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We deal with a locally conformal cosymplectic manifold M(¢,,¢&,7,¢) admitting a con-
formal contact quasi-torse-forming vector field T The presymplectic 2-form Q is a lo-
cally conformal cosymplectic 2-form. It is shown that T is a 3-exterior concurrent vector
field. Infinitesimal transformations of the Lie algebra of AM are investigated. The Gauss
map of the hypersurface My normal to £ is conformal and Mg x My is a Chen submanifold
of M X M.

1. Introduction

Locally conformal cosymplectic manifolds have been investigated by Olszak and Rosca
[7] (see also [6]).

In the present paper, we consider a (2m + 1)-dimensional Riemannian manifold M(¢,
0,&,1,2) endowed with a locally conformal cosymplectic structure. We assume that M
admits a principal vector field (or a conformal contact quasi-torse-forming), that is,

VT =sdp+TAE=sdp+n@T—-T" ®E, (1.1)

with ds = sy.

First, we prove certain geometrical properties of the vector fields T and ¢T. The exis-
tence of T and ¢ T is determined by an exterior differential system in involution (in the
sense of Cartan [3]).

The principal vector field T is 3-exterior concurrent (see also [8]), it defines a Lie
relative contact transformation of the co-Reeb form 7, and the Lie differential of T°
with respect to T is conformal to T". The vector field ¢ T is an infinitesimal transfor-
mation of generators T and . The vector fields &, T, and ¢T commute and the distri-
bution Dr = {T,¢T,&} is involutive. The divergence and the Ricci curvature of T are
computed.

Next, we investigate infinitesimal transformations on the Lie algebra of AM.
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In the last section, we study the hypersurface My normal to £. We prove that M is
Einsteinian, its Gauss map is conformal, and the product submanifold My X M in M X M
is a AU-submanifold in the sense of Chen.

2. Preliminaries

Let (M,g) be an n-dimensional Riemannian manifold endowed with a metric tensor g.
LetTTMand b : TM — T*M, Z — Z" be the set of sections of the tangent bundle TM and
the musical isomorphism defined by g, respectively. Following a standard notation, we
set A9(M,TM) = Hom(A9TM, TM) and notice that the elements of A9(M,TM) are the
vector-valued g-forms (g < n) (see also [9]). Denote by dV : A1(M, TM) — A" (M, TM)
the exterior covariant derivative operator with respect to the Levi-Civita connection V.
It should be noticed that generally d¥* = d¥ o d" # 0, unlike 2 =dod = 0. If dp €
AY(M, TM) denotes the soldering form on M, one has d" (dp) = 0.

The cohomology operator d“ acting on AM is defined by d“y = dy + w A y, where w
is a closed 1-form. If d“y = 0, y is said to be d“-closed.

Let R be the curvature operator on M. Then, for any vector field Z on M, the second
covariant differential is defined as

V2Z =dY(VZ) e A* (M, TM) (2.1)
and satisfies
V2Z(V,W)=R(V,W)Z, Z,V,WeTITM. (2.2)

Let O = vect{ea | A = 1,...,n} be an adapted local field of orthonormal frames over M
and let O* = covect{w”} be its associated coframe. With respect to O and O*, E. Cartan’s
structure equation can be written, in the indexless manner, as

Ve=0®ec AY(M,TM),
do=-0 1w, (2.3)
dd=-60n0+0.

In the above equations, 0, respectively, ® are the local connection forms in the bundle
O(M), respectively, the curvature forms on M.

3. Locally conformal cosymplectic structure

Let M(¢$,Q,¢,1,¢) be a (2m + 1)-dimensional Riemannian manifold carrying a quintuple
of structure tensor fields, where ¢ is an automorphism of the tangent bundle TM, Q a
presymplectic form of rank 2m, & the Reeb vector field, and # = &° the associated Reeb
covector, ¢ the metric tensor.

We assume in the present paper that 7 is closed and A is a scalar (A € A°M) such that
dA =M1, with A € A°M.
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We agree to denominate the manifold M a locally conformal cosymplectic manifold if it
satisfies

¢*=-I+n®f  $&=0, no¢p=0, p&=1,
VE=Mdp-n®d),
dr=A'n,
OZ.2)=g@Z.2)),  Q"An#0,

(3.1)

where dp € AY(M,TM) denotes the canonical vector-valued 1-form (or the soldering
form [5]) on M. Then Q is called the fundamental 2-form on M and is expressed by

m
Q=>Yw 0", *=itm. (3.2)
i=1

By the well-known relations
i _ pit it _ it
9]-—9]-*, Gj =0, , i*=i+m, (3.3)
one derives by differentiation of Q
dMQ =0 (dQ=2ApAQ), (3.4)

which shows that the presymplectic 2-form Q is a locally conformal cosymplectic form.
Operating on ¢dp by dV, it follows that

d¥(¢dp) =20Q & £+2n A pdp. (3.5)
On the other hand, we agree to call a vector field T, such that
VT =sdp+TAé=sdp+neT-T"®¢, (3.6)
a principal vector field on M, or a conformal contact quasi-torse-forming if
ds = sn. (3.7)

In these conditions, since the gth covariant differential V7 of a vector field Z € TTM
is defined inductively, that is, V4Z = dV(V4~1Z), one derives from (3.6)

VAT = -V A T" @ dp. (3.8)

As a natural concept of concurrent vector fields and by reference to [8], this proves that
T is a 3-exterior concurrent vector field.
Since, as it is known, the divergence of a vector field Z is defined by

divZ = > g(Ve,Zen), (3.9)
A
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one derives from (3.2) and (3.6)

divé = 2mA,
3.10
divT =T+ (2m+1)s, ( )
where TO = 7(T). On the other hand, from (3.6), we derive
dT%+ TP0! + AT w® = sw® + T%y, a,b € {1,...,2m}, 1)
3.11
dT° = —(1+ )T’ + [s+ (1+ )T
After some calculations, one gets
dT" =AdT° Ap=A1+A)n A T", (3.12)
which proves that T* is an exterior recurrent form [1].
Taking the Lie differential of # with respect of T, one gets
Py =dT°, (3.13)
and so it turns out that
d(%ry) =0. (3.14)

Following a known terminology, T defines a relative contact transformation of the co-
Reeb form 7.

Next, we will point out some properties of the vector field ¢T.

By virtue of (3.11), one derives

V¢T = (S—AT0)¢dp+¢T®l7, (3.15)
and so, by (3.6) and (3.2), one gets

[¢T,T] = —AT$T,
[(¢T,&] = (1 -N)¢T, (3.16)
[T,&] = 0.

The above relations prove that ¢T admits an infinitesimal transformation of genera-
tors T and &. In addition, it is seen that & and the principal vector field T commute and
that the distribution Dy = {T,¢T,&} is involutive.

By Orsted lemma [1], if one takes

LrT° =pT" +[T,E]", (3.17)
one gets at once by (3.16)

PrT? =pT?, (3.18)
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which shows that the Lie differential of T" with respect to the principal vector field T is
conformal to T".

Moreover, making use of the contact ¢-Lie derivative operator (£:$)Z = [&,¢] — ¢[&,
Z], one gets in the case under discussion

(Le¢)T = (A —1)¢T. (3.19)

Hence, & defines a ¢-Lie transformation of the principal vector field T.

It is worth to point out that the existence of T and ¢T is determined by an exterior
differential system > whose characteristic numbers are r = 3, 59 = 1,51 =2 (r = 59 +51).
Consequently, the system > is in involution (in the sense of Cartan [3]) and so T and ¢T
depend on 1 arbitrary function of 2 arguments (E. Cartan’s test).

Recall Yano’s formula for any vector field Z, that is,

div(VzZ) —div(divZ)Z = R(Z,Z) - (divZ)* + > (Ve Z,es) (Ve,Zoea),  (3.20)
A,B

where R denotes the Ricci tensor.
Then, since one has

divT = T°+ (2m+1)s,

3.21
ViT = (s+ )T - ITI%, 2y

it follows by (3.20) that the Ricci tensor corresponding to T is expressed by
R(T,T) = (s+T°) (T + 2m+1)s) — 4m? — . (3.22)

Finally, in the same order of ideas, since one has i¢TTL’ = 0, then, by the Lie differenti-
ation, one derives £B¢TT“’ = 0, which shows that ¢ T defines a Lie Pfaffian transformation
of the dual form of the vector field T.

Besides, by the Ricci identity involving the triple T, ¢ T, &, that is,

(Leg)(T,¢T) = g(VeT, ¢T) +g(T, Ve T), (3.23)

one gets (Leg)(T,¢T) = 0.
Hence, one may say that the Lie structure vanishes.
Thus, we have the following.

Tueorem 3.1. Let M(¢$,Q,&,4,8) be a (2m + 1)-dimensional Riemannian manifold en-
dowed with a locally conformal cosymplectic structure and a principal vector field T defined
as a conformal contact quasi-torse-forming and structure scalar A.

The following properties hold.

(i) Q is a locally conformal cosymplectic 2-form.

(i) The principal vector field T is 3-exterior concurrent, that is,

VAT = -y AT @ dp. (3.24)

(iii) T defines a Lie relative contact transformation of the co-Reeb form #.
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(iv) ¢T is an infinitesimal transformation of generators T and &. The vector fields &, T,
and T commute and the distribution D = {T,$T,&} is involutive.
(v) The Lie differential of T" with respect to T is conformal to T".
(vi) divT = T+ (2m + 1)s.
(vii) The Ricci tensor corresponding to T is expressed by

R(T,T) = (s+T°) (T + 2m+1)s) — 4m? — . (3.25)
(viii) The dual form T® of T is an exterior recurrent form.

4. Conformal symplectic form

We will point out some problems regarding the conformal symplectic form Q. Taking the
Lie differential of Q with respect to the Reeb vector field &, we quickly get

d(£:Q) =21Q. (4.1)

Hence, we may say that & defines a conformal Lie derivative of Q.
Next, taking the Lie differential of Q with respect to the vector field ¢T, one gets in
two steps

§£¢,TQ = d(Tol’] - Tb), (4.2)
and, by (3.12), one derives at once
d(£LerQ) = 0. (4.3)

Consequently, from above, we may state that the vector field ¢T defines a relative
almost-Pfaffian transformation of the form Q (see [6]).
In the same order of ideas, one derives after some longer calculations

d(PrQ) =2y Ad($T)" —2L1+1)T" AQ+ [s+ (1+5)TO+4 Ty A Q,  (4.4)

and we may say that the principal vector field T defines a Lie almost-conformal transfor-
mationof Q.
Finally, we agree to define the 3-form

v=T"rQ, (4.5)

the principal 3-form on the manifold M under consideration.
Making use of (3.4) and (3.12), one derives

dy =21+ Avy. (4.6)
This shows that y is a recurrent 3-form. Consequently, since one gets

igrT" =0,  igrQ=T%—-T", (4.7)
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one derives
igry =Ty AT, (4.8)
and so one obtains
Loty = 0. (4.9)

Hence, we may say that the Lie derivative defines ¢T as a Pfaffian transformation of y.
Thus, we may state the following theorem.

Tueorem 4.1. Let M(¢,Q0,&,1,¢) be a locally conformal cosymplectic manifold. Then, the
following hold.
(1) The Reeb vector field & defines a conformal Lie derivative of Q.
(ii) The vector field ¢ T defines a relative almost-Pfaffian transformation of the 2-form .
(iii) The principal vector field T defines a Lie almost-conformal transformation of Q.
(iv) Let w = T® A Q be the principal 3-form on the manifold M. Then vy is a recurrent

2-form and the Lie derivative defines T as a Pfaffian transformation of .

5. Hypersurface M; normal to &

We denote by M the hypersurface of M normal to &. Since dnp = 0 (7 = £*), one may con-
sider the 2m-dimensional manifold My and the 1-dimensional foliation in the direction
of & is totally geodesic.

Recall that the Weingarten map

A: Tf(M,g) — Tﬁ(Mg), Vpe M, (5.1)

is a linear and selfadjoint application and €}, is symplectic.
Then, if ZT is any horizontal vector field, one gets by diy = 0

AZT =V é =277, (5.2)

and this shows that ZT is a principal vector field of M.

Recall that IT = (dp,dp) and IIT = (VE, V&) denote the second and the third funda-
mental forms associated with the immersion x : My — M.

Then, by the expression of V&, one finds that IT = g7 and III = g7, where g” means
the horizontal component of g. Hence, we may conclude that the immersion x : My — M
is horizontally umbilical and has 2m principal curvatures equal to 1.

The expression of I1I proves that the Gauss map is conformal and it can also be seen
that M; is Einsteinian.

On the other hand, since obviously the mean curvature field £ is nowhere zero, by
reference to [4], it follows that the product submanifold Ms X My in M X M is a U-
submanifold (i.e., its allied mean curvature vanishes), or a Chen submanifold.

We may summarize the above by the following.
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Tueorem 5.1. Let M($,Q,&,1,g) be alocally conformal cosymplectic manifold and x: My —
M the immersion of one hypersurface normal to &. Then, the following hold.

(i) The Gauss map associated to the immersion x : Mg — M is conformal.

(ii) The product submanifold Mg X Mg in M X M is a U-submanifold.
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