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We consider a mean value iteration for a family of functions, which corresponds to the
Mann iteration with limn→∞αn �= 0. We prove convergence results for this iteration when
applied to strongly pseudocontractive or strongly accretive maps.

1. Introduction

Let X be a real Banach space. The map J : X → 2X
∗

given by

Jx := { f ∈ X∗ : 〈x, f 〉 = ‖x‖2, ‖ f ‖ = ‖x‖}, ∀x ∈ X , (1.1)

is called the normalized duality mapping. Let y ∈ X and j(y)∈ J(y); note that 〈·, j(y)〉 is
a Lipschitzian map.

Remark 1.1. The above J satisfies

〈
x, j(y)

〉≤ ‖x‖‖y‖, ∀x ∈ X , ∀ j(y)∈ J(y). (1.2)

Definition 1.2. Let B be a nonempty subset of X . The map T : B→ B is strongly pseudo-
contractive if there exist k ∈ (0,1) and j(x− y)∈ J(x− y) such that

〈
Tx−Ty, j(x− y)

〉≤ k‖x− y‖2, ∀x, y ∈ B. (1.3)

A map S : B→ B is called strongly accretive if there exist k ∈ (0,1) and j(x− y)∈ J(x− y)
such that

〈
Sx− Sy, j(x− y)

〉≥ k‖x− y‖2, ∀x, y ∈ B. (1.4)

In (1.3), take k = 1 to obtain a pseudocontractive map. In (1.4), take k = 0 to obtain an
accretive map.
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Let B be a nonempty and convex subset of X ,T : B → B and x0,u0 ∈ B. The Mann
iteration (see [3]) is defined by

un+1 =
(
1−αn

)
un +αnTun. (1.5)

The Ishikawa iteration is defined (see [2]) by

xn+1 =
(
1−αn

)
xn +αnTyn,

yn =
(
1−βn

)
xn +βnTxn,

(1.6)

where {αn} ⊂ (0,1) and {βn} ⊂ [0,1).
Let s ≥ 2 be fixed. Let Ti : B→ B, 1 ≤ i ≤ s, be a family of functions. We consider the

following multistep procedure:

xn+1 =
(
1−αn

)
xn +αnT1y

1
n,

yin =
(
1−βin

)
xn +βinTi+1y

i+1
n , i= 1, . . . ,s− 2,

ys−1
n = (1−βs−1

n

)
xn +βs−1

n Tsxn.

(1.7)

Let A,b ∈ (0,1) be fixed. The sequence {αn} ⊂ (0,1) satisfies

0 < A≤ αn ≤ b < 2(1− k), ∀n∈N, (1.8){
βin
}⊂ [0,1), i= 1, . . . ,s− 1. (1.9)

Let F(T1, . . . ,Ts) denote the common fixed points set with respect to B for the family
T1, . . . ,Ts. In this paper, we will prove convergence results for iteration (1.7), for strongly
pseudocontractive (accretive) maps when {αn} satisfies (1.8). These results improve the
recently obtained results from [6], in which {αn} and {βn} converge to zero. We give two
numerical examples in which iteration (1.7), when {αn} satisfies (1.8), converges faster as
in [6]. Note that, in both cases, iteration (1.7) converges faster than Ishikawa iteration.

Lemma 1.3 [4]. Let X be a real Banach space, and let J : X → 2X
∗

be the duality mapping.
Then for any given x, y ∈ X ,

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
, ∀x, y ∈ X , ∀ j(x+ y)∈ J(x+ y). (1.10)

Lemma 1.4 [7]. Let {an} be a nonnegative sequence which satisfies the inequality

an+1 ≤ (1− t)an + σn, (1.11)

where t ∈ (0,1) is fixed, limn→∞ σn = 0. Then limn→∞ an = 0.

2. Main result

Theorem 2.1. Let s≥ 2 be fixed, X a real Banach space, and B a nonempty, closed, convex
subset of X . Let T1 : B→ B be a strongly pseudocontractive operator and T2, . . . ,Ts : B→ B,
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with Ti(B) bounded for all 1 ≤ i ≤ s, such that F(T1, . . . ,Ts) �= ∅. If A,b ∈ (0,1), {αn} ⊂
(0,1) satisfies (1.8), x0 ∈ B, and the following condition is satisfied:

lim
n→∞

∥∥T1xn+1−T1y
1
n

∥∥= 0, (2.1)

then iteration (1.7) converges to the unique common fixed point of T1, . . . ,Ts, which is the
unique fixed point of T1.

Proof. Any common fixed point of T1, . . . ,Ts, in particular, is a fixed point of T1. How-
ever, T1 can have at most one fixed point since it is strongly pseudocontractive. Let
x∗ = F(T1, . . . ,Ts). Denote

M = sup
n∈N

{∥∥T1y
1
n

∥∥,
∥∥x0
∥∥,
∥∥x∗∥∥}. (2.2)

Then if we assume ‖xn‖ ≤M, by
∥∥xn+1

∥∥≤ (1−αn
)∥∥xn∥∥+αn

∥∥T1y
1
n

∥∥≤M, (2.3)

we get ‖xn+1‖ ≤M.
From (1.2) and (1.10), with

x := (1−αn
)(
xn− x∗

)
,

y := αn
(
T1y

1
n−T1x

∗),
x+ y = xn+1− x∗,

(2.4)

we get

∥∥xn+1− x∗
∥∥2 = ∥∥(1−αn

)(
xn− x∗

)
+αn

(
T1y

1
n−T1x

∗)∥∥2

≤ (1−αn
)2∥∥xn− x∗

∥∥2
+ 2αn

〈
T1y

1
n−T1x

∗, j(xn+1− x∗
)〉

= (1−αn
)2∥∥xn− x∗

∥∥2
+ 2αn

〈
T1xn+1−T1x

∗, j
(
xn+1− x∗

)〉

+ 2αn
〈
T1y

1
n−T1xn+1, j

(
xn+1− x∗

)〉

≤ (1−αn
)2∥∥xn− x∗

∥∥2
+ 2αnk

∥∥xn+1− x∗
∥∥2

+2αn
〈
T1y

1
n−T1xn+1, j

(
xn+1− x∗

)〉

≤ (1−αn
)2∥∥xn− x∗

∥∥2
+ 2αnk

∥∥xn+1− x∗
∥∥2

+ 2αn
∥∥T1y

1
n−T1xn+1

∥∥∥∥xn+1− x∗
∥∥

≤ (1−αn
)2∥∥xn− x∗

∥∥2
+ 2αnk

∥∥xn+1− x∗
∥∥2

+ 4αn
∥∥T1y

1
n−T1xn+1

∥∥M.

(2.5)

Using (1.8), we obtain

(
1−αn

)2 ≤ 1− 2αn +αnb < 1− 2αn +αn2(1− k)= 1− 2αnk, (2.6)
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thus,

∥∥xn+1− x∗
∥∥2 ≤

(
1−αn

)2

1− 2αnk

∥∥xn− x∗
∥∥2

+
4αnM

1− 2αnk

∥∥T1y
1
n−T1xn+1

∥∥. (2.7)

The following inequality is satisfied:

(
1−αn

)2

1− 2αnk
=
(
1−αn

)2(
1− 2αnk+ 2αnk

)
1− 2αnk

= (1−αn
)2
(

1 +
2αnk

1− 2αnk

)

= (1−αn
)2

+
2αnk

(
1−αn

)2

1− 2αnk
≤ (1−αn

)2
+ 2αnk ≤ 1− 2αn +αnb+ 2αnk

= 1− (2(1− k)− b
)
αn ≤ 1− (2(1− k)− b

)
A.

(2.8)

Substituting (2.6) and (2.8) into (2.7), we obtain

∥∥xn+1− x∗
∥∥2 ≤ (1− (2(1− k)− b

)
A
)∥∥xn− x∗

∥∥2
+

4bM
1− 2bk

∥∥T1y
1
n−T1xn+1

∥∥. (2.9)

Set

an := ∥∥xn− x∗
∥∥2

,

t := (2(1− k)− b
)
A∈ (0,1),

σn := 4bM
1− 2bk

∥∥T1y
1
n−T1xn+1

∥∥.
(2.10)

From (2.1), we know that limn→∞ σn = 0; all the assumptions of Lemma 1.4 are fulfilled
and consequently we have limn→∞‖xn− x∗‖ = 0. �

In Theorem 2.1, {αn} does not converge to zero, while in [6], {αn} converges to zero.

Theorem 2.2 [6]. Let s ≥ 2 be fixed, X a real Banach space with a uniformly convex
dual, and B a nonempty, closed, convex subset of X . Let T1 : B → B be a strongly pseu-
docontractive operator and T2, . . . ,Ts : B → B, with Ti(B) bounded for all 1 ≤ i ≤ s, such
that F(T1, . . . ,Ts) �= ∅. If {αn} ⊂ (0,1) satisfies limn→∞αn=0,

∑∞
n=1αn = +∞, and {βin} ⊂

[0,1), i= 1, . . . ,s− 1, satisfy limn→∞β1
n = 0, then iteration (1.7) converges to a fixed point of

T1, . . . ,Ts.

The Banach space in Theorem 2.1 contains no restrictions.

3. Further results

Denote by I the identity map.

Remark 3.1. Let T ,S : X → X and let f ∈ X be given. Then,
(i) a fixed point for the map Tx = f + (I − S)x, for all x ∈ X , is a solution for Sx = f ;

(ii) a fixed point for Tx = f − Sx is a solution for x+ Sx = f .
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Remark 3.2 [5]. The following are true.
(i) The operator T : X → X is a (strongly) pseudocontractive map if and only if (I −

T) : X → X is (strongly) accretive.
(ii) If S : X → X is an accretive map, then T = f − S : X → X is a strongly pseudocon-

tractive map.

We consider iteration (1.7), with Tix = fi + (I − Si)x, 1≤ i≤ s and s≥ 2, {αn} ⊂ (0,1),
{βin} ⊂ [0,1), i= 1, . . . ,s− 1 satisfying (1.8):

xn+1 =
(
1−αn

)
xn +αn

(
f1 +

(
I − S1

)
y1
n

)
,

yin =
(
1−βin

)
xn +βin

(
fi+1 +

(
I − Si+1

)
yi+1
n

)
, i= 1, . . . ,s− 2,

ys−1
n = (1−βs−1

n

)
xn +βs−1

n

(
fs−1 +

(
I − Ss

)
xn
)
.

(3.1)

Theorem 2.1, Remark 3.1(i), and Remark 3.2(i) lead to the following result.

Corollary 3.3. Let s≥ 2 be fixed, X a real Banach space, and S1 : X → X a strongly accre-
tive operator, S2, . . . ,Ss : X → X , such that the equations Six = fi, 1≤ i≤ s, have a common
solution and Ti(X), 1≤ i≤ s, are bounded. If A,b ∈ (0,1), {αn} ⊂ (0,1) satisfies (1.8), and
condition (2.1) is satisfied, then iteration (3.1) converges to a common solution of Six = fi,
1≤ i≤ s.

We consider iteration (1.7), with Tix = fi − Six, 1 ≤ i ≤ s, and s ≥ 2, {αn} ⊂ (0,1),
{βin} ⊂ [0,1), i= 1, . . . ,s− 1, satisfying (1.8):

xn+1 =
(
1−αn

)
xn +αn

(
f1− S1y

1
n

)
,

yin =
(
1−βin

)
xn +βin

(
fi+1− Si+1y

i+1
n

)
, i= 1, . . . ,s− 2,

ys−1
n = (1−βs−1

n

)
xn +βs−1

n

(
fs−1− Ssxn

)
.

(3.2)

Theorem 2.1, Remark 3.1(ii), and Remark 3.2(ii) lead to the following result.

Corollary 3.4. Let s ≥ 2 be fixed, X a real Banach space, and S1 : X → X an accretive
operator, S2, . . . ,Ss : X → X , such that the equations x + Six = fi, 1 ≤ i ≤ s, have a common
solution and Si(X), 1≤ i≤ s, are bounded. If A,b ∈ (0,1), {αn} ⊂ (0,1) satisfies (1.8), and
condition (2.1) is satisfied, then iteration (3.2) converges to a common solution of x+ Six =
fi, 1≤ i≤ s.

4. Numerical examples

Let X = R2 be the euclidean plane, consider x = (a,b) ∈ R2, with x⊥ = (b,−a) ∈ R2.
We know that 〈x,x⊥〉 = 0, ‖x‖ = ‖x⊥‖, 〈x⊥, y⊥〉 = 〈x, y〉, ‖x⊥ − y⊥‖ = ‖x − y‖, and
〈x⊥, y〉+ 〈x, y⊥〉 = 0, for all x, y ∈ R2. Denote by B the closed unit ball. In [1], we can
get the following example in which Ishikawa iteration (1.6) converges and (1.5) is not
convergent.
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Table 4.1

\Iteration (1.7) Case 1 Case 2
Step 10 (0.2217,0.1480) (0.0151,−0.0023)
Step 15 (0.1837,0.1184) (0.0017,−0.0006)
Step 20 (0.1603,0.1015) (0.0002,−0.0001)
Step 21 (0.1566,0.0989) 10−3 · (0.1156,−0.0686)
Step 22 (0.1531,0.0965) 10−4 · (0.7406,−0.4641)
Step 23 (0.1499,0.0942) 10−4 · (0.4743,−0.3129)
Step 24 (0.1468,0.0921) 10−4 · (0.3037,−0.2103)
Step 25 (0.1440,0.0902) 10−4 · (0.1945,−0.1409)

Example 4.1 [1]. Let H =R2 and let

B1 =
{
x ∈R2 : ‖x‖ ≤ 1

2

}
, B2 =

{
x ∈R2 :

1
2
≤ ‖x‖ ≤ 1

}
. (4.1)

The map T : B→ B is given by

Tx =


x+ x⊥, x ∈ B1

x

‖x‖ − x+ x⊥, x ∈ B2.
(4.2)

Then the following are true:
(i) T is Lipschitz and pseudocontractive;

(ii) for all (αn)n ⊂ (0,1), the Mann iteration does not converge to the fixed point of
T (which is the point (0,0) and it is unique).

The main result from [2] assures the convergence of the Ishikawa iteration (1.6) ap-
plied to the map T given by (4.2). The convergence is very slow. In [6], for the same T , it
was shown that iteration (1.7) converges faster. Here, we give an example for which (1.7)
with {αn} satisfying (1.8) converges even faster as in [6].

Case 1 [6]. Consider now T1(x, y) = 0.5 · (x, y), for all (x, y) ∈ B, T2 = T , and s = 2,
where T is given by (4.2), the initial point x0 = (0.5,0.7), and αn = βn = 1/(n+ 1) in (1.7).
The main result from [6] assures the convergence of (1.7).

Case 2. Consider T1(x, y) = 0.5 · (x, y), for all (x, y) ∈ B, T2 = T , and s = 2, where T is
given by (4.2), the initial point x0 = (0.5,0.7), αn = 0.7, for all n∈N, and βn = 1/(n+ 1) in
(1.7). The fixed point for both functions is (0,0). Observe that k = 0.5, and {αn} satisfies
(1.8):

A= 0.7= αn = b ≤ 2(1− k)= 1, ∀n∈N. (4.3)

Note that Mann iteration does not converge for any {αn} ⊂ (0,1). Using a Matlab pro-
gram, we obtain Table 4.1.

Case 3. Consider in (1.7) the same T1, T2, s = 2, and x0 as in Case 1 and αn = βn =
1/
√
n+ 1.
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Table 4.2

\Iteration Case 3 (1.7) Case 4 (1.7) Ishikawa iteration
Step 10 (0.0631,−0.0333) (0.0044,−0.0164) (0.4545,0.2689)
Step 15 (0.0256,−0.0221) (−0.0010,−0.0018) (0.1289,−0.4827)
Step 20 (0.0117,−0.0139) 10−5 · (−22.6516,−11.0267) (−0.4456,−0.1532)
Step 11 (0.0101,−0.0126) 10−5 · (−15.5657,−5.4373) (−0.4651,−0.0274)
Step 22 (0.0087,−0.0115) 10−5 · (−10.5234,−2.3727) (−0.4511,0.0941)
Step 23 (0.0075,−0.0105) 10−5 · (−7.0134,−0.7743) (−0.4077,0.2037)
Step 24 (0.0066,−0.0096) 10−5 · (−4.6140,−0.0022) (−0.3407,0.2954)
Step 25 (0.0057,−0.0088) 10−5 · (−2.9993,0.3215) (−0.2562,0.3654)
Step 1500 — — (0.0790,−0.0311)

Case 4. Consider in (1.7) T1, T2, s= 2, and x0 as above and αn = 0.7, for all n∈N, βn =
1/
√
n+ 1.

Also, consider the Ishikawa iteration with the same T as in (4.2), x0 = (0.5,0.7), αn =
βn = 1/

√
n+ 1, for all n∈N. The main result from [2] assures the convergence of Ishikawa

iteration. Note that in this case the convergence is very slow. Eventually, Example 4.1
assures that for the same map, Mann iteration does not converge. A Matlab program
leads to the evaluations illustrated in Table 4.2.
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