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We show the boundedness for the commutator of Bochner-Riesz operator on some
weighted H1 space.

1. Introduction

Let b be a locally integrable function. The maximal operator Bδ
∗,b associated with the

commutator generated by the Bochner-Riesz operator is defined by

Bδ
∗,b( f )(x)= sup

r>0

∣∣Bδ
r,b( f )(x)

∣∣, (1.1)

where

Bδ
r,b( f )(x)=

∫
Rn
Bδ
r (x− y) f (y)

(
b(x)− b(y)

)
dy (1.2)

and (Bδ
r ( f̂ ))(ξ)= (1− r2|ξ|2)δ+ f̂ (ξ). We also define that

Bδ
∗( f )(x)= sup

r>0

∣∣Bδ
r ( f )(x)

∣∣, (1.3)

which is the Bochner-Riesz operator (see [8]). Let E be the space E = {h : ‖h‖ =
supr>0 |h(r)| <∞}, then, for each fixed x ∈ Rn, Bδ

r ( f )(x) may be viewed as a mapping
from [0,+∞) to E, and it is clear that Bδ∗( f )(x) = ‖Bδ

r ( f )(x)‖ and Bδ
∗,b( f )(x) =

‖b(x)Bδ
r ( f )(x)−Bδ

r (b f )(x)‖.
As well known, a classical result of Coifman et al. [4] proved that the commutator

[b,T] generated by BMO(Rn) functions and the Calderón-Zygmund operator is bounded
on Lp(Rn) (1 < p <∞). However, it was observed that [b,T] is not bounded, in general,
from Hp(Rn) to Lp(Rn) and from L1(Rn) to L1,∞ (Rn) for p ≤ 1. But, if Hp(Rn) is replaced
by some suitable atomic space H

p
b (Rn) and H1

B(Rn) (see [1, 6, 7, 9]), then [b,T] maps
continuously H

p
b (Rn) into Lp(Rn) andH1

B(Rn) into weak L1(Rn) for p ∈ (n/(n+ 1),1]. The
main purpose of this paper is to establish the weighted boundedness of the commutators
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related to Bochner-Riesz operator and BMO(Rn) function on some weighted H1 space.
We first introduce some definitions (see [1, 6, 7, 9]).

Definition 1.1. Let b, w be locally integrable functions and w ∈ A1 (i.e., Mw(x)≤ cw(x)
a.e.). A bounded measurable function a on Rn is said to be (w,b)-atom if

(i) suppa⊂ B = B(x0,r),
(ii) ‖a‖L∞ ≤w(B)−1,

(iii)
∫
a(y)dy = ∫ a(y)b(y)dy = 0.

A temperate distribution f is said to belong to H1
b (w) if, in the Schwartz distributional

sense, it can be written as

f (x)=
∞∑
j=1

λjaj(x), (1.4)

where aj ’s are (w,b)-atoms, λj ∈ C, and
∑∞

j=1 |λj| <∞. Moreover, ‖ f ‖H1
b (w) ∼

∑∞
j=1 |λj|.

Definition 1.2. Let w ∈ A1. A function f is said to belong to weighted Block H1 space
H1

B(w) if f can be written as (1.4), where aj ’s are w-atoms (i.e., aj ’s satisfy Definition
1.1(i), (ii), and (iii)′

∫
a(y)dy = 0) and λj ∈ C with

∞∑
j=1

∣∣λj

∣∣(1 + log+ 1∣∣λj

∣∣
)
<∞. (1.5)

Moreover, ‖ f ‖H1
B(w) ∼

∑∞
j=1 |λj|(1 + log+((

∑
i |λi|)/|λj|)).

Now, we formulate our results as follows.

Theorem 1.3. Let b ∈ BMO(Rn) and w ∈ A1. Then the maximal commutator Bδ
∗,b is

bounded from H1
b (w) to L1

w(Rn) when δ > (n− 1)/2.

Theorem 1.4. Let b ∈ BMO(Rn) and w ∈ A1. Then the maximal commutator Bδ
∗,b is

bounded from H1
B(w) to L1,∞

w (Rn) when δ > (n− 1)/2.

Theorem 1.5. Let b ∈ BMO(Rn) and w ∈ A1. Then the maximal commutator Bδ
∗,b is

bounded from H1(w) to L1,∞
w (Rn) when δ > (n− 1)/2.

2. Proof of theorems

Proof of Theorem 1.3. It suffices to show that there exists a constant C > 0 such that for
every (w,b)-atom a,

∥∥Bδ
∗,b(a)

∥∥
L1
w
≤ C. (2.1)

Let a be a (w,b)-atom supported on a ball B = B(x0,R). We write∫
Rn

[
Bδ
∗,b(a)(x)

]
w(x)dx

=
∫
|x−x0|≤2R

[
Bδ
∗,b(a)(x)

]
w(x)dx+

∫
|x−x0|>2R

[
Bδ
∗,b(a)(x)

]
w(x)dx ≡ I + II.

(2.2)
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For I , taking q > 1, by Hölder’s inequality and the Lq-boundedness of Bδ
∗,b (see [2]), we

see that

I ≤ C
∥∥Bδ

∗,b(a)
∥∥
L
q
w
·w(2B)1−1/q ≤ C‖a‖Lqww(B)1−1/q ≤ C. (2.3)

For II , let b0 = |B(x0,R)|−1
∫
B(x0,R) b(y)dy, then

II ≤
∞∑
k=1

∫
2k+1R≥|x−x0|>2kR

∣∣b(x)− b0
∣∣Bδ

∗(a)(x)w(x)dx

+
∞∑
k=1

∫
2k+1R≥|x−x0|>2kR

Bδ
∗
((
b− b0

)
a
)
(x)w(x)dx = II1 + II2.

(2.4)

For II1, we choose δ0 such that

n− 1
2

< δ0 < min
(
δ,
n+ 1

2

)
(2.5)

and consider the following two cases.

Case 1 (0 < r ≤ R). In this case, note that (see [8])

∣∣Bδ(z)
∣∣≤ C

(
1 + |z|)−(δ+(n+1)/2)

, (2.6)

we have, for |x− x0| > 2|y− x0|,

∣∣Bδ
r (a)(x)

∣∣≤ Cr−n
∫
B(x0,R)

∣∣a(y)
∣∣(

1 + |x− y|/r)δ+(n+1)/2 dy

≤ C|B|(δ0+(n+1)/2)/n
∣∣2k+1B

∣∣−(δ0+(n+1)/2)/n
w(B)−1.

(2.7)

Case 2 (r > R). In this case, note that

∣∣∇βBδ(z)
∣∣≤ C

(
1 + |z|)−(δ+(n+1)/2)

(2.8)

for any β = (β1, . . . ,βn)∈ (N∪{0})n and |x− x0| > 2|y− x0|, where

∇β =
(

∂

∂x1

)β1

···
(

∂

∂xn

)βn
, (2.9)

by the vanishing condition of a, we gain

∣∣Bδ
r (a)(x)

∣∣≤ Cr−(n+1)
∫
B(x0,R)

∣∣a(y)
∣∣∣∣y− x0

∣∣(
1 +

∣∣x− x0
∣∣/r)δ+(n+1)/2 dy

≤ C|B|(δ0+(n+1)/2)/n
∣∣2k+1B

∣∣−(δ0+(n+1)/2)/n
w(B)−1.

(2.10)
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Combining Case 1 with Case 2, we obtain

II1 ≤ C
∞∑
k=1

∫
2k+1R≥|x−x0|>2kR

∣∣b(x)− b0
∣∣|B|(δ0+(n+1)/2)/n

×∣∣2k+1B
∣∣−(δ0+(n+1)/2)/n

w(B)−1w(x)dx

≤ C
∞∑
k=1

2−k(δ0+(n+1)/2)w(B)−1
∫

2k+1R≥|x−x0|>2kR

∣∣b(x)− b0
∣∣w(x)dx.

(2.11)

Since w ∈ A1, w satisfies the reverse of Hölder’s inequality as follows:

(
1
|B|

∫
B
w(x)pdx

)1/p

≤ C

|B|
∫
B
w(x)dx (2.12)

for any ball B and some 1 < p <∞ (see[10]). Using the properties of BMO(Rn) functions
(see [10]), and noting w ∈ A1, then

w
(
B2
)

∣∣B2
∣∣ ·

∣∣B1
∣∣

w
(
B1
) ≤ C (2.13)

for all balls B1, B2 with B1 ⊂ B2. Thus, by Hölder’s and reverse of Hölder’s inequalities for
w ∈A1, we get, for 1/p+ 1/p′ = 1,

II1 ≤ C
∞∑
k=1

2−k(δ0+(n+1)/2)w(B)−1
∣∣2k+1B

∣∣( 1∣∣2k+1B
∣∣
∫

2k+1B

∣∣b(x)− b0
∣∣p′dx)1/p′

×
(

1∣∣2k+1B
∣∣
∫

2k+1B
w(x)pdx

)1/p

≤ C‖b‖BMO

∞∑
k=1

k2−k(δ0−(n−1)/2)
(
w
(
2kB

)
∣∣2kB

∣∣ |B|
w(B)

)
≤ C.

(2.14)

For II2, similar to the estimate of II1, we obtain

Bδ
r

((
b− b0

)
a
)
(x)≤ C‖b‖BMOw(B)−1|B|(δ0+(n+1)/2)/n

∣∣x− x0
∣∣−(δ0+(n+1)/2)

, (2.15)

thus

II2 ≤ C‖b‖BMO

∞∑
k=1

w(B)−1|B|(δ0+(n+1)/2)/n
∣∣2kB

∣∣−(δ0+(n+1)/2)/n
w
(
2kB

)

≤ C‖b‖BMO

∞∑
k=1

2−k(δ0−(n−1)/2)
(
w
(
2kB

)
∣∣2kB

∣∣ |B|
w(B)

)
≤ C.

(2.16)

This finishes the proof of Theorem 1.3. �

To prove Theorem 1.4, we recall the following lemma (see [5, 10]).
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Lemma 2.1. Let w ≥ 0 and {gk} be a sequence of measurable functions satisfying

∥∥gk∥∥L1,∞
w
≤ 1. (2.17)

Then, for every numerical sequence {λk},∥∥∥∥∥
∑
k

λkgk

∥∥∥∥∥
L1,∞
w

≤ C
∑
k

∣∣λk∣∣
(

+ log

(∑
j

∣∣λj

∣∣/∣∣λk∣∣
))

. (2.18)

Proof of Theorem 1.4. By Lemma 2.1, it is enough to show that there exists a constant C
such that

∥∥Bδ
∗,b(a)

∥∥
L1,∞
w
≤ C for each w-atom a. (2.19)

Let a be a w-atom supported on a ball B = B(x0,r). We write

w
({
x ∈ Rn : Bδ

∗,b(a)(x) > λ
})

≤w
({
x ∈ 2B : Bδ

∗,b(a)(x) > λ
})

+w
({
x ∈ (2B)c : Bδ

∗,b(a)(x) > λ
})= I + II.

(2.20)

For I , by the Lq-boundedness of Bδ
∗,b for q > 1, we gain

I ≤ λ−1
∥∥Bδ

∗,b(a)χ2B
∥∥
L1
w
≤ Cλ−1

∥∥Bδ
∗,b(a)

∥∥
L
q
w
·w(B)1−1/q

≤ Cλ−1‖a‖Lqw ·w(B)1−1/q ≤ Cλ−1.
(2.21)

For II , let b0 = |B|−1
∫
B b(x)dx, notice that

Bδ
∗,b(a)(x)= ∥∥b(x)Bδ

r (a)(x)−Bδ
r (ba)(x)

∥∥
= ∥∥(b(x)− b0

)
Bδ
r (a)(x)−Bδ

r

((
b− b0

)
a
)
(x)
∥∥

≤ ∥∥(b(x)− b0
)
Bδ
r (a)(x)

∥∥+
∥∥Bδ

r

((
b− b0

)
a
)
(x)
∥∥

≤ ∣∣b(x)− b0
∣∣Bδ

∗(a)(x) +Bδ
∗
((
b− b0

)
a
)
(x),

(2.22)

we have

II ≤w
({

x ∈ (2B)c :
∣∣b(x)− b0

∣∣g∗µ (a)(x) >
λ

2

})

+w
({

x ∈ (2B)c : g∗µ
((
b− b0

)
a
)
(x) >

λ

2

})
= II1 + II2.

(2.23)

Similar to the proof of Theorem 1.3, we get

II1 ≤ Cλ−1
∫

(2B)c

∣∣b(x)− b0
∣∣Bδ

∗(a)(x)w(x)dx

= Cλ−1
∞∑
k=1

∫
2k+1B\2kB

∣∣b(x)− b0
∣∣Bδ

∗(a)(x)w(x)dx ≤ Cλ−1‖b‖BMO,

II2 ≤ Cλ−1
∫

(2B)c
Bδ
∗
((
b− b0

)
a
)
(x)w(x)dx ≤ Cλ−1‖b‖BMO.

(2.24)
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Combining the estimate of I , II1, and II2, we gain

w
({
x ∈ Rn : Bδ

∗,b(a)(x) > λ
})≤ Cλ−1‖b‖BMO. (2.25)

This completes the proof of Theorem 1.4. �

Proof of Theorem 1.5. . Given f ∈ H1(w), let f =∑ j λ jaj be the atomic decomposition
for f . By a limiting argument, it suffices to show Theorem 1.5 for a finite sum of f =∑

Q λQaQ with
∑

Q |λQ| ≤ C‖ f ‖H1(w). We may assume that each Q (the supporting cube
of aQ) is dyadic. For λ > 0 by [3, Lemma 4.1], there exists a collection of pairwise disjoint
dyadic cubes {S} such that

∑
Q⊂S

∣∣λQ∣∣≤ Cλ|S|, ∀S,

∑
S

|S| ≤ λ−1
∑
Q

∣∣λQ∣∣,

∥∥∥∥∥
∑
Q �⊂S

λQ|Q|−1χQ

∥∥∥∥∥
L∞
≤ Cλ.

(2.26)

Let E = ⋃S S, where for a fixed cube Q, Q denotes the cube with the same center as
Q but with the side-length 4

√
n times that of Q. Then, |E| ≤ Cλ−1‖ f ‖H1 . Set M(x) =∑

S

∑
Q⊂S λQaQ, N(x)= f (x)−M(x). By the L2 boundedness of Bδ

∗,b and the well-known
argument, it suffices to show that

w
({
x ∈ Ec : Bδ

∗,b(M)(x) > λ
})≤ Cλ−1‖ f ‖H1(w). (2.27)

Because Bδ
∗,b(M)(x)≤∑S

∑
Q⊂S |λQ|Bδ

∗,b(aQ)(x), we have

w
({
x ∈ Ec : Bδ

∗,b(M)(x) > λ
})

≤ Cλ−1
∫
Ec
Bδ
∗,b(M)(x)w(x)dx

≤ Cλ−1
∑
S

∑
Q⊂S

∣∣λQ∣∣
∞∑
k=1

∫
2k+1Q\2kQ

Bδ
∗,b

(
aQ
)
(x)w(x)dx,

(2.28)

similar to the estimate of Theorem 1.3, we get, when x ∈ Ec,

Bδ
∗,b

(
aQ
)
(x)≤ C‖b‖BMOw(B)−1|Q|(δ0+(n+1)/2)/n

∣∣x− x0
∣∣−(δ0+(n+1)/2)

+C
∣∣b(x)− b0

∣∣w(B)−12−k(δ0+(n+1)/2),
(2.29)
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thus, by Hölder’s and reverse of Hölder’s inequalities for w ∈A1, we obtain

w
({
x ∈ Ec : Bδ

∗,b(M)(x) > λ
})

≤ Cλ−1w(B)−1
∑
S

∑
Q⊂S

∣∣λQ∣∣
∞∑
k=1

k2−k(δ0+(n+1)/2)w
(
2kQ

)

≤ Cλ−1
∑
S

∑
Q⊂S

∣∣λQ∣∣
∞∑
k=1

k2−k(δ0−(n−1)/2)

≤ Cλ−1
∑
S

∑
Q⊂S

∣∣λQ∣∣≤ Cλ−1‖ f ‖H1(w).

(2.30)

This finishes the proof of Theorem 1.5. �
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