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We give a necessary condition for a set in L, () spaces (1 < p < o) to be self-extremal that
partially extends our previous results to the case of L, spaces. Examples of self-extremal
sets in L,(Q) (1 < p < o) are also given.

In [4, 5], we introduced the notion of (self-) extremal sets of a Banach space (X, || - |I).
For a nonempty bounded subset A of X, we denote by d(A) its diameter and by r(A)
the relative Chebyshev radius of A with respect to the closed convex hull ¢6A of A, that
is, 7(A) := infyccoa sup, e, l1x — yll. The self-Jung constant of X is defined by Ji(X) :=
sup{r(A) : A ¢ X, with d(A) = 1}. If in this definition we replace r(A) by the relative
Chebyshev radius rx (A) of A with respect to the whole X, we get the Jung constant J(X)
of X. Recall that a bounded subset A of X consisting of at least two points is said to be
extremal (resp., self-extremal) if rx (A) = J(X)d(A) (resp., r(A) = J{(X)d(A)).

Throughout the note, unless otherwise mentioned, we will work with the following
assumption: (Q,u) is a o-finite measure space such that L,(Q) is infinite-dimensional. The
Jung and self-Jung constants of L,(Q2) (1 < p < o) were determined in [1, 3, 6, 7]:

J(Ly(Q)) = Ji(Ly(Q)) = max {2V/P71,27VP}, (1)

THEOREM 1. If1< p < co and A is self-extremal in L,(Q), then k(A) = d(A).

Here x(A) := inf{e > 0: A can be covered by finitely many sets of diameter < ¢}—the
Kuratowski measure of noncompactness of A (for our convenience we use the notation
x(A) in this note).

Before proving our theorem, we need the following results which for convenience we
reformulate in the form of Lemmas 2 and 3.

LemMA 2 (see [1], Theorem 1.1). Let X be a reflexive strictly convex Banach space and A a
finite subset of X. Then there exists a subset B C A such that
(i) r(B) = r(A);
(ii) llx — bll = r(B) for every x € B, where b is the relative Chebyshev center of B, that is,
b € 0B and sup . llx — bll = r(B).
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LEmMMA 3 (see [8], Theorem 15.1). Let (Q,u) be a o-finite measure space, 1 < p < oo,
X1s...,Xn vectors in Ly(Q), and ty,...,t, nonnegative numbers such that Stiti=1. The
following inequality holds:

n n « n
Zzti Xi— ztjxj < Z t,-tj||xi—xj||“, (2)
i=1 =1 ij=1
where
P ifl<p<2,
a=1P"1 (3)
p if p=2.

Proof of Theorem 1. Since r(A) and d(A) remain the same with replacing A by oA, we
may assume that A is closed convex and r(A) = 1. For each integer n > 2, we have

NB(w1-1)na-o, (4)

x€A

where B(x,r) denotes the closed ball centered at x with radius r which is weakly compact
since L,(Q) is reflexive. Hence there exist xg,_,+1,Xg, ,+2,...,X4, in A (with convention
q1 = 0) such that

qn

N B(xi,l—%>mA=®. (5)

i=qu-1t+1

Set Ay := {Xg, ,+1,Xg, 1+25--->Xq, }. By Lemma 2, there exists a subset B, = {ys, ,+1»
Vs, 142>--+> Vs, } of A, satisfying properties (i)-(ii) of the lemma. Let us denote the rela-
tive Chebyshev center of B, by b, and let r, := r(B,). By what we said above, we have
tn>1—1/nand ||y; — b,ll = r, for everyi € I, := {s,-1 + 1,5,-1 +2,...,5,}. Since B, is a
finite set, there exist non-negative numbers £, 1%, ,+2,...,t;, with >;c; t; = 1 such that
by = 2.icr, tiyi. Applying Lemma 3, one gets

24

< > titjllyi— yll% (6)

ijel,

yi— 2.ty

jel,

2?;7:221’1'

i€l

where « is as in (3).

Setting Beo :={ Vs, 1+1> Vsu_1425-« - Vs, ) ne2» We claim that k(B )=d(A). Evidently ¥(B« ) <
d(A) by definition. If k(A ) <d(A), so there exist &y € (0,d(A)) satisfying (B ) < d(A) —
&9, and subsets Dy, D,,...,Dy, of L,(Q) with d(D;) < d(A) — ¢ for every i = 1,2,...,m
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such that B C U, D;. Then one can find at least one set among D1, Ds,..., Dy, say Dy,
with the property that there are infinitely many 7 satisfying

Stz 7)
ie, ™M
where
Jo:=1{i€l,:y; € D} (8)

From (1), it follows that (d(A))* = (1/](L,(€2)))* = 2. In view of (6), we have, for all
n satisfying (7),

2-ra < Y titillyi—yill*

i,jEl,

< (d(A) &) .( z:ag> “.<1_ z:nq) ©)

iL,j€Jy ,j€]n

<2 [(d(4)" - (@A) &)

On the other hand, obviously 1 — 1/n < r, < 1, therefore lim,,—.. r, = 1. We get a con-
tradiction with (9) since there are infinitely many n satisfying (7).

One concludes that k(B ) = d(A), and hence x(A) = d(A).

The proof of Theorem 1 is complete. O

Observe that no relatively compact set A in L,(Q) (1 < p < ) is self-extremal by
Theorem 1. Hence we obtain an immediate extension of Gulevich’s result for L,(Q)
spaces.

CoROLLARY 4 (cf. [2]). Suppose that 1 < p < co and that A is a relatively compact set in
L,(Q) with d(A) >0. Then r(A) < (1/3/2)d(A), where a is as in (3).

The following theorem gives a necessary condition for a set in L,(Q) (1 < p < o) to be
self-extremal.

TueoreM 5. Under the assumptions of Theorem 1, for every € € (0,d(A)), every positive
integer m, there exists an m-simplex A(e,m) with vertices in A such that each edge of A(e, m)
has length not less than d(A) — e.

Proof. We will assume A is closed convex and (A) = 1. From the proof of Theorem 1, we
derived a sequence {ys, ,+1> Vs, 1+2>---»> Vs, Inez i A and a sequence of positive numbers
{ts, 141>t 42>+ > 15, T nen (With convention s; = 0) such that

2- Tf: < z l’,’i’j”)/i—yjH(X, z ti=1, (10)

ijel, iel,

wherer, € (1 —-1/n,1],aisasin (3),and I,, := {s,.1 + 1,s,_1+2,...,8,}.
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We denote

Ty = > tillyi = yill"

i€l
S, = {jEIn:T,,jZZ-rf,‘- <1—,/1—r;‘,‘)},
. a 1 .
S = fiehilbi-pl =2 (1-5-)], jes, (an
§,,(yj) =1{yitieS.(y)}, jE€Sh
Api= z ti=1- Zt,’.
i€1,\S, i€Sy
One can proceed furthermore as follows. We have
2y < 0 tijllyi—yll°
ijel,
= > 52 tllyi—yll*+ 2 4 2 tllyi—yll°
jes, iel, jelNS, icl,
SZth+2rg(l—1/1—rg) >t (12)
JES JELN\SH

=2—2)Ln<1—r,‘f+r,‘f1/1—r;',‘)

Hence A, < /T =% — 0,as n — co. Thus lim, .« (X cs, £i) = lim,— (1 —1,) = 1.
On the other hand,

28 < titj||y,»—yj||“sz(1— (Zt?)) <2(1-1) (13)

ijel, icl,

for every i € I,. Therefore t; < \/1 —r% — 0 as n — c0. One concludes that the cardinality
[Sn| of S, tends to oo as n — co. In a similar manner (cf. [5, the proof of Theorem 3.4]), for
every € € (0,d(A)) and a given positive integer m, we choose n sufficiently large satisfying

1S4| >m, 2;;1 <1, 2(1 - %) > (d(A) — )" (14)

such that for every 1 < k < m and every choice of i1, 1,,...,ik € Sy, we have

k
N Sa(y;) #+ @. (15)

v=1
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With m and n as above and a fixed j € S, setting z; := y;, we take consecutively z, €
§n(zl),23 e §,,(zl) n §n(zz),...,zm+1 €Niy §n(zk). One sees that
o 1 o
ezl 2 2(1 - 5) = () - (16)
foralli# jin {1,2,...,m+ 1}, with n sufficiently large. We obtain an m-simplex formed
by z1,22,...,2Zm+1, whose edges have length not less than d(A) — ¢, as claimed.
The proof of Theorem 5 is complete. O

Remark 6. (i) Since for L,(€)) spaces J; = ], the extremal sets in L, () are also self-extre-
mal. Thus we obtain a similar result for extremal sets in L,(Q2) via Theorem 5 above.

(ii) In particular, QO = N, u(A) := card(A), A C N leads to the £, space case [5, Theorem
3.4].

Example 7. (i) Let p = 2, consider a sequence {Q),};2, consisting of measurable subsets
of Q such that
O<p(Q) <o, i=12,...; QnQ;=0 Vitj; [Ju=q (17)
i=1

Let yq, denote the characteristic function of €);, and set

A= {f)D, fi=—A0 18
{f}zf f I:‘[,I(Ql)] /p ( )

One can check easily that r(A) = 1, d(A) = 27, hence A is a self-extremal set in Ly (Q).
(i) In the case 1 < p < 2, we set B := {r;};2, where {r;};2, is the sequence of Radema-

cher functions in L,[0,1]. If r € co{ro,r1,...,7,} and k = n+ 1, then it is easy to see that
d(B) = 21-VP and

X 1/p
Ir=nllys= ([ 1r-nlfa) =

hence r(B) = 1. Thus B is a self-extremal set in L, [0, 1] with 1 < p < 2. This is in contrast
to the £, case [5], where we conjectured that there are no (self)-extremal sets in £, spaces
with 1 < p<2.

Jol (r— rk)rkdy‘ =1, (19)
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