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We consider a mean value iteration for a family of functions, which corresponds to the
Mann iteration with lim, . a,, # 0. We prove convergence results for this iteration when
applied to strongly pseudocontractive or strongly accretive maps.

1. Introduction

Let X be a real Banach space. The map J : X — 2X" given by
Jx:={f eX*:(x f) =lxI’ I fll = Ixl}, VxeX, (1.1)

is called the normalized duality mapping. Let y € X and j(y) € J(y); note that (-, j(y)) is
a Lipschitzian map.

Remark 1.1. The above J satisfies

(i) <lxlllyll, VxeX, Vjly) elly). (1.2)

Definition 1.2. Let B be a nonempty subset of X. The map T : B — B is strongly pseudo-
contractive if there exist k € (0,1) and j(x — y) € J(x — y) such that

(Tx—Ty, j(x—y)) <kllx—yl*, Vx,y€B. (1.3)

A map S: B — Bis called strongly accretive if there exist k € (0,1) and j(x — y) € J(x — y)
such that

(Sx =Sy, j(x—y)) = kllx—yl*>, Vx,y€B. (1.4)
In (1.3), take k = 1 to obtain a pseudocontractive map. In (1.4), take k = 0 to obtain an

accretive map.
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Let B be a nonempty and convex subset of X,T : B — B and xo,u4y € B. The Mann
iteration (see [3]) is defined by

Ups1 = (1= ay)uy + a, Tuy,. (1.5)
The Ishikawa iteration is defined (see [2]) by

Xn+1 = (1 - (xn)xn +(anyny

yn= (1= Bu)xn + B Txn, (1.6)

where {a,} C (0,1) and {S,} C [0,1).
Let s = 2 be fixed. Let T; : B — B, 1 <i <, be a family of functions. We consider the
following multistep procedure:
Xni1 = (1= ) X + @ Ty yps
yn= =B+ BTy, i=1.5-2, (1.7)
yi = (=B )X+ By T,
Let A,b € (0,1) be fixed. The sequence {a,} C (0,1) satisfies

0<A<a,<b<2(l1-k), VneN, (1.8)

{B.}cl0,1), i=1,..,s—1. (1.9)

Let F(T,...,Ts) denote the common fixed points set with respect to B for the family
T1,..., Ts. In this paper, we will prove convergence results for iteration (1.7), for strongly
pseudocontractive (accretive) maps when {a,} satisfies (1.8). These results improve the
recently obtained results from [6], in which {a,} and {f3,} converge to zero. We give two

numerical examples in which iteration (1.7), when {«,} satisfies (1.8), converges faster as
in [6]. Note that, in both cases, iteration (1.7) converges faster than Ishikawa iteration.

Lemma 1.3 [4]. Let X be a real Banach space, and let ] : X — 2X" be the duality mapping.
Then for any given x,y € X,

lx+ylI2 < x> +2(y,j(x+y)), Vx,yeX, Vjlx+y) €J(x+y). (1.10)
LEMMA 1.4 [7]. Let {a,} be a nonnegative sequence which satisfies the inequality
ans1 < (1 —ba,+ oy, (1.11)
where t € (0,1) is fixed, lim,_.« 0, = 0. Then lim,_.. a, = 0.

2. Main result

THEOREM 2.1. Let s > 2 be fixed, X a real Banach space, and B a nonempty, closed, convex
subset of X. Let Ty : B — B be a strongly pseudocontractive operator and T,...,Ts: B — B,
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with T;(B) bounded for all 1 <i <s, such that F(Ty,...,Ts) # @. If A,b € (0,1), {a,} C
(0,1) satisfies (1.8), xo € B, and the following condition is satisfied:

}li_IEIOHTanH — Tyl =0, (2.1)

then iteration (1.7) converges to the unique common fixed point of T1,...,Ts, which is the
unique fixed point of T).

Proof. Any common fixed point of T},...,T;, in particular, is a fixed point of T;. How-
ever, Ty can have at most one fixed point since it is strongly pseudocontractive. Let
x* =F(Ty,...,Ts). Denote

M = sup {[| Ty [Fxol, 13 (2.2)

Then if we assume ||x, || < M, by
]l < (1= o) [lall + @l [ Tryall < M, (2.3)

we get [|x,41 |l < M.
From (1.2) and (1.10), with

x:= (1= a) (30 — %),
yi=an(T1y, — Tix*), (2.4)
X+y =% —xF,
we get
[t =% |1” = [1(1 = @) (60 = %) + @ (Tays = Tox) ||
<(1- cxn)2||xn —x”‘||2 +20,(T1y) — Tix*, j(xuer —x*))
= (1= )|t = x*||* + 200 (Tixts1 — Tix*, j(%n1 — x%))
+20, Ty — T1Xnt1s j (s —x*))
< (1= )|l = x¥|| + 200k [30011 — x*]*
(2.5)
20, (T1yy — Tixnr1, j(Xne1 —x%))
< (1= o) ||tw = |7 + 200k |21 — x|
+ 20| Th vy = Tixnr ||| %1 — x|
< (1= )|l = x*|| + 200k 20011 — x*|*
+4ay||Try) — Tixne || M.
Using (1.8), we obtain

(1—a,)’ < 1-2a,+anb<1—20,+0,2(1—k) = 1— 20k, (2.6)
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thus,

2
*||2<M

4o, M |
T 1-2a,k k

T 2a, I T1ys = Tixnn]|- (2.7)

[16ns1 = [n = x|+

The following inequality is satisfied:

(1-a,)’  (1-a)’(1-2ak+2a,k) 2< 20,k >
1-2a,k 1 —2a,k = (L-a) {1+ 1 —2a,k

_ 2 Zank(l_‘xn)z
= (1—o)"+ 1—2a,k

=1-2(1-k)-b)a,<1-(2(1-k)-D)A.

<(1 —ocn)2+20cnk <1-2a,+a,b+2a,k

(2.8)

Substituting (2.6) and (2.8) into (2.7), we obtain

stmet — 2|2 < (1= (21— k) — B)A) | Jn — x|+ l‘l_sz‘iknm;— Tixen|.  (29)
Set
an = |0 — x|,
t:= 2(1-k) —b)A € (0,1), (2.10)
oni= Tl Toyh = Tl

From (2.1), we know that lim,,—.. 0, = 0; all the assumptions of Lemma 1.4 are fulfilled
and consequently we have lim,,_.« |[x, —x*|| = 0. O

In Theorem 2.1, {a,} does not converge to zero, while in [6], {a,} converges to zero.

THEOREM 2.2 [6]. Let s > 2 be fixed, X a real Banach space with a uniformly convex
dual, and B a nonempty, closed, convex subset of X. Let Ty : B — B be a strongly pseu-
docontractive operator and T»,...,Ts: B — B, with Ti(B) bounded for all 1 <i <'s, such
that F(Ty,..., Ts) # @. If {a,} C (0,1) satisfies limy—c 0y =0, D7 | @y = +00, and {fi} C
[0,1),i=1,...,s— 1, satisfy lim,_ B} = 0, then iteration (1.7) converges to a fixed point of
Ti...r Ts.

The Banach space in Theorem 2.1 contains no restrictions.

3. Further results
Denote by I the identity map.

Remark 3.1. Let T,S:X — X and let f € X be given. Then,
(i) a fixed point for the map Tx = f + (I — S)x, for all x € X, is a solution for Sx = f;
(ii) a fixed point for Tx = f — Sx is a solution for x + Sx = f.
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Remark 3.2 [5]. The following are true.
(i) The operator T': X — X is a (strongly) pseudocontractive map if and only if (I —
T):X — X is (strongly) accretive.
(if) If S: X — X is an accretive map, then T = f —§: X — X is a strongly pseudocon-
tractive map.

We consider iteration (1.7), with Tix = fi+ (I = Si)x, 1l <i<sands=>2, {a,} C (0,1),
{Bi} C[0,1),i=1,...,s— 1 satisfying (1.8):

Xn+l = (1 - “n)xn+05n(ﬁ + (1—51))’%%
Y= (1= Bi)xn+BL(fir1 + (I =Siw1) yiY), i=1,...,s—2, (3.1)
yo b= (=B x4 B (for + (I = 80)x).

Theorem 2.1, Remark 3.1(i), and Remark 3.2(i) lead to the following result.

CoOROLLARY 3.3. Let s > 2 be fixed, X a real Banach space, and S, : X — X a strongly accre-
tive operatot, S,...,Ss : X — X, such that the equations Six = f;, 1 <i <, have a common
solution and T;(X), 1 <i <s, are bounded. If A,b € (0,1), {a,} C (0,1) satisfies (1.8), and
condition (2.1) is satisfied, then iteration (3.1) converges to a common solution of Six = f;,
1<i<s.

We consider iteration (1.7), with Tix = fi — Six, 1 <i <s, and s = 2, {a,} C (0,1),
{Bi} c[0,1),i=1,...,s— 1, satisfying (1.8):

Xn+1 = (1 _‘xn)xn+an(f1 _Slyrlt):
In=1=B)xu+f(fir = Siyy), i=1..,5-2, (3.2)
yi = (=B )xn+ B (feo1 = Soxan).

Theorem 2.1, Remark 3.1(ii), and Remark 3.2(ii) lead to the following result.

CoROLLARY 3.4. Let s > 2 be fixed, X a real Banach space, and S, : X — X an accretive
operator, S,...,Ss : X — X, such that the equations x + Six = f;, 1 <i <s, have a common
solution and S;(X), 1 <i <s, are bounded. If A,b € (0,1), {a,,} C (0,1) satisfies (1.8), and
condition (2.1) is satisfied, then iteration (3.2) converges to a common solution of x + Six =
fiol<iss.

4. Numerical examples

Let X = R? be the euclidean plane, consider x = (a,b) € R?, with x* = (b, —a) € R2.
We know that (x,x*) =0, [Ix|l = [lx* I, {(x*,y*) = (x,y), lIx* = y*|l = llx — yll, and
(x*,y) + (x,y+) =0, for all x,y € R%. Denote by B the closed unit ball. In [1], we can
get the following example in which Ishikawa iteration (1.6) converges and (1.5) is not
convergent.
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Table 4.1

\Iteration (1.7)

Case 1

Case 2

Step 10 (0.2217,0.1480) (0.0151,-0.0023)
Step 15 (0.1837,0.1184) (0.0017,—0.0006)
Step 20 (0.1603,0.1015) (0.0002,—0.0001)
Step 21 (0.1566,0.0989) 1073 - (0.1156, —0.0686)
Step 22 (0.1531,0.0965) 1074 - (0.7406, —0.4641)
Step 23 (0.1499,0.0942) 1074 - (0.4743,-0.3129)
Step 24 (0.1468,0.0921) 107 - (0.3037,-0.2103)
Step 25 (0.1440,0.0902) 1074 - (0.1945,-0.1409)

Example 4.1 [1]. Let H = R? and let

1
Blz{xe[}%z:llxllsi}, B2={x€[R{2: sllx\lsl}. (4.1)

N | =

The map T : B — B is given by

x+xt, x € B;

Tx = (4.2)

X —x+x*, x€B,.
llxl
Then the following are true:
(i) T is Lipschitz and pseudocontractive;
(ii) for all (a,), C (0,1), the Mann iteration does not converge to the fixed point of
T (which is the point (0,0) and it is unique).

The main result from [2] assures the convergence of the Ishikawa iteration (1.6) ap-
plied to the map T given by (4.2). The convergence is very slow. In [6], for the same T, it
was shown that iteration (1.7) converges faster. Here, we give an example for which (1.7)
with {a,} satisfying (1.8) converges even faster as in [6].

Case 1 [6]. Consider now Ty(x,y) = 0.5 (x,y), for all (x,y) € B, T, =T, and s = 2,
where T is given by (4.2), the initial point xy = (0.5,0.7),and a, = 8, = 1/(n+1) in (1.7).
The main result from [6] assures the convergence of (1.7).

Case 2. Consider Ti(x,y) = 0.5 (x,y), for all (x,y) € B, T, = T, and s = 2, where T is
given by (4.2), the initial point xy = (0.5,0.7), &, = 0.7, foralln € N,and 8, = 1/(n+1) in
(1.7). The fixed point for both functions is (0,0). Observe that k = 0.5, and {«,} satisfies
(1.8):

A=07=a,=b<2(1-k)=1, VneN. (4.3)

Note that Mann iteration does not converge for any {a,} C (0,1). Using a Matlab pro-
gram, we obtain Table 4.1.

Case 3. Consider in (1.7) the same T}, T>, s = 2, and xp as in Case 1 and a, = 8, =

1/vn+1.
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Table 4.2

\Iteration Case 3 (1.7) Case 4 (1.7) Ishikawa iteration
Step 10 (0.0631,-0.0333) (0.0044,-0.0164) (0.4545,0.2689)

Step 15 (0.0256,—0.0221) (—=0.0010,-0.0018) (0.1289,—-0.4827)

Step 20 (0.0117,-0.0139) 1075 - (=22.6516,—11.0267) (~0.4456,—0.1532)
Step 11 (0.0101,-0.0126) 1073 - (=15.5657,—5.4373) (—0.4651,-0.0274)
Step 22 (0.0087,—0.0115) 107> - (—10.5234,—-2.3727) (—0.4511,0.0941)
Step 23 (0.0075, —0.0105) 1075 - (=7.0134, —0.7743) (—0.4077,0.2037)
Step 24 (0.0066, —0.0096) 1075 - (—4.6140, —0.0022) (—0.3407,0.2954)
Step 25 (0.0057,—0.0088) 107 - (=2.9993,0.3215) (—0.2562,0.3654)
Step 1500 — — (0.0790,—0.0311)

Case 4. Consider in (1.7) Ty, T, s = 2, and x; as above and a0, = 0.7, foralln e N, 3, =
1/v/n+1.

Also, consider the Ishikawa iteration with the same T as in (4.2), xo = (0.5,0.7), &, =
Bu = 1//n+1,forall n € N. The main result from [2] assures the convergence of Ishikawa
iteration. Note that in this case the convergence is very slow. Eventually, Example 4.1
assures that for the same map, Mann iteration does not converge. A Matlab program
leads to the evaluations illustrated in Table 4.2.
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