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Consider independent and identically distributed random variables {Xnk, 1 ≤ k ≤ m,
n ≥ 1} from the Pareto distribution. We randomly select two adjacent order statistics
from each row, Xn(i) and Xn(i+1), where 1 ≤ i ≤m− 1. Then, we test to see whether or
not strong and weak laws of large numbers with nonzero limits for weighted sums of the
random variables Xn(i+1)/Xn(i) exist, where we place a prior distribution on the selection
of each of these possible pairs of order statistics.

1. Introduction

In this paper, we observe weighted sums of ratios of order statistics taken from small sam-
ples. We look at m observations from the Pareto distribution, that is, f (x)= px−p−1I(x ≥
1), where p > 0. Then, we observe two adjacent order statistics from our sample, that
is, X(i) ≤ X(i+1) for 1 ≤ i ≤m− 1. Next, we obtain the random variable Ri = X(i+1)/X(i),
i= 1, . . . ,m− 1, which is the ratio of our adjacent order statistics. The density of Ri is

f (r)= p(m− i)r−p(m−i)−1I(r ≥ 1). (1.1)

We will derive this and show how the distributions of these random variables are related.
The joint density of the original i.i.d. Pareto random variables X1, . . . ,Xm is

f
(
x1, . . . ,xm

)= pmx
−p−1
1 ···x−p−1

m I
(
x1 ≥ 1

)··· I(xm ≥ 1
)
, (1.2)

hence the density of the corresponding order statistics X(1), . . . ,X(m) is

f
(
x(1), . . . ,x(m)

)= pmm!x
−p−1
(1) ···x−p−1

(m) I
(
1≤ x(1) ≤ x(2) ≤ ··· ≤ x(m)

)
. (1.3)

Next, we obtain the joint density of X(1),R1, . . . ,Rm−1. In order to do that, we need the
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inverse transformation, which is

X(1) = X(1),

X(2) = X(1)R1,

X(3) = X(1)R1R2,

(1.4)

through

X(m) = X(1)R1R2 ···Rm−1. (1.5)

So, in order to obtain this density, we need the Jacobian, which is the determinant of the
matrix




∂x(1)

∂x(1)

∂x(1)

∂r1

∂x(1)

∂r2
··· ∂x(1)

∂rm−1

∂x(2)

∂x(1)

∂x(2)

∂r1

∂x(2)

∂r2
··· ∂x(2)

∂rm−1

∂x(3)

∂x(1)

∂x(3)

∂r1

∂x(3)

∂r2
··· ∂x(3)

∂rm−1

...
...

...
...

...

∂x(m)

∂x(1)

∂x(m)

∂r1

∂x(m)

∂r2
··· ∂x(m)

∂rm−1




, (1.6)

which is the lower triangular matrix




1 0 0 ··· 0
r1 x(1) 0 ··· 0
r1r2 x(1)r2 x(1)r1 ··· 0

...
...

...
...

...
r1 ···rm−1 x(1)r2 ···rm−1 x(1)r1r3 ···rm−1 ··· x(1)r1 ···rm−2



. (1.7)

Thus the Jacobian is xm−1
(1) rm−2

1 rm−3
2 rm−4

3 ···rm−2.
So, the joint density of X(1),R1, . . . ,Rm−1 is

f
(
x(1),r1, . . . ,rm−1

)= pmm!x
−p−1
(1)

(
x(1)r1

)−p−1(
x(1)r1r2

)−p−1 ···(x(1)r1 ···rm−1
)−p−1

· xm−1
(1) rm−2

1 rm−3
2 ···rm−2

· I(1≤ x(1) ≤ x(1)r1 ≤ x(1)r1r2 ≤ ··· ≤ x(1)r1 ···rm−1
)

= pmm!x
−pm−1
(1) r

−p(m−1)−1
1 r

−p(m−2)−1
2 ···r−2p−1

m−2 r
−p−1
m−1

· I(x(1) ≥ 1
)
I
(
r1 ≥ 1

)
I
(
r2 ≥ 1

)··· I(rm−1 ≥ 1
)
.

(1.8)
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This shows that the random variables X(1),R1, . . . ,Rm−1 are independent and that the den-
sity of our smallest order statistic is

fX(1)

(
x(1)
)= pmx

−pm−1
(1) I

(
x(1) ≥ 1

)
, (1.9)

while the density of the ratio of the ith adjacent order statistic Ri, i= 1, . . . ,m− 1 is

fRi(r)= p(m− i)r−p(m−i)−1I(r ≥ 1). (1.10)

We repeat this procedure n times, assuming independence between sets of data, ob-
taining the sequence {Rn = Rni, n≥ 1}. Notice that we have dropped the subscript i, but
the density of Rni does depend on i. Hence, we first start out with n independent sets of
m i.i.d. Pareto random variables. We then order these m Pareto random variables within
each set. Next, we obtain the m− 1 ratios of the adjacent order statistics. Finally, we select
one of these as our random variable Y . Repeating this n times, we obtain the sequence
{Yn, n ≥ 1}. We do that via our preset prior distribution {Π1, . . . ,Πm−1}, where Πi ≥ 0
and

∑m−1
i=1 Πi = 1. The random variableYn is one of theRni, i= 1, . . . ,m− 1, chosen via this

prior distribution. In other words, P{Yn = Rni} =Πi for i= 1,2, . . . ,m− 1. It is very im-
portant to identify which is our largest acceptable pair of order statistics since the largest
order statistic does dominate the partial sums. Hence, we define ν=max{k : Πk > 0}. We
need to do this in case Πm−1 = 0.

Our goal is to determine whether or not there exist positive constants an and bN
such that

∑N
n=1 anYn/bN converges to a nonzero constant in some sense, where {Yn, n≥

1} are i.i.d. copies of Y . Another important observation is that when p(m− ν) = 1,
we have EY = ∞. These are called exact laws of large numbers since they create a fair
game situation, where the anYn represents the amount a player wins on the nth play of
some game and bN − bN−1 represents the corresponding fair entrance fee for the partici-
pant.

In Adler [1], just one order statistic from the Pareto was observed, while in Adler [2],
ratios of order statistics were examined. Here we look at the case of randomly selecting
one of these adjacent ratios. As usual, we define lgx = log (max{e,x}) and lg2 x = lg(lgx).
We use throughout the paper the constant C as a generic real number that is not neces-
sarily the same in each appearance.

2. Exact strong laws when p(m− ν)= 1

In this situation, we can get an exact strong law, but only if we select our coefficients and
norming sequences properly. We use as our weights an = (lgn)β−2/n, but we could set
an = S(n)/n, where S(·) is any slowly varying function. Note that if we do change an, then
we must also revise bn, and consequently cn = bn/an.
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Theorem 2.1. If p(m− ν)= 1, then for all β > 0,

lim
N→∞

∑N
n=1

(
(lgn)β−2/n

)
Yn

(lgN)β
= Πν

β
almost surely. (2.1)

Proof. Let an = (lgn)β−2/n, bn = (lgn)β, and cn = bn/an = n(lgn)2. We use the usual par-
tition

1
bN

N∑
n=1

anYn = 1
bN

N∑
n=1

an
[
YnI

(
1≤ Yn ≤ cn

)−EYnI
(
1≤ Yn ≤ cn

)]

+
1
bN

N∑
n=1

anYnI
(
Yn > cn

)
+

1
bN

N∑
n=1

anEYnI
(
1≤ Yn ≤ cn

)
.

(2.2)

The first term vanishes almost surely by the Khintchine-Kolmogorov convergence the-
orem, see [3, page 113], and Kronecker’s lemma since

∞∑
n=1

1
c2
n
EY 2

n I
(
1≤ Yn ≤ cn

)=
m−1∑
i=1

Πi

∞∑
n=1

1
c2
n
ER2

nI
(
1≤ Rn ≤ cn

)

=
ν∑

i=1

Πi

∞∑
n=1

1
c2
n

∫ cn

1
p(m− i)r−p(m−i)+1dr

=
ν∑

i=1

Πi

∞∑
n=1

p(m− i)
c2
n

∫ cn

1
r−p(m−ν)−p(ν−i)+1dr

=
ν∑

i=1

Πi

∞∑
n=1

p(m− i)
c2
n

∫ cn

1
r−p(ν−i)dr

≤ C
ν∑

i=1

∞∑
n=1

1
c2
n

∫ cn

1
dr

≤ C
∞∑
n=1

1
c2
n

∫ cn

1
dr

≤ C
∞∑
n=1

1
cn

= C
∞∑
n=1

1
n(lgn)2

<∞.

(2.3)
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The second term vanishes, with probability one, by the Borel-Cantelli lemma since

∞∑
n=1

P
{
Yn > cn

}=
m−1∑
i=1

Πi

∞∑
n=1

P
{
Rn > cn

}

=
ν∑

i=1

Πi

∞∑
n=1

∫∞
cn
p(m− i)r−p(m−i)−1dr

≤ C
ν∑

i=1

∞∑
n=1

∫∞
cn
r−p(m−ν)−p(ν−i)−1dr

= C
ν∑

i=1

∞∑
n=1

∫∞
cn
r−p(ν−i)−2dr

≤ C
ν∑

i=1

∞∑
n=1

∫∞
cn
r−2dr

≤ C
∞∑
n=1

∫∞
cn
r−2dr

= C
∞∑
n=1

1
cn

<∞.

(2.4)

The limit of our normalized partial sums is realized via the third term in our partition

EYnI
(
1≤ Yn ≤ cn

)=
ν∑

i=1

ΠiERnI
(
1≤ Rn ≤ cn

)

=
ν∑

i=1

Πi

∫ cn

1
p(m− i)r−p(m−i)dr

=
ν∑

i=1

Πi

∫ cn

1
p(m− i)r−p(m−ν)−p(ν−i)dr

=
ν∑

i=1

Πi

∫ cn

1
p(m− i)r−p(ν−i)−1dr

=
ν−1∑
i=1

Πi

∫ cn

1
p(m− i)r−p(ν−i)−1dr +Πν

∫ cn

1
p(m− ν)r−1dr

∼Πνp(m− ν) lgcn ∼Πν lgn

(2.5)

since

ν−1∑
i=1

Πi

∫ cn

1
p(m− i)r−p(ν−i)−1dr ≤ C

ν−1∑
i=1

∫ cn

1
r−p−1dr ≤ C

∫ cn

1
r−p−1dr =O(1). (2.6)
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Thus

∑N
n=1 anEYnI

(
1≤ Yn ≤ cn

)
bN

∼ Πν
∑N

n=1(lgn)β−1/n

(lgN)β
−→ Πν

β
, (2.7)

which completes the proof. �

3. Exact weak laws when p(m− ν)= 1

We investigate the behavior of our random variables {Yn, n ≥ 1}, where we slightly in-
crease the coefficient of Yn. Instead of an being a power of logarithm times n−1, we now
allow an to be n to any power larger than negative one. In this case, there is no way to
obtain an exact strong law (see Section 4), but we are able to obtain exact weak laws.

Theorem 3.1. If p(m− ν)= 1 and α >−1, then

∑N
n=1n

αL(n)Yn

Nα+1L(N) lgN
P−−→ Πν

α+ 1
(3.1)

for any slowly varying function L(·).

Proof. This proof is a consequence of the degenerate convergence theorem, see [3, page
356]. Here, we set an = nαL(n) and bN =Nα+1L(N) lgN . Thus, for all ε > 0, we have

N∑
n=1

P
{
Yn ≥ εbN

an

}
=

ν∑
i=1

Πi

N∑
n=1

P
{
Rn ≥ εbN

an

}

=
ν∑

i=1

Πi p(m− i)
N∑
n=1

∫∞
εbN /an

r−p(m−i)−1dr

= p
ν∑

i=1

Πi(m− i)
N∑
n=1

∫∞
εbN /an

r−p(m−ν)−p(ν−i)−1dr

= p
ν∑

i=1

Πi(m− i)
N∑
n=1

∫∞
εbN /an

r−p(ν−i)−2dr

<
ν∑

i=1

N∑
n=1

∫∞
εbN /an

r−2dr

< C
N∑
n=1

an
bN

= C
N∑
n=1

nαL(n)
Nα+1L(N) lgN

<
C

lgN
−→ 0.

(3.2)
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Similarly,

N∑
n=1

Var
(
an
bN

YnI
(

1≤ Yn ≤ bN
an

))
=

ν∑
i=1

Πi

N∑
n=1

Var
(
an
bN

RnI
(

1≤ Rn ≤ bN
an

))

< C
ν∑

i=1

N∑
n=1

a2
n

b2
N

∫ bN /an

1
r−p(m−i)+1dr

= C
ν∑

i=1

N∑
n=1

a2
n

b2
N

∫ bN /an

1
r−p(m−ν)−p(ν−i)+1dr

= C
ν∑

i=1

N∑
n=1

a2
n

b2
N

∫ bN /an

1
r−p(ν−i)dr

< C
N∑
n=1

a2
n

b2
N

∫ bN /an

1
dr < C

N∑
n=1

an
bN

= C
N∑
n=1

nαL(n)
Nα+1L(N) lgN

≤ C

lgN
−→ 0.

(3.3)

As for our truncated expectation, we have

EYnI
(

1≤ Yn ≤ bN
an

)
=

ν∑
i=1

ΠiERnI
(

1≤ Rn ≤ bN
an

)

=
ν∑

i=1

Πi p(m− i)
∫ bN /an

1
r−p(m−i)dr

= p
ν∑

i=1

Πi(m− i)
∫ bN /an

1
r−p(m−ν)−p(ν−i)dr

= p
ν∑

i=1

Πi(m− i)
∫ bN /an

1
r−p(ν−i)−1dr

= p
ν−1∑
i=1

Πi(m− i)
∫ bN /an

1
r−p(ν−i)−1dr +Πν

∫ bN /an

1
r−1dr.

(3.4)

The last term is the dominant term since

N∑
n=1

an
bN

p
ν−1∑
i=1

Πi(m− i)
∫ bN /an

1
r−p(ν−i)−1dr < C

N∑
n=1

an
bN

∫ bN /an

1
r−p−1dr < C

N∑
n=1

an
bN
−→ 0,

(3.5)
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while

N∑
n=1

an
bN

Πν

∫ bN /an

1
r−1dr

=Πν

N∑
n=1

an
bN

lg
(
bN
an

)

= Πν
∑N

n=1n
αL(n) lg

[
Nα+1L(N) lgN/

(
nαL(n)

)]
Nα+1L(N) lgN

= Πν
∑N

n=1n
αL(n)

[
(α+ 1)lgN + lgL(N) + lg2N −α lgn− lgL(n)

]
Nα+1L(N) lgN

.

(3.6)

The important terms are

∑N
n=1n

αL(n)(α+ 1)lgN
Nα+1L(N) lgN

= (α+ 1)
∑N

n=1n
αL(n)

Nα+1L(N)
−→ 1,

∑N
n=1n

αL(n)(−α lgn)
Nα+1L(N) lgN

=−α
∑N

n=1n
αL(n) lgn

Nα+1L(N) lgN
−→− α

α+ 1
,

(3.7)

while the other three terms vanish as N → ∞. For completeness, we will verify these
claims:

∑N
n=1n

αL(n) lgL(N)
Nα+1L(N) lgN

<
C lgL(N)

lgN
−→ 0,

∑N
n=1n

αL(n) lg2N

Nα+1L(N) lgN
<
C lg2N

lgN
−→ 0,

∑N
n=1n

αL(n) lgL(n)
Nα+1L(N) lgN

<
CNα+1L(N) lgL(N)
Nα+1L(N) lgN

= C lgL(N)
lgN

−→ 0.

(3.8)

Therefore,
∑N

n=1 anEYnI
(
1≤ Yn ≤ bN/an

)
bN

−→Πν

(
1− α

α+ 1

)
= Πν

α+ 1
, (3.9)

which completes this proof. �

4. Further almost sure behavior when p(m− ν)= 1

Using our exact weak law, we are able to obtain a generalized law of the iterated logarithm.
This shows that under the hypotheses of Theorem 4.1, exact strong laws do not exist
when an = nαL(n), α >−1, where L(·) is a slowly varying function. Hence, the coefficients
selected in Theorem 2.1 are the only permissible ones that will allow us to obtain an exact
strong law, that is, an = S(n)/n for some slowly varying function S(·), where we used
logarithms as our function S(·).
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Theorem 4.1. If p(m− ν)= 1 and α >−1, then

liminf
N→∞

∑N
n=1n

αL(n)Yn

Nα+1L(N) lgN
= Πν

α+ 1
almost surely,

limsup
N→∞

∑N
n=1n

αL(n)Yn

Nα+1L(N) lgN
=∞ almost surely,

(4.1)

for any slowly varying function L(·).

Proof. From Theorem 3.1, we have

liminf
N→∞

∑N
n=1n

αL(n)Yn

Nα+1L(N) lgN
≤ Πν

α+ 1
almost surely. (4.2)

Set an = nαL(n), bn = nα+1L(n) lgn, and cn = bn/an = n lgn. In order to obtain the oppo-
site inequality, we use the following partition:

1
bN

N∑
n=1

anYn ≥ 1
bN

N∑
n=1

anYnI
(
1≤ Yn ≤ n

)

= 1
bN

N∑
n=1

an
[
YnI

(
1≤ Yn ≤ n

)−EYnI
(
1≤ Yn ≤ n

)]

+
1
bN

N∑
n=1

anEYnI
(
1≤ Yn ≤ n

)
.

(4.3)

The first term goes to zero, almost surely, since bn is essentially increasing and

∞∑
n=1

c−2
n EY 2

n I
(
1≤ Yn ≤ n

)≤
ν∑

i=1

∞∑
n=1

c−2
n ER2

nI
(
1≤ Rn ≤ n

)

≤ C
ν∑

i=1

∞∑
n=1

c−2
n

∫ n

1
r−p(ν−i)dr

≤ C
ν∑

i=1

∞∑
n=1

c−2
n

∫ n

1
dr

≤ C
ν∑

i=1

∞∑
n=1

n

c2
n

≤ C
∞∑
n=1

1
n(lgn)2

<∞.

(4.4)
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As for the second term, we once again focus on the last term, our two largest permis-
sible order statistics,

EYnI
(
1≤ Yn ≤ n

)=
ν∑

i=1

ΠiEYnI
(
1≤ Yn ≤ n

)

=
ν∑

i=1

Πi

∫ n

1
p(m− i)r−p(m−i)dr

= p
ν∑

i=1

Πi(m− i)
∫ n

1
r−p(m−ν)−p(ν−i)dr

= p
ν∑

i=1

Πi(m− i)
∫ n

1
r−p(ν−i)−1dr

= p
ν−1∑
i=1

Πi(m− i)
∫ n

1
r−p(ν−i)−1dr +Πνp(m− ν)

∫ n

1
r−1dr

∼Πν lgn

(4.5)

since

p
ν−1∑
i=1

Πi(m− i)
∫ n

1
r−p(ν−i)−1dr < C

ν−1∑
i=1

∫ n

1
r−p−1dr < C

∫ n

1
r−p−1dr =O(1). (4.6)

Thus,

liminf
N→∞

∑N
n=1 anYn

bN
≥ liminf

N→∞

∑N
n=1 anEYnI

(
1≤ Yn ≤ n

)
bN

= lim
N→∞

Πν
∑N

n=1n
αL(n) lgn

Nα+1L(N) lgN

= Πν

α+ 1
,

(4.7)

establishing our almost sure lower limit.
As for the upper limit, let M > 0, then

∞∑
n=1

P
{
Yn >Mcn

}=
ν∑

i=1

Πi

∞∑
n=1

P
{
Rn >Mcn

}

=
ν∑

i=1

Πi

∞∑
n=1

p(m− i)
∫∞
Mcn

r−p(m−i)−1dr

≥
ν∑
i=ν

Πi

∞∑
n=1

p(m− i)
∫∞
Mcn

r−p(m−i)−1dr

=Πν

∞∑
n=1

p(m− ν)
∫∞
Mcn

r−p(m−ν)−1dr
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=Πν

∞∑
n=1

∫∞
Mcn

r−2dr

= Πν

M

∞∑
n=1

1
cn

= Πν

M

∞∑
n=1

1
n lgn

=∞.

(4.8)

This implies that

limsup
n→∞

anYn

bn
=∞ almost surely, (4.9)

which in turn allows us to conclude that

limsup
N→∞

∑N
n=1 anYn

bN
=∞ almost surely, (4.10)

which completes this proof. �

5. Typical strong laws when p(m− ν) > 1

When p(m− ν) > 1, we have EY <∞, hence all kinds of strong laws exist. In this case,
{an, n ≥ 1} and {bn, n ≥ 1} can be any pair of positive sequences as long as bn ↑ ∞,∑N

n=1 an/bN → L, where L �= 0, and the condition involving cn = bn/an in each theorem is
satisfied. If L= 0, then these limit theorems still hold, however the limit is zero, which is
not that interesting.

This section is broken down into three cases, each has different conditions as to
whether the strong law exists. The calculation of EY follows in the ensuing lemma.

Lemma 5.1. If p(m− ν) > 1, then

EY =
ν∑

i=1

pΠi(m− i)
p(m− i)− 1

. (5.1)

Proof. The proof is rather trivial, since p(m− ν) > 1, we have

EY =
ν∑

i=1

ΠiERn =
ν∑

i=1

pΠi(m− i)
∫∞

1
r−p(m−i)dr =

ν∑
i=1

pΠi(m− i)
p(m− i)− 1

, (5.2)

which completes the proof of the lemma. �
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In all three ensuing theorems, we use the partition

1
bN

N∑
n=1

anYn = 1
bN

N∑
n=1

an
[
YnI

(
1≤ Yn ≤ cn

)−EYnI
(
1≤ Yn ≤ cn

)]

+
1
bN

N∑
n=1

anYnI
(
Yn > cn

)

+
1
bN

N∑
n=1

anEYnI
(
1≤ Yn ≤ cn

)
,

(5.3)

where the selection of an, bn, and cn = bn/an must satisfy the assumption of each theo-
rem. These three hypotheses are slightly different and are dependent on how large a first
moment the random variable Y possesses. The difference in the these theorems is the
condition involving the sequence {cn, n≥ 1}.
Theorem 5.2. If 1 < p(m− ν) < 2 and

∑∞
n=1 c

−p(m−ν)
n <∞, then

lim
N→∞

∑N
n=1 anYn

bN
= L

ν∑
i=1

pΠi(m− i)
p(m− i)− 1

almost surely. (5.4)

Proof. The first term in our partition goes to zero, with probability one, since

∞∑
n=1

1
c2
n
EY 2

n I
(
1≤ Yn ≤ cn

)=
ν∑

i=1

Πi

∞∑
n=1

1
c2
n
ER2

nI
(
1≤ Rn ≤ cn

)

≤ C
ν∑

i=1

∞∑
n=1

1
c2
n

∫ cn

1
r−p(m−i)+1dr

≤ C
∞∑
n=1

1
c2
n

∫ cn

1
r−p(m−ν)+1dr

≤ C
∞∑
n=1

c
−p(m−ν)+2
n

c2
n

= C
∞∑
n=1

c
−p(m−ν)
n <∞.

(5.5)

As for the second term,

∞∑
n=1

P
{
Yn > cn

}=
ν∑

i=1

Πi

∞∑
n=1

P
{
Rn > cn

}

≤ C
ν∑

i=1

∞∑
n=1

∫∞
cn
r−p(m−i)−1dr

≤ C
∞∑
n=1

∫∞
cn
r−p(m−ν)−1dr

≤ C
∞∑
n=1

c
−p(m−ν)
n <∞.

(5.6)
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Then, from our lemma and
∑N

n=1 an ∼ LbN , we have

∑N
n=1 anEYnI

(
1≤ Yn ≤ cn

)
bN

−→ L
ν∑

i=1

pΠi(m− i)
p(m− i)− 1

, (5.7)

which completes this proof. �

Theorem 5.3. If p(m− ν)= 2 and
∑∞

n=1 lg(cn)/c2
n <∞, then

lim
N→∞

∑N
n=1 anYn

bN
= L

ν∑
i=1

pΠi(m− i)
p(m− i)− 1

almost surely. (5.8)

Proof. The first term goes to zero, almost surely, since

∞∑
n=1

1
c2
n
EY 2

n I
(
1≤ Yn ≤ cn

)≤
ν∑

i=1

∞∑
n=1

1
c2
n
ER2

nI
(
1≤ Rn ≤ cn

)

≤ C
ν∑

i=1

∞∑
n=1

1
c2
n

∫ cn

1
r−p(m−i)+1dr

≤ C
ν∑

i=1

∞∑
n=1

1
c2
n

∫ cn

1
r−p(m−ν)+1dr

≤ C
∞∑
n=1

1
c2
n

∫ cn

1
r−1dr

= C
∞∑
n=1

lgcn
c2
n

<∞.

(5.9)

Likewise, the second term disappears, with probability one, since

∞∑
n=1

P
{
Yn > cn

}≤
ν∑

i=1

∞∑
n=1

P
{
Rn > cn

}

≤ C
ν∑

i=1

∞∑
n=1

∫∞
cn
r−p(m−i)−1dr

≤ C
∞∑
n=1

∫∞
cn
r−p(m−ν)−1dr

= C
∞∑
n=1

∫∞
cn
r−3dr

≤ C
∞∑
n=1

1
c2
n

≤ C
∞∑
n=1

lgcn
c2
n

<∞.

(5.10)
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As in the last proof, the calculation for the truncated mean is exactly the same, which
leads us to the same limit. �

Theorem 5.4. If p(m− ν) > 2 and
∑∞

n=1 c
−2
n <∞, then

lim
N→∞

∑N
n=1 anYn

bN
= L

ν∑
i=1

pΠi(m− i)
p(m− i)− 1

almost surely. (5.11)

Proof. The first term goes to zero, with probability one, since

∞∑
n=1

1
c2
n
EY 2

n I
(
1≤ Yn ≤ cn

)≤
ν∑

i=1

∞∑
n=1

1
c2
n
ER2

nI
(
1≤ Rn ≤ cn

)

≤ C
ν∑

i=1

∞∑
n=1

1
c2
n

∫ cn

1
r−p(m−i)+1dr

≤ C
ν∑

i=1

∞∑
n=1

1
c2
n

∫ cn

1
r−p(m−ν)+1dr

≤ C
∞∑
n=1

1
c2
n

∫ cn

1
r−p(m−ν)+1dr

≤ C
∞∑
n=1

1
c2
n
<∞.

(5.12)

As for the second term,

∞∑
n=1

P
{
Yn > cn

}=
ν∑

i=1

Πi

∞∑
n=1

P
{
Rn > cn

}

≤ C
ν∑

i=1

∞∑
n=1

∫∞
cn
r−p(m−i)−1dr

≤ C
ν∑

i=1

∞∑
n=1

∫∞
cn
r−p(m−ν)−1dr

≤ C
∞∑
n=1

∫∞
cn
r−p(m−ν)−1dr

≤ C
∞∑
n=1

∫∞
cn
r−3dr

≤ C
∞∑
n=1

1
c2
n
<∞.

(5.13)
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Then as in the last two theorems,

∑N
n=1 anEYnI

(
1≤ Yn ≤ cn

)
bN

−→ L
ν∑

i=1

pΠi(m− i)
p(m− i)− 1

, (5.14)

which completes this proof. �

Clearly, in all of these three theorems, the situation of an = 1 and bn = n= cn is easily
satisfied. Whenever p(m− ν) > 1, we have tremendous freedom in selecting our con-
stants. That is certainly not true when p(m− ν)= 1.
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