - r^2 |\xi|^2)_+^\delta \hat{f}(\xi)$. We also define that

$$B_*^\delta(f)(x) = \sup_{r>0} |B_r^\delta(f)(x)|, \quad (1.3)$$

which is the Bochner-Riesz operator (see [8]). Let E be the space $E = \{h : \|h\| = \sup_{r>0} |h(r)| < \infty\}$, then, for each fixed $x \in R^n$, $B_r^\delta(f)(x)$ may be viewed as a mapping from $[0, +\infty)$ to E , and it is clear that $B_*^\delta(f)(x) = \|B_r^\delta(f)(x)\|$ and $B_{*,b}^\delta(f)(x) = \|b(x)B_r^\delta(f)(x) - B_r^\delta(bf)(x)\|$.

As well known, a classical result of Coifman et al. [4] proved that the commutator $[b, T]$ generated by $BMO(R^n)$ functions and the Calderón-Zygmund operator is bounded on $L^p(R^n)$ ($1 < p < \infty$). However, it was observed that $[b, T]$ is not bounded, in general, from $H^p(R^n)$ to $L^p(R^n)$ and from $L^1(R^n)$ to $L^{1,\infty}(R^n)$ for $p \leq 1$. But, if $H^p(R^n)$ is replaced by some suitable atomic space $H_b^p(R^n)$ and $H_B^1(R^n)$ (see [1, 6, 7, 9]), then $[b, T]$ maps continuously $H_b^p(R^n)$ into $L^p(R^n)$ and $H_B^1(R^n)$ into weak $L^1(R^n)$ for $p \in (n/(n+1), 1]$. The main purpose of this paper is to establish the weighted boundedness of the commutators

related to Bochner-Riesz operator and $\text{BMO}(R^n)$ function on some weighted H^1 space. We first introduce some definitions (see [1, 6, 7, 9]).

Definition 1.1. Let b, w be locally integrable functions and $w \in A_1$ (i.e., $Mw(x) \leq cw(x)$ a.e.). A bounded measurable function a on R^n is said to be (w, b) -atom if

- (i) $\text{supp } a \subset B = B(x_0, r)$,
- (ii) $\|a\|_{L^\infty} \leq w(B)^{-1}$,
- (iii) $\int a(y)dy = \int a(y)b(y)dy = 0$.

A temperate distribution f is said to belong to $H_b^1(w)$ if, in the Schwartz distributional sense, it can be written as

$$f(x) = \sum_{j=1}^{\infty} \lambda_j a_j(x), \quad (1.4)$$

where a_j 's are (w, b) -atoms, $\lambda_j \in \mathbb{C}$, and $\sum_{j=1}^{\infty} |\lambda_j| < \infty$. Moreover, $\|f\|_{H_b^1(w)} \sim \sum_{j=1}^{\infty} |\lambda_j|$.

Definition 1.2. Let $w \in A_1$. A function f is said to belong to weighted Block H^1 space $H_B^1(w)$ if f can be written as (1.4), where a_j 's are w -atoms (i.e., a_j 's satisfy Definition 1.1(i), (ii), and (iii)' $\int a(y)dy = 0$) and $\lambda_j \in \mathbb{C}$ with

$$\sum_{j=1}^{\infty} |\lambda_j| \left(1 + \log^+ \frac{1}{|\lambda_j|} \right) < \infty. \quad (1.5)$$

Moreover, $\|f\|_{H_B^1(w)} \sim \sum_{j=1}^{\infty} |\lambda_j| (1 + \log^+ ((\sum_i |\lambda_i|)/|\lambda_j|))$.

Now, we formulate our results as follows.

THEOREM 1.3. Let $b \in \text{BMO}(R^n)$ and $w \in A_1$. Then the maximal commutator $B_{*,b}^\delta$ is bounded from $H_b^1(w)$ to $L_w^1(R^n)$ when $\delta > (n-1)/2$.

THEOREM 1.4. Let $b \in \text{BMO}(R^n)$ and $w \in A_1$. Then the maximal commutator $B_{*,b}^\delta$ is bounded from $H_B^1(w)$ to $L_w^{1,\infty}(R^n)$ when $\delta > (n-1)/2$.

THEOREM 1.5. Let $b \in \text{BMO}(R^n)$ and $w \in A_1$. Then the maximal commutator $B_{*,b}^\delta$ is bounded from $H^1(w)$ to $L_w^{1,\infty}(R^n)$ when $\delta > (n-1)/2$.

2. Proof of theorems

Proof of Theorem 1.3. It suffices to show that there exists a constant $C > 0$ such that for every (w, b) -atom a ,

$$\|B_{*,b}^\delta(a)\|_{L_w^1} \leq C. \quad (2.1)$$

Let a be a (w, b) -atom supported on a ball $B = B(x_0, R)$. We write

$$\begin{aligned} & \int_{R^n} [B_{*,b}^\delta(a)(x)]w(x)dx \\ &= \int_{|x-x_0| \leq 2R} [B_{*,b}^\delta(a)(x)]w(x)dx + \int_{|x-x_0| > 2R} [B_{*,b}^\delta(a)(x)]w(x)dx \equiv I + II. \end{aligned} \quad (2.2)$$

For I , taking $q > 1$, by Hölder's inequality and the L^q -boundedness of $B_{*,b}^\delta$ (see [2]), we see that

$$I \leq C \|B_{*,b}^\delta(a)\|_{L_w^q} \cdot w(2B)^{1-1/q} \leq C \|a\|_{L_w^q} w(B)^{1-1/q} \leq C. \quad (2.3)$$

For II , let $b_0 = |B(x_0, R)|^{-1} \int_{B(x_0, R)} b(y) dy$, then

$$\begin{aligned} II &\leq \sum_{k=1}^{\infty} \int_{2^{k+1}R \geq |x-x_0| > 2^k R} |b(x) - b_0| B_*^\delta(a)(x) w(x) dx \\ &\quad + \sum_{k=1}^{\infty} \int_{2^{k+1}R \geq |x-x_0| > 2^k R} B_*^\delta((b - b_0)a)(x) w(x) dx = II_1 + II_2. \end{aligned} \quad (2.4)$$

For II_1 , we choose δ_0 such that

$$\frac{n-1}{2} < \delta_0 < \min \left(\delta, \frac{n+1}{2} \right) \quad (2.5)$$

and consider the following two cases.

Case 1 ($0 < r \leq R$). In this case, note that (see [8])

$$|B^\delta(z)| \leq C(1 + |z|)^{-(\delta + (n+1)/2)}, \quad (2.6)$$

we have, for $|x - x_0| > 2|y - x_0|$,

$$\begin{aligned} |B_r^\delta(a)(x)| &\leq Cr^{-n} \int_{B(x_0, R)} \frac{|a(y)|}{(1 + |x - y|/r)^{\delta + (n+1)/2}} dy \\ &\leq C|B|^{(\delta_0 + (n+1)/2)/n} |2^{k+1}B|^{-(\delta_0 + (n+1)/2)/n} w(B)^{-1}. \end{aligned} \quad (2.7)$$

Case 2 ($r > R$). In this case, note that

$$|\nabla^\beta B^\delta(z)| \leq C(1 + |z|)^{-(\delta + (n+1)/2)} \quad (2.8)$$

for any $\beta = (\beta_1, \dots, \beta_n) \in (\mathbb{N} \cup \{0\})^n$ and $|x - x_0| > 2|y - x_0|$, where

$$\nabla^\beta = \left(\frac{\partial}{\partial x_1} \right)^{\beta_1} \cdots \left(\frac{\partial}{\partial x_n} \right)^{\beta_n}, \quad (2.9)$$

by the vanishing condition of a , we gain

$$\begin{aligned} |B_r^\delta(a)(x)| &\leq Cr^{-(n+1)} \int_{B(x_0, R)} \frac{|a(y)| |y - x_0|}{(1 + |x - x_0|/r)^{\delta + (n+1)/2}} dy \\ &\leq C|B|^{(\delta_0 + (n+1)/2)/n} |2^{k+1}B|^{-(\delta_0 + (n+1)/2)/n} w(B)^{-1}. \end{aligned} \quad (2.10)$$

Combining Case 1 with Case 2, we obtain

$$\begin{aligned}
II_1 &\leq C \sum_{k=1}^{\infty} \int_{2^{k+1}R \geq |x-x_0| > 2^k R} |b(x) - b_0| |B|^{(\delta_0+(n+1)/2)/n} \\
&\quad \times |2^{k+1}B|^{-(\delta_0+(n+1)/2)/n} w(B)^{-1} w(x) dx \\
&\leq C \sum_{k=1}^{\infty} 2^{-k(\delta_0+(n+1)/2)} w(B)^{-1} \int_{2^{k+1}R \geq |x-x_0| > 2^k R} |b(x) - b_0| w(x) dx.
\end{aligned} \tag{2.11}$$

Since $w \in A_1$, w satisfies the reverse of Hölder's inequality as follows:

$$\left(\frac{1}{|B|} \int_B w(x)^p dx \right)^{1/p} \leq \frac{C}{|B|} \int_B w(x) dx \tag{2.12}$$

for any ball B and some $1 < p < \infty$ (see [10]). Using the properties of $\text{BMO}(R^n)$ functions (see [10]), and noting $w \in A_1$, then

$$\frac{w(B_2)}{|B_2|} \cdot \frac{|B_1|}{w(B_1)} \leq C \tag{2.13}$$

for all balls B_1, B_2 with $B_1 \subset B_2$. Thus, by Hölder's and reverse of Hölder's inequalities for $w \in A_1$, we get, for $1/p + 1/p' = 1$,

$$\begin{aligned}
II_1 &\leq C \sum_{k=1}^{\infty} 2^{-k(\delta_0+(n+1)/2)} w(B)^{-1} |2^{k+1}B| \left(\frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} |b(x) - b_0|^{p'} dx \right)^{1/p'} \\
&\quad \times \left(\frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} w(x)^p dx \right)^{1/p} \\
&\leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} k 2^{-k(\delta_0-(n-1)/2)} \left(\frac{w(2^k B)}{|2^k B|} \frac{|B|}{w(B)} \right) \leq C.
\end{aligned} \tag{2.14}$$

For II_2 , similar to the estimate of II_1 , we obtain

$$B_r^\delta((b - b_0)a)(x) \leq C \|b\|_{\text{BMO}} w(B)^{-1} |B|^{(\delta_0+(n+1)/2)/n} |x - x_0|^{-(\delta_0+(n+1)/2)}, \tag{2.15}$$

thus

$$\begin{aligned}
II_2 &\leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} w(B)^{-1} |B|^{(\delta_0+(n+1)/2)/n} |2^k B|^{-(\delta_0+(n+1)/2)/n} w(2^k B) \\
&\leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} 2^{-k(\delta_0-(n-1)/2)} \left(\frac{w(2^k B)}{|2^k B|} \frac{|B|}{w(B)} \right) \leq C.
\end{aligned} \tag{2.16}$$

This finishes the proof of Theorem 1.3. \square

To prove Theorem 1.4, we recall the following lemma (see [5, 10]).

LEMMA 2.1. Let $w \geq 0$ and $\{g_k\}$ be a sequence of measurable functions satisfying

$$\|g_k\|_{L_w^{1,\infty}} \leq 1. \quad (2.17)$$

Then, for every numerical sequence $\{\lambda_k\}$,

$$\left\| \sum_k \lambda_k g_k \right\|_{L_w^{1,\infty}} \leq C \sum_k |\lambda_k| \left(+ \log \left(\sum_j |\lambda_j| / |\lambda_k| \right) \right). \quad (2.18)$$

Proof of Theorem 1.4. By Lemma 2.1, it is enough to show that there exists a constant C such that

$$\|B_{*,b}^\delta(a)\|_{L_w^{1,\infty}} \leq C \quad \text{for each } w\text{-atom } a. \quad (2.19)$$

Let a be a w -atom supported on a ball $B = B(x_0, r)$. We write

$$\begin{aligned} w(\{x \in R^n : B_{*,b}^\delta(a)(x) > \lambda\}) \\ \leq w(\{x \in 2B : B_{*,b}^\delta(a)(x) > \lambda\}) + w(\{x \in (2B)^c : B_{*,b}^\delta(a)(x) > \lambda\}) = I + II. \end{aligned} \quad (2.20)$$

For I , by the L^q -boundedness of $B_{*,b}^\delta$ for $q > 1$, we gain

$$\begin{aligned} I &\leq \lambda^{-1} \|B_{*,b}^\delta(a)\chi_{2B}\|_{L_w^1} \leq C\lambda^{-1} \|B_{*,b}^\delta(a)\|_{L_w^q} \cdot w(B)^{1-1/q} \\ &\leq C\lambda^{-1} \|a\|_{L_w^q} \cdot w(B)^{1-1/q} \leq C\lambda^{-1}. \end{aligned} \quad (2.21)$$

For II , let $b_0 = |B|^{-1} \int_B b(x)dx$, notice that

$$\begin{aligned} B_{*,b}^\delta(a)(x) &= \|b(x)B_r^\delta(a)(x) - B_r^\delta(ba)(x)\| \\ &= \|(b(x) - b_0)B_r^\delta(a)(x) - B_r^\delta((b - b_0)a)(x)\| \\ &\leq \|(b(x) - b_0)B_r^\delta(a)(x)\| + \|B_r^\delta((b - b_0)a)(x)\| \\ &\leq |b(x) - b_0| B_r^\delta(a)(x) + B_r^\delta((b - b_0)a)(x), \end{aligned} \quad (2.22)$$

we have

$$\begin{aligned} II &\leq w\left(\left\{x \in (2B)^c : |b(x) - b_0| g_\mu^*(a)(x) > \frac{\lambda}{2}\right\}\right) \\ &\quad + w\left(\left\{x \in (2B)^c : g_\mu^*((b - b_0)a)(x) > \frac{\lambda}{2}\right\}\right) = II_1 + II_2. \end{aligned} \quad (2.23)$$

Similar to the proof of Theorem 1.3, we get

$$\begin{aligned} II_1 &\leq C\lambda^{-1} \int_{(2B)^c} |b(x) - b_0| B_r^\delta(a)(x) w(x) dx \\ &= C\lambda^{-1} \sum_{k=1}^{\infty} \int_{2^{k+1}B \setminus 2^k B} |b(x) - b_0| B_r^\delta(a)(x) w(x) dx \leq C\lambda^{-1} \|b\|_{\text{BMO}}, \\ II_2 &\leq C\lambda^{-1} \int_{(2B)^c} B_r^\delta((b - b_0)a)(x) w(x) dx \leq C\lambda^{-1} \|b\|_{\text{BMO}}. \end{aligned} \quad (2.24)$$

Combining the estimate of I , II_1 , and II_2 , we gain

$$w(\{x \in R^n : B_{*,b}^\delta(a)(x) > \lambda\}) \leq C\lambda^{-1} \|b\|_{\text{BMO}}. \quad (2.25)$$

This completes the proof of Theorem 1.4. \square

Proof of Theorem 1.5. . Given $f \in H^1(w)$, let $f = \sum_j \lambda_j a_j$ be the atomic decomposition for f . By a limiting argument, it suffices to show Theorem 1.5 for a finite sum of $f = \sum_Q \lambda_Q a_Q$ with $\sum_Q |\lambda_Q| \leq C\|f\|_{H^1(w)}$. We may assume that each Q (the supporting cube of a_Q) is dyadic. For $\lambda > 0$ by [3, Lemma 4.1], there exists a collection of pairwise disjoint dyadic cubes $\{S\}$ such that

$$\begin{aligned} \sum_{Q \subset S} |\lambda_Q| &\leq C\lambda|S|, \quad \forall S, \\ \sum_S |S| &\leq \lambda^{-1} \sum_Q |\lambda_Q|, \quad \left\| \sum_{Q \not\subset S} \lambda_Q |Q|^{-1} \chi_Q \right\|_{L^\infty} \leq C\lambda. \end{aligned} \quad (2.26)$$

Let $E = \bigcup_S \overline{S}$, where for a fixed cube Q , \overline{Q} denotes the cube with the same center as Q but with the side-length $4\sqrt{n}$ times that of Q . Then, $|E| \leq C\lambda^{-1} \|f\|_{H^1}$. Set $M(x) = \sum_S \sum_{Q \subset S} \lambda_Q a_Q$, $N(x) = f(x) - M(x)$. By the L^2 boundedness of $B_{*,b}^\delta$ and the well-known argument, it suffices to show that

$$w(\{x \in E^c : B_{*,b}^\delta(M)(x) > \lambda\}) \leq C\lambda^{-1} \|f\|_{H^1(w)}. \quad (2.27)$$

Because $B_{*,b}^\delta(M)(x) \leq \sum_S \sum_{Q \subset S} |\lambda_Q| B_{*,b}^\delta(a_Q)(x)$, we have

$$\begin{aligned} w(\{x \in E^c : B_{*,b}^\delta(M)(x) > \lambda\}) &\leq C\lambda^{-1} \int_{E^c} B_{*,b}^\delta(M)(x) w(x) dx \\ &\leq C\lambda^{-1} \sum_S \sum_{Q \subset S} |\lambda_Q| \sum_{k=1}^{\infty} \int_{2^{k+1}\overline{Q} \setminus 2^k\overline{Q}} B_{*,b}^\delta(a_Q)(x) w(x) dx, \end{aligned} \quad (2.28)$$

similar to the estimate of Theorem 1.3, we get, when $x \in E^c$,

$$\begin{aligned} B_{*,b}^\delta(a_Q)(x) &\leq C\|b\|_{\text{BMO}} w(B)^{-1} |Q|^{(\delta_0+(n+1)/2)/n} |x - x_0|^{-(\delta_0+(n+1)/2)} \\ &\quad + C |b(x) - b_0| w(B)^{-1} 2^{-k(\delta_0+(n+1)/2)}, \end{aligned} \quad (2.29)$$

thus, by Hölder's and reverse of Hölder's inequalities for $w \in A_1$, we obtain

$$\begin{aligned}
& w(\{x \in E^c : B_{*,b}^\delta(M)(x) > \lambda\}) \\
& \leq C\lambda^{-1}w(B)^{-1} \sum_S \sum_{Q \subset S} |\lambda_Q| \sum_{k=1}^{\infty} k2^{-k(\delta_0+(n+1)/2)} w(2^k Q) \\
& \leq C\lambda^{-1} \sum_S \sum_{Q \subset S} |\lambda_Q| \sum_{k=1}^{\infty} k2^{-k(\delta_0-(n-1)/2)} \\
& \leq C\lambda^{-1} \sum_S \sum_{Q \subset S} |\lambda_Q| \leq C\lambda^{-1} \|f\|_{H^1(w)}.
\end{aligned} \tag{2.30}$$

This finishes the proof of Theorem 1.5. \square

Acknowledgment

The author would like to express his gratitude to the referee for his very valuable comments and suggestions.

References

- [1] J. Álvarez, *Continuity properties for linear commutators of Calderón-Zygmund operators*, Collect. Math. **49** (1998), no. 1, 17–31.
- [2] J. Álvarez, R. J. Bagby, D. S. Kurtz, and C. Pérez, *Weighted estimates for commutators of linear operators*, Studia Math. **104** (1993), no. 2, 195–209.
- [3] M. Christ, *Weak type (1,1) bounds for rough operators*, Ann. of Math. (2) **128** (1988), no. 1, 19–42.
- [4] R. R. Coifman, R. Rochberg, and G. Weiss, *Factorization theorems for Hardy spaces in several variables*, Ann. of Math. (2) **103** (1976), no. 3, 611–635.
- [5] G. Hu and S. Lu, *The commutator of the Bochner-Riesz operator*, Tohoku Math. J. (2) **48** (1996), no. 2, 259–266.
- [6] Y. Komori, *Weak type estimates for commutators of singular integral operators*, to appear in Sci. Math. Japoncae.
- [7] ———, *Weighted $H^1(\mathbf{R}^n)$ estimates for commutators of singular integral operators*, Far East J. Math. Sci. (FJMS) **3** (2001), no. 6, 889–898.
- [8] S. Z. Lu, *Four Lectures on Real H^p Spaces*, World Scientific Publishing, New Jersey, 1995.
- [9] C. Pérez, *Endpoint estimates for commutators of singular integral operators*, J. Funct. Anal. **128** (1995), no. 1, 163–185.
- [10] E. M. Stein, *Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, New Jersey, 1993.

Liu Lanzhe: College of Mathematics and Computer, Changsha University of Science and Technology, Changsha 410077, China

E-mail address: lanzheliu@263.net

Tong Qingshan: College of Mathematics and Computer, Changsha University of Science and Technology, Changsha 410077, China

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru