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We give a necessary condition for a set in Lp(Ω) spaces (1 < p <∞) to be self-extremal that
partially extends our previous results to the case of Lp spaces. Examples of self-extremal
sets in Lp(Ω) (1 < p <∞) are also given.

In [4, 5], we introduced the notion of (self-) extremal sets of a Banach space (X ,‖ · ‖).
For a nonempty bounded subset A of X , we denote by d(A) its diameter and by r(A)
the relative Chebyshev radius of A with respect to the closed convex hull coA of A, that
is, r(A) := inf y∈coA supx∈A‖x − y‖. The self-Jung constant of X is defined by Js(X) :=
sup{r(A) : A ⊂ X , with d(A) = 1}. If in this definition we replace r(A) by the relative
Chebyshev radius rX(A) of A with respect to the whole X , we get the Jung constant J(X)
of X . Recall that a bounded subset A of X consisting of at least two points is said to be
extremal (resp., self-extremal) if rX(A)= J(X)d(A) (resp., r(A)= Js(X)d(A)).

Throughout the note, unless otherwise mentioned, we will work with the following
assumption: (Ω,µ) is a σ-finite measure space such that Lp(Ω) is infinite-dimensional. The
Jung and self-Jung constants of Lp(Ω) (1≤ p <∞) were determined in [1, 3, 6, 7]:

J
(
Lp(Ω)

)= Js
(
Lp(Ω)

)=max
{

21/p−1,2−1/p}. (1)

Theorem 1. If 1 < p <∞ and A is self-extremal in Lp(Ω), then κ(A)= d(A).

Here κ(A) := inf{ε > 0 : A can be covered by finitely many sets of diameter ≤ ε}—the
Kuratowski measure of noncompactness of A (for our convenience we use the notation
κ(A) in this note).

Before proving our theorem, we need the following results which for convenience we
reformulate in the form of Lemmas 2 and 3.

Lemma 2 (see [1], Theorem 1.1). Let X be a reflexive strictly convex Banach space and A a
finite subset of X . Then there exists a subset B ⊂ A such that

(i) r(B)≥ r(A);
(ii) ‖x− b‖ = r(B) for every x ∈ B, where b is the relative Chebyshev center of B, that is,

b ∈ coB and supx∈B ‖x− b‖ = r(B).
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Lemma 3 (see [8], Theorem 15.1). Let (Ω,µ) be a σ-finite measure space, 1 < p < ∞,
x1, . . . ,xn vectors in Lp(Ω), and t1, . . . , tn nonnegative numbers such that

∑n
i=1 ti = 1. The

following inequality holds:

2
n∑
i=1

ti

∥∥∥∥∥xi−
n∑
j=1

t jx j

∥∥∥∥∥
α

≤
n∑

i, j=1

tit j
∥∥xi− xj

∥∥α, (2)

where

α=


p

p− 1
if 1 < p < 2,

p if p ≥ 2.
(3)

Proof of Theorem 1. Since r(A) and d(A) remain the same with replacing A by coA, we
may assume that A is closed convex and r(A)= 1. For each integer n≥ 2, we have

⋂
x∈A

B
(
x,1− 1

n

)
∩A=∅, (4)

where B(x,r) denotes the closed ball centered at x with radius r which is weakly compact
since Lp(Ω) is reflexive. Hence there exist xqn−1+1,xqn−1+2, . . . ,xqn in A (with convention
q1 = 0) such that

qn⋂
i=qn−1+1

B
(
xi,1− 1

n

)
∩A=∅. (5)

Set An := {xqn−1+1,xqn−1+2, . . . ,xqn}. By Lemma 2, there exists a subset Bn = {ysn−1+1,
ysn−1+2, . . . , ysn} of An satisfying properties (i)-(ii) of the lemma. Let us denote the rela-
tive Chebyshev center of Bn by bn, and let rn := r(Bn). By what we said above, we have
rn > 1− 1/n and ‖yi− bn‖ = rn for every i∈ In := {sn−1 + 1,sn−1 + 2, . . . ,sn}. Since Bn is a
finite set, there exist non-negative numbers tsn−1+1, tsn−1+2, . . . , tsn with

∑
i∈In ti = 1 such that

bn =
∑

i∈In ti yi. Applying Lemma 3, one gets

2rαn = 2
∑
i∈In

ti

∥∥∥∥∥yi− ∑
j∈In

t j y j

∥∥∥∥∥
α

≤
∑
i, j∈In

tit j
∥∥yi− yj

∥∥α, (6)

where α is as in (3).
Setting B∞ :={ysn−1+1, ysn−1+2, . . . , ysn}∞n=2, we claim that κ(B∞)=d(A). Evidently κ(B∞)≤

d(A) by definition. If κ(A∞)<d(A), so there exist ε0 ∈ (0,d(A)) satisfying κ(B∞)≤ d(A)−
ε0, and subsets D1,D2, . . . ,Dm of Lp(Ω) with d(Di) ≤ d(A)− ε0 for every i = 1,2, . . . ,m
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such that B∞ ⊂
⋃m

i=1Di. Then one can find at least one set among D1,D2, . . . ,Dm, say D1,
with the property that there are infinitely many n satisfying

∑
i∈Jn

ti ≥ 1
m

, (7)

where

Jn := {i∈ In : yi ∈D1
}
. (8)

From (1), it follows that (d(A))α = (1/Js(Lp(Ω)))α = 2. In view of (6), we have, for all
n satisfying (7),

2 · rαn ≤
∑
i, j∈In

tit j
∥∥yi− yj

∥∥α
≤ (d(A)− ε0

)α ·( ∑
i, j∈Jn

tit j

)
+
(
d(A)

)α ·(1−
∑
i, j∈Jn

tit j

)

≤ 2−
[(
d(A)

)α− (d(A)− ε0
)α] · 1

m2
.

(9)

On the other hand, obviously 1− 1/n < rn ≤ 1, therefore limn→∞ rn = 1. We get a con-
tradiction with (9) since there are infinitely many n satisfying (7).

One concludes that κ(B∞)= d(A), and hence κ(A)= d(A).
The proof of Theorem 1 is complete. �

Observe that no relatively compact set A in Lp(Ω) (1 < p <∞) is self-extremal by
Theorem 1. Hence we obtain an immediate extension of Gulevich’s result for Lp(Ω)
spaces.

Corollary 4 (cf. [2]). Suppose that 1 < p <∞ and that A is a relatively compact set in
Lp(Ω) with d(A) > 0. Then r(A) < (1/ α

√
2)d(A), where α is as in (3).

The following theorem gives a necessary condition for a set in Lp(Ω) (1 < p <∞) to be
self-extremal.

Theorem 5. Under the assumptions of Theorem 1, for every ε ∈ (0,d(A)), every positive
integer m, there exists an m-simplex ∆(ε,m) with vertices in A such that each edge of ∆(ε,m)
has length not less than d(A)− ε.

Proof. We will assume A is closed convex and r(A)= 1. From the proof of Theorem 1, we
derived a sequence {ysn−1+1, ysn−1+2, . . . , ysn}∞n=2 in A and a sequence of positive numbers
{tsn−1+1, tsn1+2, . . . , tsn}∞n=2 (with convention s1 = 0) such that

2 · rαn ≤
∑
i, j∈In

tit j
∥∥yi− yj

∥∥α,
∑
i∈In

ti = 1, (10)

where rn ∈ (1− 1/n,1], α is as in (3), and In := {sn−1 + 1,sn−1 + 2, . . . ,sn}.
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We denote

Tnj :=
∑
i∈In

ti
∥∥yi− yj

∥∥α,

Sn :=
{
j ∈ In : Tnj ≥ 2 · rαn ·

(
1−

√
1− rαn

)}
,

Sn(yj) :=
{
i∈ In :

∥∥yi− yj
∥∥α ≥ 2 ·

(
1− 1

4
√
n

)}
, j ∈ Sn,

Ŝn
(
yj
)

:= {yi : i∈ Sn
(
yj
)}

, j ∈ Sn,

λn :=
∑

i∈In\Sn
ti = 1−

∑
i∈Sn

ti.

(11)

One can proceed furthermore as follows. We have

2rαn ≤
∑
i, j∈In

tit j
∥∥yi− yj

∥∥α
=
∑
j∈Sn

t j
∑
i∈In

ti
∥∥yi− yj

∥∥α +
∑

j∈In\Sn
t j
∑
i∈In

ti
∥∥yi− yj

∥∥α
≤ 2

∑
j∈Sn

t j + 2rαn

(
1−

√
1− rαn

) ∑
j∈In\Sn

t j

= 2− 2λn

(
1− rαn + rαn

√
1− rαn

)
≤ 2− 2λn

√
1− rαn .

(12)

Hence λn ≤
√

1− rαn → 0, as n→∞. Thus limn→∞(
∑

i∈Sn ti)= limn→∞(1− λn)= 1.
On the other hand,

2rαn ≤
∑
i, j∈In

tit j
∥∥yi− yj

∥∥α ≤ 2

(
1−

(∑
i∈In

t2
i

))
≤ 2

(
1− t2

i

)
(13)

for every i∈ In. Therefore ti ≤
√

1− rαn → 0 as n→∞. One concludes that the cardinality
|Sn| of Sn tends to∞ as n→∞. In a similar manner (cf. [5, the proof of Theorem 3.4]), for
every ε ∈ (0,d(A)) and a given positive integer m, we choose n sufficiently large satisfying

∣∣Sn∣∣ >m,
2αm

4
√
n

< 1, 2
(

1− 1
4
√
n

)
≥ (d(A)− ε

)α
(14)

such that for every 1≤ k ≤m and every choice of i1, i2, . . . , ik ∈ Sn, we have

k⋂
ν=1

Ŝn
(
yiν
) �= ∅. (15)



V. Nguyen-Khac and K. Nguyen-Van 3525

With m and n as above and a fixed j ∈ Sn, setting z1 := yj , we take consecutively z2 ∈
Ŝn(z1),z3 ∈ Ŝn(z1)∩ Ŝn(z2), . . . ,zm+1 ∈

⋂m
k=1 Ŝn(zk). One sees that

∥∥zi− zj
∥∥α ≥ 2

(
1− 1

4
√
n

)
≥ (d(A)− ε

)α
(16)

for all i �= j in {1,2, . . . ,m+ 1}, with n sufficiently large. We obtain an m-simplex formed
by z1,z2, . . . ,zm+1, whose edges have length not less than d(A)− ε, as claimed.

The proof of Theorem 5 is complete. �

Remark 6. (i) Since for Lp(Ω) spaces Js = J , the extremal sets in Lp(Ω) are also self-extre-
mal. Thus we obtain a similar result for extremal sets in Lp(Ω) via Theorem 5 above.

(ii) In particular,Ω=N, µ(A) := card(A),A⊂N leads to the �p space case [5, Theorem
3.4].

Example 7. (i) Let p ≥ 2, consider a sequence {Ωn}∞i=1 consisting of measurable subsets
of Ω such that

0 < µ
(
Ωi
)
<∞, i= 1,2, . . . ; Ωi∩Ω j =∅ ∀i �= j;

∞⋃
i=1

Ωi =Ω. (17)

Let χΩi denote the characteristic function of Ωi, and set

A := { fi}∞i=1, fi := χΩi[
µ
(
Ωi
)]1/p . (18)

One can check easily that r(A)= 1, d(A)= 21/p, hence A is a self-extremal set in Lp(Ω).
(ii) In the case 1 < p < 2, we set B := {ri}∞i=0, where {ri}∞i=0 is the sequence of Radema-

cher functions in Lp[0,1]. If r ∈ co{r0,r1, . . . ,rn} and k ≥ n+ 1, then it is easy to see that
d(B)= 21−1/p and

∥∥r− rk
∥∥
p :=

(∫ 1

0

∣∣r− rk
∣∣pdµ)1/p

≥
∣∣∣∣∣
∫ 1

0

(
r− rk

)
rkdµ

∣∣∣∣∣= 1, (19)

hence r(B)= 1. Thus B is a self-extremal set in Lp[0,1] with 1 < p < 2. This is in contrast
to the �p case [5], where we conjectured that there are no (self)-extremal sets in �p spaces
with 1 < p < 2.
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