

LIMIT THEOREMS FOR RANDOMLY SELECTED ADJACENT ORDER STATISTICS FROM A PARETO DISTRIBUTION

ANDRÉ ADLER

Received 28 May 2005 and in revised form 23 September 2005

Consider independent and identically distributed random variables $\{X_{nk}, 1 \leq k \leq m, n \geq 1\}$ from the Pareto distribution. We randomly select two adjacent order statistics from each row, $X_{n(i)}$ and $X_{n(i+1)}$, where $1 \leq i \leq m-1$. Then, we test to see whether or not strong and weak laws of large numbers with nonzero limits for weighted sums of the random variables $X_{n(i+1)}/X_{n(i)}$ exist, where we place a prior distribution on the selection of each of these possible pairs of order statistics.

1. Introduction

In this paper, we observe weighted sums of ratios of order statistics taken from small samples. We look at m observations from the Pareto distribution, that is, $f(x) = px^{-p-1}I(x \geq 1)$, where $p > 0$. Then, we observe two adjacent order statistics from our sample, that is, $X_{(i)} \leq X_{(i+1)}$ for $1 \leq i \leq m-1$. Next, we obtain the random variable $R_i = X_{(i+1)}/X_{(i)}$, $i = 1, \dots, m-1$, which is the ratio of our adjacent order statistics. The density of R_i is

$$f(r) = p(m-i)r^{-p(m-i)-1}I(r \geq 1). \quad (1.1)$$

We will derive this and show how the distributions of these random variables are related.

The joint density of the original i.i.d. Pareto random variables X_1, \dots, X_m is

$$f(x_1, \dots, x_m) = p^m x_1^{-p-1} \cdots x_m^{-p-1} I(x_1 \geq 1) \cdots I(x_m \geq 1), \quad (1.2)$$

hence the density of the corresponding order statistics $X_{(1)}, \dots, X_{(m)}$ is

$$f(x_{(1)}, \dots, x_{(m)}) = p^m m! x_{(1)}^{-p-1} \cdots x_{(m)}^{-p-1} I(1 \leq x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(m)}). \quad (1.3)$$

Next, we obtain the joint density of $X_{(1)}, R_1, \dots, R_{m-1}$. In order to do that, we need the

inverse transformation, which is

$$\begin{aligned} X_{(1)} &= X_{(1)}, \\ X_{(2)} &= X_{(1)}R_1, \\ X_{(3)} &= X_{(1)}R_1R_2, \end{aligned} \tag{1.4}$$

through

$$X_{(m)} = X_{(1)}R_1R_2 \cdots R_{m-1}. \tag{1.5}$$

So, in order to obtain this density, we need the Jacobian, which is the determinant of the matrix

$$\begin{pmatrix} \frac{\partial x_{(1)}}{\partial x_{(1)}} & \frac{\partial x_{(1)}}{\partial r_1} & \frac{\partial x_{(1)}}{\partial r_2} & \cdots & \frac{\partial x_{(1)}}{\partial r_{m-1}} \\ \frac{\partial x_{(2)}}{\partial x_{(1)}} & \frac{\partial x_{(2)}}{\partial r_1} & \frac{\partial x_{(2)}}{\partial r_2} & \cdots & \frac{\partial x_{(2)}}{\partial r_{m-1}} \\ \frac{\partial x_{(3)}}{\partial x_{(1)}} & \frac{\partial x_{(3)}}{\partial r_1} & \frac{\partial x_{(3)}}{\partial r_2} & \cdots & \frac{\partial x_{(3)}}{\partial r_{m-1}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial x_{(m)}}{\partial x_{(1)}} & \frac{\partial x_{(m)}}{\partial r_1} & \frac{\partial x_{(m)}}{\partial r_2} & \cdots & \frac{\partial x_{(m)}}{\partial r_{m-1}} \end{pmatrix}, \tag{1.6}$$

which is the lower triangular matrix

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ r_1 & x_{(1)} & 0 & \cdots & 0 \\ r_1r_2 & x_{(1)}r_2 & x_{(1)}r_1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ r_1 \cdots r_{m-1} & x_{(1)}r_2 \cdots r_{m-1} & x_{(1)}r_1r_2 \cdots r_{m-1} & \cdots & x_{(1)}r_1 \cdots r_{m-2} \end{pmatrix}. \tag{1.7}$$

Thus the Jacobian is $x_{(1)}^{m-1}r_1^{m-2}r_2^{m-3}r_3^{m-4} \cdots r_{m-2}$.

So, the joint density of $X_{(1)}, R_1, \dots, R_{m-1}$ is

$$\begin{aligned} f(x_{(1)}, r_1, \dots, r_{m-1}) &= p^m m! x_{(1)}^{-p-1} (x_{(1)}r_1)^{-p-1} (x_{(1)}r_1r_2)^{-p-1} \cdots (x_{(1)}r_1 \cdots r_{m-1})^{-p-1} \\ &\quad \cdot x_{(1)}^{m-1} r_1^{m-2} r_2^{m-3} \cdots r_{m-2} \\ &\quad \cdot I(1 \leq x_{(1)} \leq x_{(1)}r_1 \leq x_{(1)}r_1r_2 \leq \cdots \leq x_{(1)}r_1 \cdots r_{m-1}) \\ &= p^m m! x_{(1)}^{-pm-1} r_1^{-p(m-1)-1} r_2^{-p(m-2)-1} \cdots r_{m-2}^{-2p-1} r_{m-1}^{-p-1} \\ &\quad \cdot I(x_{(1)} \geq 1) I(r_1 \geq 1) I(r_2 \geq 1) \cdots I(r_{m-1} \geq 1). \end{aligned} \tag{1.8}$$

This shows that the random variables $X_{(1)}, R_1, \dots, R_{m-1}$ are independent and that the density of our smallest order statistic is

$$f_{X_{(1)}}(x_{(1)}) = pmx_{(1)}^{-pm-1}I(x_{(1)} \geq 1), \quad (1.9)$$

while the density of the ratio of the i th adjacent order statistic R_i , $i = 1, \dots, m-1$ is

$$f_{R_i}(r) = p(m-i)r^{-p(m-i)-1}I(r \geq 1). \quad (1.10)$$

We repeat this procedure n times, assuming independence between sets of data, obtaining the sequence $\{R_n = R_{ni}, n \geq 1\}$. Notice that we have dropped the subscript i , but the density of R_{ni} does depend on i . Hence, we first start out with n independent sets of m i.i.d. Pareto random variables. We then order these m Pareto random variables within each set. Next, we obtain the $m-1$ ratios of the adjacent order statistics. Finally, we select one of these as our random variable Y . Repeating this n times, we obtain the sequence $\{Y_n, n \geq 1\}$. We do that via our preset prior distribution $\{\Pi_1, \dots, \Pi_{m-1}\}$, where $\Pi_i \geq 0$ and $\sum_{i=1}^{m-1} \Pi_i = 1$. The random variable Y_n is one of the R_{ni} , $i = 1, \dots, m-1$, chosen via this prior distribution. In other words, $P\{Y_n = R_{ni}\} = \Pi_i$ for $i = 1, 2, \dots, m-1$. It is very important to identify which is our largest acceptable pair of order statistics since the largest order statistic does dominate the partial sums. Hence, we define $\nu = \max\{k : \Pi_k > 0\}$. We need to do this in case $\Pi_{m-1} = 0$.

Our goal is to determine whether or not there exist positive constants a_n and b_N such that $\sum_{n=1}^N a_n Y_n / b_N$ converges to a nonzero constant in some sense, where $\{Y_n, n \geq 1\}$ are i.i.d. copies of Y . Another important observation is that when $p(m-\nu) = 1$, we have $EY = \infty$. These are called exact laws of large numbers since they create a fair game situation, where the $a_n Y_n$ represents the amount a player wins on the n th play of some game and $b_N - b_{N-1}$ represents the corresponding fair entrance fee for the participant.

In Adler [1], just one order statistic from the Pareto was observed, while in Adler [2], ratios of order statistics were examined. Here we look at the case of randomly selecting one of these adjacent ratios. As usual, we define $\lg x = \log(\max\{e, x\})$ and $\lg_2 x = \lg(\lg x)$. We use throughout the paper the constant C as a generic real number that is not necessarily the same in each appearance.

2. Exact strong laws when $p(m-\nu) = 1$

In this situation, we can get an exact strong law, but only if we select our coefficients and norming sequences properly. We use as our weights $a_n = (\lg n)^{\beta-2}/n$, but we could set $a_n = S(n)/n$, where $S(\cdot)$ is any slowly varying function. Note that if we do change a_n , then we must also revise b_n , and consequently $c_n = b_n/a_n$.

THEOREM 2.1. If $p(m - \nu) = 1$, then for all $\beta > 0$,

$$\lim_{N \rightarrow \infty} \frac{\sum_{n=1}^N ((\lg n)^{\beta-2}/n) Y_n}{(\lg N)^\beta} = \frac{\Pi_\nu}{\beta} \quad \text{almost surely.} \quad (2.1)$$

Proof. Let $a_n = (\lg n)^{\beta-2}/n$, $b_n = (\lg n)^\beta$, and $c_n = b_n/a_n = n(\lg n)^2$. We use the usual partition

$$\begin{aligned} \frac{1}{b_N} \sum_{n=1}^N a_n Y_n &= \frac{1}{b_N} \sum_{n=1}^N a_n [Y_n I(1 \leq Y_n \leq c_n) - EY_n I(1 \leq Y_n \leq c_n)] \\ &\quad + \frac{1}{b_N} \sum_{n=1}^N a_n Y_n I(Y_n > c_n) + \frac{1}{b_N} \sum_{n=1}^N a_n EY_n I(1 \leq Y_n \leq c_n). \end{aligned} \quad (2.2)$$

The first term vanishes almost surely by the Khintchine-Kolmogorov convergence theorem, see [3, page 113], and Kronecker's lemma since

$$\begin{aligned} \sum_{n=1}^{\infty} \frac{1}{c_n^2} EY_n^2 I(1 \leq Y_n \leq c_n) &= \sum_{i=1}^{m-1} \Pi_i \sum_{n=1}^{\infty} \frac{1}{c_n^2} EY_n^2 I(1 \leq R_n \leq c_n) \\ &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} p(m-i) r^{-p(m-i)+1} dr \\ &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} \frac{p(m-i)}{c_n^2} \int_1^{c_n} r^{-p(m-\nu)-p(\nu-i)+1} dr \\ &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} \frac{p(m-i)}{c_n^2} \int_1^{c_n} r^{-p(\nu-i)} dr \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n} \\ &= C \sum_{n=1}^{\infty} \frac{1}{n(\lg n)^2} < \infty. \end{aligned} \quad (2.3)$$

The second term vanishes, with probability one, by the Borel-Cantelli lemma since

$$\begin{aligned}
\sum_{n=1}^{\infty} P\{Y_n > c_n\} &= \sum_{i=1}^{m-1} \Pi_i \sum_{n=1}^{\infty} P\{R_n > c_n\} \\
&= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} \int_{c_n}^{\infty} p(m-i) r^{-p(m-i)-1} dr \\
&\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-\nu)-p(\nu-i)-1} dr \\
&= C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(\nu-i)-2} dr \\
&\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-2} dr \\
&\leq C \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-2} dr \\
&= C \sum_{n=1}^{\infty} \frac{1}{c_n} < \infty.
\end{aligned} \tag{2.4}$$

The limit of our normalized partial sums is realized via the third term in our partition

$$\begin{aligned}
EY_n I(1 \leq Y_n \leq c_n) &= \sum_{i=1}^{\nu} \Pi_i E R_n I(1 \leq R_n \leq c_n) \\
&= \sum_{i=1}^{\nu} \Pi_i \int_1^{c_n} p(m-i) r^{-p(m-i)} dr \\
&= \sum_{i=1}^{\nu} \Pi_i \int_1^{c_n} p(m-i) r^{-p(m-\nu)-p(\nu-i)} dr \\
&= \sum_{i=1}^{\nu} \Pi_i \int_1^{c_n} p(m-i) r^{-p(\nu-i)-1} dr \\
&= \sum_{i=1}^{\nu-1} \Pi_i \int_1^{c_n} p(m-i) r^{-p(\nu-i)-1} dr + \Pi_{\nu} \int_1^{c_n} p(m-\nu) r^{-1} dr \\
&\sim \Pi_{\nu} p(m-\nu) \lg c_n \sim \Pi_{\nu} \lg n
\end{aligned} \tag{2.5}$$

since

$$\sum_{i=1}^{\nu-1} \Pi_i \int_1^{c_n} p(m-i) r^{-p(\nu-i)-1} dr \leq C \sum_{i=1}^{\nu-1} \int_1^{c_n} r^{-p-1} dr \leq C \int_1^{c_n} r^{-p-1} dr = O(1). \tag{2.6}$$

Thus

$$\frac{\sum_{n=1}^N a_n EY_n I(1 \leq Y_n \leq c_n)}{b_N} \sim \frac{\Pi_\nu \sum_{n=1}^N (\lg n)^{\beta-1}/n}{(\lg N)^\beta} \longrightarrow \frac{\Pi_\nu}{\beta}, \quad (2.7)$$

which completes the proof. \square

3. Exact weak laws when $p(m - \nu) = 1$

We investigate the behavior of our random variables $\{Y_n, n \geq 1\}$, where we slightly increase the coefficient of Y_n . Instead of a_n being a power of logarithm times n^{-1} , we now allow a_n to be n to any power larger than negative one. In this case, there is no way to obtain an exact strong law (see Section 4), but we are able to obtain exact weak laws.

THEOREM 3.1. *If $p(m - \nu) = 1$ and $\alpha > -1$, then*

$$\frac{\sum_{n=1}^N n^\alpha L(n) Y_n}{N^{\alpha+1} L(N) \lg N} \xrightarrow{P} \frac{\Pi_\nu}{\alpha + 1} \quad (3.1)$$

for any slowly varying function $L(\cdot)$.

Proof. This proof is a consequence of the degenerate convergence theorem, see [3, page 356]. Here, we set $a_n = n^\alpha L(n)$ and $b_N = N^{\alpha+1} L(N) \lg N$. Thus, for all $\epsilon > 0$, we have

$$\begin{aligned} \sum_{n=1}^N P \left\{ Y_n \geq \frac{\epsilon b_N}{a_n} \right\} &= \sum_{i=1}^\nu \Pi_i \sum_{n=1}^N P \left\{ R_n \geq \frac{\epsilon b_N}{a_n} \right\} \\ &= \sum_{i=1}^\nu \Pi_i p(m-i) \sum_{n=1}^N \int_{\epsilon b_N/a_n}^\infty r^{-p(m-i)-1} dr \\ &= p \sum_{i=1}^\nu \Pi_i (m-i) \sum_{n=1}^N \int_{\epsilon b_N/a_n}^\infty r^{-p(m-\nu)-p(\nu-i)-1} dr \\ &= p \sum_{i=1}^\nu \Pi_i (m-i) \sum_{n=1}^N \int_{\epsilon b_N/a_n}^\infty r^{-p(\nu-i)-2} dr \\ &< \sum_{i=1}^\nu \sum_{n=1}^N \int_{\epsilon b_N/a_n}^\infty r^{-2} dr \\ &< C \sum_{n=1}^N \frac{a_n}{b_N} \\ &= C \sum_{n=1}^N \frac{n^\alpha L(n)}{N^{\alpha+1} L(N) \lg N} \\ &< \frac{C}{\lg N} \longrightarrow 0. \end{aligned} \quad (3.2)$$

Similarly,

$$\begin{aligned}
\sum_{n=1}^N \text{Var} \left(\frac{a_n}{b_N} Y_n I \left(1 \leq Y_n \leq \frac{b_N}{a_n} \right) \right) &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^N \text{Var} \left(\frac{a_n}{b_N} R_n I \left(1 \leq R_n \leq \frac{b_N}{a_n} \right) \right) \\
&< C \sum_{i=1}^{\nu} \sum_{n=1}^N \frac{a_n^2}{b_N^2} \int_1^{b_N/a_n} r^{-p(m-i)+1} dr \\
&= C \sum_{i=1}^{\nu} \sum_{n=1}^N \frac{a_n^2}{b_N^2} \int_1^{b_N/a_n} r^{-p(m-\nu)-p(\nu-i)+1} dr \\
&= C \sum_{i=1}^{\nu} \sum_{n=1}^N \frac{a_n^2}{b_N^2} \int_1^{b_N/a_n} r^{-p(\nu-i)} dr \\
&< C \sum_{n=1}^N \frac{a_n^2}{b_N^2} \int_1^{b_N/a_n} dr < C \sum_{n=1}^N \frac{a_n}{b_N} \\
&= C \sum_{n=1}^N \frac{n^\alpha L(n)}{N^{\alpha+1} L(N) \lg N} \leq \frac{C}{\lg N} \longrightarrow 0.
\end{aligned} \tag{3.3}$$

As for our truncated expectation, we have

$$\begin{aligned}
EY_n I \left(1 \leq Y_n \leq \frac{b_N}{a_n} \right) &= \sum_{i=1}^{\nu} \Pi_i E R_n I \left(1 \leq R_n \leq \frac{b_N}{a_n} \right) \\
&= \sum_{i=1}^{\nu} \Pi_i p(m-i) \int_1^{b_N/a_n} r^{-p(m-i)} dr \\
&= p \sum_{i=1}^{\nu} \Pi_i (m-i) \int_1^{b_N/a_n} r^{-p(m-\nu)-p(\nu-i)} dr \\
&= p \sum_{i=1}^{\nu} \Pi_i (m-i) \int_1^{b_N/a_n} r^{-p(\nu-i)-1} dr \\
&= p \sum_{i=1}^{\nu-1} \Pi_i (m-i) \int_1^{b_N/a_n} r^{-p(\nu-i)-1} dr + \Pi_\nu \int_1^{b_N/a_n} r^{-1} dr.
\end{aligned} \tag{3.4}$$

The last term is the dominant term since

$$\sum_{n=1}^N \frac{a_n}{b_N} p \sum_{i=1}^{\nu-1} \Pi_i (m-i) \int_1^{b_N/a_n} r^{-p(\nu-i)-1} dr < C \sum_{n=1}^N \frac{a_n}{b_N} \int_1^{b_N/a_n} r^{-p-1} dr < C \sum_{n=1}^N \frac{a_n}{b_N} \longrightarrow 0, \tag{3.5}$$

while

$$\begin{aligned}
& \sum_{n=1}^N \frac{a_n}{b_N} \Pi_\nu \int_1^{b_N/a_n} r^{-1} dr \\
&= \Pi_\nu \sum_{n=1}^N \frac{a_n}{b_N} \lg \left(\frac{b_N}{a_n} \right) \\
&= \frac{\Pi_\nu \sum_{n=1}^N n^\alpha L(n) \lg [N^{\alpha+1} L(N) \lg N / (n^\alpha L(n))]}{N^{\alpha+1} L(N) \lg N} \\
&= \frac{\Pi_\nu \sum_{n=1}^N n^\alpha L(n) [(\alpha+1) \lg N + \lg L(N) + \lg_2 N - \alpha \lg n - \lg L(n)]}{N^{\alpha+1} L(N) \lg N}.
\end{aligned} \tag{3.6}$$

The important terms are

$$\begin{aligned}
\frac{\sum_{n=1}^N n^\alpha L(n) (\alpha+1) \lg N}{N^{\alpha+1} L(N) \lg N} &= \frac{(\alpha+1) \sum_{n=1}^N n^\alpha L(n)}{N^{\alpha+1} L(N)} \rightarrow 1, \\
\frac{\sum_{n=1}^N n^\alpha L(n) (-\alpha \lg n)}{N^{\alpha+1} L(N) \lg N} &= -\frac{\alpha \sum_{n=1}^N n^\alpha L(n) \lg n}{N^{\alpha+1} L(N) \lg N} \rightarrow -\frac{\alpha}{\alpha+1},
\end{aligned} \tag{3.7}$$

while the other three terms vanish as $N \rightarrow \infty$. For completeness, we will verify these claims:

$$\begin{aligned}
\frac{\sum_{n=1}^N n^\alpha L(n) \lg L(N)}{N^{\alpha+1} L(N) \lg N} &< \frac{C \lg L(N)}{\lg N} \rightarrow 0, \\
\frac{\sum_{n=1}^N n^\alpha L(n) \lg_2 N}{N^{\alpha+1} L(N) \lg N} &< \frac{C \lg_2 N}{\lg N} \rightarrow 0, \\
\frac{\sum_{n=1}^N n^\alpha L(n) \lg L(n)}{N^{\alpha+1} L(N) \lg N} &< \frac{C N^{\alpha+1} L(N) \lg L(N)}{N^{\alpha+1} L(N) \lg N} = \frac{C \lg L(N)}{\lg N} \rightarrow 0.
\end{aligned} \tag{3.8}$$

Therefore,

$$\frac{\sum_{n=1}^N a_n E Y_n I(1 \leq Y_n \leq b_N/a_n)}{b_N} \rightarrow \Pi_\nu \left(1 - \frac{\alpha}{\alpha+1} \right) = \frac{\Pi_\nu}{\alpha+1}, \tag{3.9}$$

which completes this proof. \square

4. Further almost sure behavior when $p(m - \nu) = 1$

Using our exact weak law, we are able to obtain a generalized law of the iterated logarithm. This shows that under the hypotheses of Theorem 4.1, exact strong laws do not exist when $a_n = n^\alpha L(n)$, $\alpha > -1$, where $L(\cdot)$ is a slowly varying function. Hence, the coefficients selected in Theorem 2.1 are the only permissible ones that will allow us to obtain an exact strong law, that is, $a_n = S(n)/n$ for some slowly varying function $S(\cdot)$, where we used logarithms as our function $S(\cdot)$.

THEOREM 4.1. If $p(m - \nu) = 1$ and $\alpha > -1$, then

$$\begin{aligned} \liminf_{N \rightarrow \infty} \frac{\sum_{n=1}^N n^\alpha L(n) Y_n}{N^{\alpha+1} L(N) \lg N} &= \frac{\Pi_\nu}{\alpha+1} \quad \text{almost surely,} \\ \limsup_{N \rightarrow \infty} \frac{\sum_{n=1}^N n^\alpha L(n) Y_n}{N^{\alpha+1} L(N) \lg N} &= \infty \quad \text{almost surely,} \end{aligned} \tag{4.1}$$

for any slowly varying function $L(\cdot)$.

Proof. From Theorem 3.1, we have

$$\liminf_{N \rightarrow \infty} \frac{\sum_{n=1}^N n^\alpha L(n) Y_n}{N^{\alpha+1} L(N) \lg N} \leq \frac{\Pi_\nu}{\alpha+1} \quad \text{almost surely.} \tag{4.2}$$

Set $a_n = n^\alpha L(n)$, $b_n = n^{\alpha+1} L(n) \lg n$, and $c_n = b_n/a_n = n \lg n$. In order to obtain the opposite inequality, we use the following partition:

$$\begin{aligned} \frac{1}{b_N} \sum_{n=1}^N a_n Y_n &\geq \frac{1}{b_N} \sum_{n=1}^N a_n Y_n I(1 \leq Y_n \leq n) \\ &= \frac{1}{b_N} \sum_{n=1}^N a_n [Y_n I(1 \leq Y_n \leq n) - EY_n I(1 \leq Y_n \leq n)] \\ &\quad + \frac{1}{b_N} \sum_{n=1}^N a_n EY_n I(1 \leq Y_n \leq n). \end{aligned} \tag{4.3}$$

The first term goes to zero, almost surely, since b_n is essentially increasing and

$$\begin{aligned} \sum_{n=1}^{\infty} c_n^{-2} EY_n^2 I(1 \leq Y_n \leq n) &\leq \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} c_n^{-2} ER_n^2 I(1 \leq R_n \leq n) \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} c_n^{-2} \int_1^n r^{-p(\nu-i)} dr \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} c_n^{-2} \int_1^n dr \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{n}{c_n^2} \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{n(\lg n)^2} < \infty. \end{aligned} \tag{4.4}$$

As for the second term, we once again focus on the last term, our two largest permissible order statistics,

$$\begin{aligned}
EY_n I(1 \leq Y_n \leq n) &= \sum_{i=1}^{\nu} \Pi_i EY_n I(1 \leq Y_n \leq n) \\
&= \sum_{i=1}^{\nu} \Pi_i \int_1^n p(m-i) r^{-p(m-i)} dr \\
&= p \sum_{i=1}^{\nu} \Pi_i (m-i) \int_1^n r^{-p(m-\nu)-p(\nu-i)} dr \\
&= p \sum_{i=1}^{\nu} \Pi_i (m-i) \int_1^n r^{-p(\nu-i)-1} dr \\
&= p \sum_{i=1}^{\nu-1} \Pi_i (m-i) \int_1^n r^{-p(\nu-i)-1} dr + \Pi_{\nu} p(m-\nu) \int_1^n r^{-1} dr \\
&\sim \Pi_{\nu} \lg n
\end{aligned} \tag{4.5}$$

since

$$p \sum_{i=1}^{\nu-1} \Pi_i (m-i) \int_1^n r^{-p(\nu-i)-1} dr < C \sum_{i=1}^{\nu-1} \int_1^n r^{-p-1} dr < C \int_1^n r^{-p-1} dr = O(1). \tag{4.6}$$

Thus,

$$\begin{aligned}
\liminf_{N \rightarrow \infty} \frac{\sum_{n=1}^N a_n Y_n}{b_N} &\geq \liminf_{N \rightarrow \infty} \frac{\sum_{n=1}^N a_n EY_n I(1 \leq Y_n \leq n)}{b_N} \\
&= \lim_{N \rightarrow \infty} \frac{\Pi_{\nu} \sum_{n=1}^N n^{\alpha} L(n) \lg n}{N^{\alpha+1} L(N) \lg N} \\
&= \frac{\Pi_{\nu}}{\alpha+1},
\end{aligned} \tag{4.7}$$

establishing our almost sure lower limit.

As for the upper limit, let $M > 0$, then

$$\begin{aligned}
\sum_{n=1}^{\infty} P\{Y_n > Mc_n\} &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} P\{R_n > Mc_n\} \\
&= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} p(m-i) \int_{Mc_n}^{\infty} r^{-p(m-i)-1} dr \\
&\geq \sum_{i=\nu}^{\nu} \Pi_i \sum_{n=1}^{\infty} p(m-i) \int_{Mc_n}^{\infty} r^{-p(m-i)-1} dr \\
&= \Pi_{\nu} \sum_{n=1}^{\infty} p(m-\nu) \int_{Mc_n}^{\infty} r^{-p(m-\nu)-1} dr
\end{aligned}$$

$$\begin{aligned}
&= \Pi_\nu \sum_{n=1}^{\infty} \int_{Mc_n}^{\infty} r^{-2} dr \\
&= \frac{\Pi_\nu}{M} \sum_{n=1}^{\infty} \frac{1}{c_n} \\
&= \frac{\Pi_\nu}{M} \sum_{n=1}^{\infty} \frac{1}{n \lg n} \\
&= \infty.
\end{aligned} \tag{4.8}$$

This implies that

$$\limsup_{n \rightarrow \infty} \frac{a_n Y_n}{b_n} = \infty \quad \text{almost surely,} \tag{4.9}$$

which in turn allows us to conclude that

$$\limsup_{N \rightarrow \infty} \frac{\sum_{n=1}^N a_n Y_n}{b_N} = \infty \quad \text{almost surely,} \tag{4.10}$$

which completes this proof. \square

5. Typical strong laws when $p(m - \nu) > 1$

When $p(m - \nu) > 1$, we have $EY < \infty$, hence all kinds of strong laws exist. In this case, $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ can be any pair of positive sequences as long as $b_n \uparrow \infty$, $\sum_{n=1}^N a_n/b_N \rightarrow L$, where $L \neq 0$, and the condition involving $c_n = b_n/a_n$ in each theorem is satisfied. If $L = 0$, then these limit theorems still hold, however the limit is zero, which is not that interesting.

This section is broken down into three cases, each has different conditions as to whether the strong law exists. The calculation of EY follows in the ensuing lemma.

LEMMA 5.1. *If $p(m - \nu) > 1$, then*

$$EY = \sum_{i=1}^{\nu} \frac{p \Pi_i (m - i)}{p(m - i) - 1}. \tag{5.1}$$

Proof. The proof is rather trivial, since $p(m - \nu) > 1$, we have

$$EY = \sum_{i=1}^{\nu} \Pi_i E R_n = \sum_{i=1}^{\nu} p \Pi_i (m - i) \int_1^{\infty} r^{-p(m-i)} dr = \sum_{i=1}^{\nu} \frac{p \Pi_i (m - i)}{p(m - i) - 1}, \tag{5.2}$$

which completes the proof of the lemma. \square

In all three ensuing theorems, we use the partition

$$\begin{aligned} \frac{1}{b_N} \sum_{n=1}^N a_n Y_n &= \frac{1}{b_N} \sum_{n=1}^N a_n [Y_n I(1 \leq Y_n \leq c_n) - EY_n I(1 \leq Y_n \leq c_n)] \\ &\quad + \frac{1}{b_N} \sum_{n=1}^N a_n Y_n I(Y_n > c_n) \\ &\quad + \frac{1}{b_N} \sum_{n=1}^N a_n EY_n I(1 \leq Y_n \leq c_n), \end{aligned} \tag{5.3}$$

where the selection of a_n , b_n , and $c_n = b_n/a_n$ must satisfy the assumption of each theorem. These three hypotheses are slightly different and are dependent on how large a first moment the random variable Y possesses. The difference in the these theorems is the condition involving the sequence $\{c_n, n \geq 1\}$.

THEOREM 5.2. *If $1 < p(m - \nu) < 2$ and $\sum_{n=1}^{\infty} c_n^{-p(m-\nu)} < \infty$, then*

$$\lim_{N \rightarrow \infty} \frac{\sum_{n=1}^N a_n Y_n}{b_N} = L \sum_{i=1}^{\nu} \frac{p \Pi_i(m-i)}{p(m-i)-1} \quad \text{almost surely.} \tag{5.4}$$

Proof. The first term in our partition goes to zero, with probability one, since

$$\begin{aligned} \sum_{n=1}^{\infty} \frac{1}{c_n^2} EY_n^2 I(1 \leq Y_n \leq c_n) &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} \frac{1}{c_n^2} ER_n^2 I(1 \leq R_n \leq c_n) \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-p(m-i)+1} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-p(m-\nu)+1} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{c_n^{-p(m-\nu)+2}}{c_n^2} \\ &= C \sum_{n=1}^{\infty} c_n^{-p(m-\nu)} < \infty. \end{aligned} \tag{5.5}$$

As for the second term,

$$\begin{aligned} \sum_{n=1}^{\infty} P\{Y_n > c_n\} &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} P\{R_n > c_n\} \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-i)-1} dr \\ &\leq C \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-\nu)-1} dr \\ &\leq C \sum_{n=1}^{\infty} c_n^{-p(m-\nu)} < \infty. \end{aligned} \tag{5.6}$$

Then, from our lemma and $\sum_{n=1}^N a_n \sim Lb_N$, we have

$$\frac{\sum_{n=1}^N a_n EY_n I(1 \leq Y_n \leq c_n)}{b_N} \longrightarrow L \sum_{i=1}^{\nu} \frac{p\Pi_i(m-i)}{p(m-i)-1}, \quad (5.7)$$

which completes this proof. \square

THEOREM 5.3. *If $p(m-\nu) = 2$ and $\sum_{n=1}^{\infty} \lg(c_n)/c_n^2 < \infty$, then*

$$\lim_{N \rightarrow \infty} \frac{\sum_{n=1}^N a_n Y_n}{b_N} = L \sum_{i=1}^{\nu} \frac{p\Pi_i(m-i)}{p(m-i)-1} \quad \text{almost surely.} \quad (5.8)$$

Proof. The first term goes to zero, almost surely, since

$$\begin{aligned} \sum_{n=1}^{\infty} \frac{1}{c_n^2} EY_n^2 I(1 \leq Y_n \leq c_n) &\leq \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} ER_n^2 I(1 \leq R_n \leq c_n) \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-p(m-i)+1} dr \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-p(m-\nu)+1} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-1} dr \\ &= C \sum_{n=1}^{\infty} \frac{\lg c_n}{c_n^2} < \infty. \end{aligned} \quad (5.9)$$

Likewise, the second term disappears, with probability one, since

$$\begin{aligned} \sum_{n=1}^{\infty} P\{Y_n > c_n\} &\leq \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} P\{R_n > c_n\} \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-i)-1} dr \\ &\leq C \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-\nu)-1} dr \\ &= C \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-3} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \\ &\leq C \sum_{n=1}^{\infty} \frac{\lg c_n}{c_n^2} < \infty. \end{aligned} \quad (5.10)$$

As in the last proof, the calculation for the truncated mean is exactly the same, which leads us to the same limit. \square

THEOREM 5.4. *If $p(m - \nu) > 2$ and $\sum_{n=1}^{\infty} c_n^{-2} < \infty$, then*

$$\lim_{N \rightarrow \infty} \frac{\sum_{n=1}^N a_n Y_n}{b_N} = L \sum_{i=1}^{\nu} \frac{p \Pi_i(m-i)}{p(m-i)-1} \quad \text{almost surely.} \quad (5.11)$$

Proof. The first term goes to zero, with probability one, since

$$\begin{aligned} \sum_{n=1}^{\infty} \frac{1}{c_n^2} EY_n^2 I(1 \leq Y_n \leq c_n) &\leq \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} ER_n^2 I(1 \leq R_n \leq c_n) \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-p(m-i)+1} dr \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-p(m-\nu)+1} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_1^{c_n} r^{-p(m-\nu)+1} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n^2} < \infty. \end{aligned} \quad (5.12)$$

As for the second term,

$$\begin{aligned} \sum_{n=1}^{\infty} P\{Y_n > c_n\} &= \sum_{i=1}^{\nu} \Pi_i \sum_{n=1}^{\infty} P\{R_n > c_n\} \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-i)-1} dr \\ &\leq C \sum_{i=1}^{\nu} \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-\nu)-1} dr \\ &\leq C \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-p(m-\nu)-1} dr \\ &\leq C \sum_{n=1}^{\infty} \int_{c_n}^{\infty} r^{-3} dr \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{c_n^2} < \infty. \end{aligned} \quad (5.13)$$

Then as in the last two theorems,

$$\frac{\sum_{n=1}^N a_n EY_n I(1 \leq Y_n \leq c_n)}{b_N} \longrightarrow L \sum_{i=1}^{\gamma} \frac{p\Pi_i(m-i)}{p(m-i)-1}, \quad (5.14)$$

which completes this proof. \square

Clearly, in all of these three theorems, the situation of $a_n = 1$ and $b_n = n = c_n$ is easily satisfied. Whenever $p(m-\nu) > 1$, we have tremendous freedom in selecting our constants. That is certainly not true when $p(m-\nu) = 1$.

References

- [1] A. Adler, *Exact laws for sums of order statistics from the Pareto distribution*, Bull. Inst. Math. Acad. Sinica **31** (2003), no. 3, 181–193.
- [2] ———, *Exact laws for sums of ratios of order statistics from the Pareto distribution*, to appear in Central European Journal of Mathematics.
- [3] Y. S. Chow and H. Teicher, *Probability Theory. Independence, Interchangeability, Martingales*, 3rd ed., Springer Texts in Statistics, Springer, New York, 1997.

André Adler: Department Applied of Mathematics, College of Science and Letters, Illinois Institute of Technology, Chicago, IL 60616, USA

E-mail address: adler@iit.edu

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk