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An infinite number of generalized solutions to the stationary Euler equations with ax-
isymmetry and prescribed circulation are constructed by applying the finite difference
method for spatial variables to an equation of pseudo-advected vorticity. They are proved
to be different from exact solutions which are written with trigonometric functions and
a Coulomb wave function.

1. Introduction

In a domain Q (C R3), the velocity u (: Q — R?) of a steady-state inviscid incompressible
fluid is described by the stationary Euler equations with a boundary condition:

(u-V)u=-Vp, V-u=0, u-nly =0, (1.1)
or equivalently,

2
(VXu)Xu=—V<p+%), V.u=0, u-nl=0. (1.2)

Here, p(: Q — R) is the pressure, dQ) is the boundary, and n is the unit outward normal
vector on o€).

In the axisymmetric case, the existence of solutions to (1.2) was discussed as the prob-
lem of vortex rings in, for example, [2, 4, 5, 8]. Their methods were based on a variational
principle for kinetic energy.

By contrast, Vallis et al. [13] proposed a completely different approach to the solvabil-
ity of (1.2). Assume that the pair (v,q) : Q X {t >0} — R? X R satisfies the nonstationary
system

2
vt+w><(v+(xvt)=fv<q+%>, V-.v=0, v-nlzn=0 (1.3)
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globally in time ¢, where @ = V X v, and « is a nonzero constant. They asserted the de-
cay v; — 0 and the relaxation of (v,q) to the above (u, p) as t — co. For example, in the
axisymmetric case (where v(-,-,¢) is a function of the radial and the axial coordinates r,
z and does not have the azimuthal component), the azimuthal component w of w(r,z,t)
satisfies

%+(v+o¢vt)-v$=o. (1.4)

It means that the integral [, f(w/r)r drdz with any smooth function f is conserved in ¢,
where D is the cross-section of Q) in the meridian plane. In addition, from (1.3), we can
derive the decay |[p, |v¢|*>rdrdz — 0 as t — oo, whether a < 0 or a >0, if [,(w/r)*rdrdz <
co at t = 0. This is worthy of remark, because we can obtain an axisymmetric solution to
(1.2) which has iso-(w/r)-lines “topologically accessible” from initially given lines, as was
mentioned by Moffatt [7, Section 5].

Some readers may criticize (1.3) saying that it is artificial and unphysical. They should
note that in variational approaches to (1.2), all (physical or unphysical) divergence-free
fields that deform streamlines or vortex lines are considered in order to obtain energy
extrema (see [3, Chapter II, Section 2]). The method of Vallis et al. means that an en-
ergy extremum is automatically reached as t — oo if vortex lines are deformed by the
divergence-free field v+ av;.

From a rigorous point of view, the theory of Vallis et al. has not been proved true in
its entirety. Indeed, the nonlinearity of aw X v; seems too strong to obtain the temporally
global solvability of (1.3) rigorously.

In order to make use of (1.3) and construct axisymmetric solutions to (1.2) in a rigor-
ous manner, the author in [9] applied the Galerkin method. He approximated (1.3) with
n basis functions in Q and let # and t go to infinity simultaneously to evade the diffi-
culty of the term aw X v;. (The equality (10) in [9] should be corrected as the inequality
7'V xull < Ir7'V xvoll.)

Nevertheless, a question was left open in [9]. As a set of basis functions, that is, an
orthonormal system in a square-integrable space with the weight r, the author in [9]
used {w® 1}y such that each of its elements satisfies (1.2). He could not exclude the
possibility of the trivial case in which every constructed solution to (1.2) is written in the
form cw® with a constant ¢ and some k.

In this paper, we note another system

Vit+aw X Py(vXw)=-Vq, V-v=0, v-nlyn =0, (1.5)
where P,f = f + VQ with Q satisfying AQ = -V - fand (f + VQ) - nlyq = 0, and again «
is a positive or negative constant. This system was introduced by the author in [11] in the

two-dimensional context. It is based on the idea of Vallis et al. Indeed, in the axisymmetric
case, it leads to our equation for pseudo-advected vorticity:

%ﬂxPo(vxa))-V%:O, (1.6)
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which has the same property as (1.4). Moreover, (1.5) yields the decay of [, |P,(w x
v)|>rdrdz (= [, |P;((v- V)v)|’rdrdz) ast — o if we assume its temporally global solv-
ability (although it seems difficult to obtain as well as the solvability of (1.3)). Again,
some readers may criticize (1.5) for its artificiality. As was mentioned above, it should be
taken not as a physical model but as a substitute for variational methods for constructing
stationary Euler flows.

The aim of this paper is to approximate (1.6) by the finite difference method for r, z
in a cylindrical domain Q and prove that it generates an infinite number of generalized
solutions to (1.2) which are axisymmetric, periodic in z, equipped with prescribed circu-
lation, and different from the above cw(®). The difficulty of proving the temporally global
solvability of (1.6) is evaded by letting the lattice scale h — 0 and ¢ — co simultaneously.
This is done and a generalized solution to (1.2) is constructed in Section 5 after some
preparations in Sections 2, 3 and introducing the approximation of (1.6) in Section 4.
For a fundamental theory of the finite difference method, we refer to [6, Chapter VI]. By
repeating the process used in Section 5, an infinite number of generalized solutions to
(1.2) are generated in Section 6.

In our case, each element of {w®} ey = {W™M} i ne7 is concretely written with a
trigonometric function and the regular Coulomb wave function of order zero, as is shown
in Section 6. It satisfies (1.2). As far as the author knows, no paper introduced this set of
exact solutions to (1.2).

An advantage of the finite difference method over the Galerkin method is that we have
(5.7), which we mean by the above “prescribed circulation.” By virtue of (5.7), we can
show that our generalized solutions do not have the form cw™" (see Theorem 6.1).

In [11], the author discussed the stationary Euler equations in a square domain in R?
by using the finite difference method and proved a theorem analogous to Theorem 5.2.
Although our axisymmetric case is more complex, it brings a better result, that is, the
construction of an infinite number of generalized solutions in Theorem 6.1. A character-
istic of our case is that a small » matches a small lattice scale & and we can prove (3.6),
while such an estimate could not be obtained in the planar case in [11].

In the three-dimensional case without axisymmetry, neither (1.3) nor (1.5) seems to
be useful, because (1.4) and (1.6) are not valid. We need to use other equations (see
(10, 12]).

2. Preliminaries

Let us introduce our notation. We assume that Q) is a cylindrical domain with a constant
radius a, that is, Q = {(r,6,2z) | 0 < r < a} and the flow is periodic in z. For simplicity, the
period is set equal to a. The unit vectors in the r-, 8-, and z-directions in the cylindrical
coordinate system are denoted by e’, e? and e?, respectively.

For h = a/N with a sufficiently large positive integer N, we define

A=A xA,={jeN|1<j<N-1}x{keN|1=<k=<N},

- - 2.1
A=A xA,={jeZ|0<j<N}x{keN|l1<k<N} 2.1)

The complements of A} and A}, in Z are denoted by (A})¢ and (A})¢, respectively.
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For { fjx € R}(jkez, we define the difference quotients

fix1 fJ

Dhrf]k_+ ’ le,zfﬁk:*

S "” fik (2.2)

These operators Dy , D, D _, and D, are mutually commutative. For a set of vectors
{fix = fj’)ke’ +f]fkez}(j,k)ezz, we define

Disfj’k = (Disfj’:k)er + (Disfﬁk)ez (2~3)

with s = r or z. The difference version of the gradient and the divergence operators are
defined by

grad, fik = (D,:—',rfj,k)er + (Dizfj,k)ez,

ivj, L p= (i r . (2.4)
divi £ = oy Dir (G + DAL +Dic e
It is easy to verify
Dil’-f:iak = Dirﬁil,k) D;iz.fj)k = D}T,zf:f,ktl)
Dy, (fixgik) = (Diy, fik) gk + fiz1k (Dj &)
= (D}, fix)gj=1k + fik (DL, gik)» (2.5)
Die (fixgik) = (D2 fik) ik + fikeer (D 81k)
= (Dji, fik)gjker + fik (D gjk)-
Furthermore, we have
. L
JisDi s = 5 (F DL fia) "+ D £ (2:6)
We will often use
j2 j2 fj2+1 k&j>k fj1 k&ji— 1k
Z (D;’rfj’k)gj’k - Z f}’k (Dirg]')k) + }/l - ’ h =,
J=i j:jl
b | f P (2.7)
ik> i.ka iki gk —
> (D fia)gii = = Z S (D gya) + D8t Dbty
k=ki k=ki
in particular,
> (DifiRlgie=— 2. fix(Dpgik) (2.8)
(j,k)E./_\h (] k)EAh

fors=rif f1x= fok = fnx = fyerk =008 fo1k = fnrik = 14 = gN+1k = 0, and for
s=zif fjx = fix+n and gjx = gjk+n. It is also convenient to note the following inequali-
ties. The last one (2.11) is known as the discrete Poincaré inequality.
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LEMMA 2.1. If f; -1k = 0, then

max fkshazﬁ +5 Z (D, fik) > (2.9)
neisp j=h J J

ja 5
Z fho<4(a—ji+ 1)WY (D, fix) (2.10)
J ]1 J=n

hold, where § > 0 is arbitrary. Particularly, if fox = 0, then

N-1 N-—
D fh<4 Z (Dp, fik) " (2.11)
j=1 j=1

Proof. Letl € Z N [}, j2]. Then, by (2.5) and Schwarz’s inequality, we deduce that

) 72
fa=h 2 Dy i <h 2 1Dy, ikl (| fial + 1 fi-rk])

j=h j=i

A s (2.12)
S OW LA
J=n J=n

which yields (2.9) by Young’s inequality and whose summation from [ = j; to j, yields
(2.10). It is clear that (2.10) with j; =1 and j, = N — 1 leads to (2.11). O

Let ({-,-})s and |{-}|s for sets of scalars {fj,k}; {gjx} or of vectors {f;}, {gj«} be
defined by

<{fj,kagj,k}>s = Z (]"’ l)fj,kgj,kv | {fjk} |§ = (‘{fj,k,fj,kns (2.13)

(j.k)es

or by

{fiogiuh)s=m > (G+Dfjk- gk | (£} |5 = (1f ko fikl) s (2.14)
(j,k)es

In order to discuss the limit & — 0, it is convenient to use the interpolation operators
Ap, and By, defined by

Anlfix}(r2) = fimizm»
r
Bl fik}(rs2) = firm),izm + (r - h[ﬁ] )D;,rf[r/h],[z/h]

z
+ (Z —h [ ﬁ] )DZ,Zf[r/h},[z/h]

! <r - h[%]) (Z - h[%] )D;lr,fDl:r,zﬁr/h],[z/h]-

(2.15)
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Here, [r/h] means the integer in (r/h — 1,r/h]. These operators correspond to i and u;,
in [6, Chapter VI]. They are also used for sets of vectors as

Aplfiie’ + fixe’t = An{fjte" + Anlfii}es. (2.16)

It is useful to note that By, { f; x} is a continuous and piecewise bilinear function and that
the inequalities

0 T
'EBh{fj,k}(r,Z) < |D};, firmizm | + | Dy, fremyizm | i ¢,
d (2.17)
o Z
‘ $Bh{fj,k}(r,2) < | Dy, fiemiemy | + | Dy, firmenizm | if 2 ¢7
are derived from
0 -2
= Bu{fiu} (r,2) | = | Dy fiom e + (z —h| )D;;JD,’;,Z foosml i
< max{ |D},, fismizm | | Dy, frrmyizm |}
(2.18)
0 e
9z 2wk (:2)| = | Phefienizm + <r “h )D o D flrm,zrm)
< max { | Dy firm.iem | > | Dy fremiviem | -
Moreover, we have
|Bh{f:j,k}(7’,z) _Ah{f:i,k}(r’z)|
z
< h| Dy, firmfzm + (z - h[ﬁ] >Dh+,rD;,zf[r/h],[z/h] +h| D}, firmizm | 1o
2.19

< max {n|D};, firmy,izm |1 Dy, fiomyizmier |} + 1| Dy fiemy,em |

< h(| Dy, fiompizm | + | Dy, fiemyfemi | + | Dy, fromyizm )

The scalar product (-, -) for scalar functions f(r,z), g(r,z) or vector functions f(r,z),
g(r,z) is defined by

(f,g):ﬂ: F(rnog(rnordrdz  or (f,g)=H:f(r,z)-g(r,z)rdrdz. (2.20)
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The norm || - || is defined by || fIl = (f, f)V? or [If|| = (f,f)"/2. Let X, and X, be spaces
given by

Xo ={f = f"(r,2)e" + f(r,2)€%, (r,2) € (0,a) xR | [If]| < o0,

(2.21)
V-£=0, f(a,2) =0, f(r,z) =f(r,z+a)}
with the scalar product (-,-) and
X, ={feX|||[r'Vxf]| <o} (2.22)

with the scalar product (r~!V X -,771V X -). We consider the construction of solutions
to (1.2) in X, particularly in a subspace of itself: X; = X; N X. Here, X is a subspace of
Xo:

X = 5Lf eX | ﬂ:frdrdz = o}. (2.23)

We also use the Sobolev space of the first order on (0,a)?, denoted by W1((0,a)?),
and the space of vector functions whose components belong to W; ((0,a)?), denoted by
W3((0,a)?).

We sometimes use (j,(:) or (f7, f?) instead of fTe" + fZ€.

3. Difference operator Ej,

In the axisymmetric case, the relation between the stream function ¢ and the vorticity w
is represented by

B¢ = —rw, (3.1)
where
_ 0(10 0?
s=ra (o)t om (3.2)

(see [2, 4,5, 8]).
Let the difference operator Ej, be defined by

1 _ _
"‘hfj ]+1)hDhr((~+1)hDh,rfj,k>+DZ,zDh,zf]',k
(3.3)

=Dy, Dy, fik — Dh +Jik + Dy Dy fik

]+2)

It is a difference approximation of E.
The following lemmas will be used in Section 5. From now on, we frequently denote
positive constants independent of 4 by C or C” without distinction.
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LEmMA 3.1. Let { fj} be a set such that f;; = 0 for all j € (A})° and fix = fjxin. Then,

> lgrad; fisl*<C 3 (@)’ (3.4)
(j,k)e[\h (j.k)eAn
_ 2 — 2 —_ 2

> (ID},grad; fixl + | Dy grad, fix|") <C > (Bufix) (3.5)
(j,k)eAn (j.k)eAn

N 2 2

> |Df,grady fox]><C > (Enfin)’ (3.6)

k=1 (j.k)eAy

N 2 2

> |IDj grady fuxl"<C > (Bufin)”. (3.7)

k=1 (jk)EA,

Proof. By (2.6) and (2.8), we have

S fikBufir= >, |grad; fix]t+ 20, (3.8)

(j-k)EAn (j.k)eAn

where

2y = Z (]+2hf]k hrfJ

(j.k) e

-2 2(j+%)h< —h(D}, fix)® + D}, f2)

(jik)eAy
(3.9
) ( B i(D’I’f"’k)z N (D’;fz( 'Jlrz)h>ﬁ")
(k) ehy J
1 N 2 1 _ 2
= _Z Z (Dh,r](j)k) = _Z Z (Dh,r][])k) .
(jk)EA (jk)EA
Therefore, using (2.11), we obtain
3 _ 2 - -
T2 lead fillT == X fuBifik=— X fisBufix
(jk)EAn (jok)EA (jrk)eAn

( > fi 2 | ~hfj,k)z>l/2 (3.10)

(]k GAh (] k)EAh

1/2
sof 3 lemdiul’ I @e)

(k)€ (k) E AR

which leads to (3.4).
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Next, we have

2
- 2 _ 2 (D}J;,rf:i,k) _ 2
Z (‘:hfj’k) = Z <(Dh+,rDh,r.](j,k) + m + (Dl;r,zDh,zfj)k) ) T2+ 25+ 2y,
(j-k)EAR (j-k)eA

(3.11)

where
1
22:_2 Z (Dhrf )(DhrDhrf )
(j.k)EAR (] +2)h ] "
1

Z :_2 ( +r ',k)(D+zDiz ',k)ﬂ 312
3 i kZEA (]+2)h h, f] h,z"h, f] ( )

Z4=2 Z D;,rD};rf]"k) (D;gzD}szj,k)'
(] k YEA

Using (2.6) and (2.7), we derive

1 _ _
22 == Z +2)h (h(DI:,rDh,rf:isk)z+Dh,r(DZ,rfj)k)2)

1, . + 1 +
> 3 (=500 + (Dhs 3 @A)

(k) €A

N 1 (D;zr,rfoyk)2 (D}Jlr,rfN—l,k)z
+Zh< 3 (N+2)h )

Here, (Dj,, fox)?/(3h?) can be replaced by (D}; D}, fox)*/3, because Dy, f-1 x = 0. This is
a characteristic of our case, as was mentioned in the penultimate paragraph of Section 1.
Furthermore, inequality (2.9) with f; s replaced by DZJ fik and with § = 6/a, j, =0, j» =
N — 1 yields

i (D, fy-14)° 3 i (D}, fu16)’

S (N+R T &= ak
N 6 N-1 1 -
SZ(_Q Dhrf] EZ DhrDhrfJ
e = (3.14)
( "‘th (DhrDhrfJ ) )
(Jk)EAh
N

1
+6 DhrDhrfOk >
k=

—_
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where we used (3.4). Therefore, we go ahead with the estimation of X, from below as

2
1 _ e, (DR fik) ,
S (‘(Dithyrf')k) F o ayn +HC(ERf)
(k) EA 2 ! (j+2)(j+3)h? j
(3.15)

— 2
(leJlr,rDh,rfO’k) .

u[\/_|2

L1
T

Since DZ)ZD;)ij,k =0 for j € (A},)¢, we can change (j,k) € Ay in X3 and 24 as (j,k) € Ap.
Then, by (2.6) and (2.8), we have

2 B B
23 = Z (j+2)h (D;,rDh,zﬁ»k)Dh,zﬁ»k
(okyeds

1 — —
= 2 Gran (MDD S Dy (D fi))

S (-3 0iDicfi)’ = (Piu gy ) Piet))

N

k)eA
uhen (3.16)

v
I

_ 2
(Di Dy fik)
(ke

Zy=- Z ((D}J;,rf]',k) (D;:,rD;tr,le:,zfj,k) + (DPT,rf:i,k) (D}:,rD;lr,zD}:zf},k))
(j.k)eAn

— 2 _ 2
= Z ((D}Jtr,rDh,zf}’k) + (D;tr,zDh,rf}’k) )

(j.k)eAn

N | —

Using the above estimates of X,, X3, and 24, we deduce that

2 1 _ 2 - 2
S 0= S (10 gl Diaad; ful)
(jrk)EM k)eA

N
1 _
+2 (g | D}, grad,, fox|”+ (Dj.Dj, fN,k)Z) (3.17)
k=1

-C > (Eufin)

(jsk)EAn

which means (3.5), (3.6), and (3.7) (recall that DZ,le;sz,k =0). O

Lemma 3.2, Let {fjx} be as in Lemma 3.1. Then the following inequality is valid:

- f. 2 = f. 2
s grad; Sk |”_ o s (“hff’k ) (3.18)

e AR (Giyen \U+ DA
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Proof. We define X5 by

_ fik  Enfik fik  Enfik
) G+2h(j+Dh 2. (j+2)h (j+ Dh

(j,k)EAR (j-k)eAn
- fik ( . (D;I,rfj,k) DZ,ZD;?,ij,k)
- (]kzeA G+or\Per\Gron) T G+ Dh (3.19)
Dy, fik \? [iaDiefie  (Dyafia)
-y (( hor J)k) +<D* 1 > PkEnrJik 2 Jjok )
ioen WG+ Dh brGi+2)h) GG+Dh  (j+1)(j+2)R2 )
The equality (2.6) yields
(D’ 1 )fj,th’,rfj,k _ 1 <D,;,fj,k)2_ Di, i (3.20)
h(i+2)h) (j+1Dh 2+2)\(j+Dh/) ~ 2(j+1)2(j+2)h3 '

Noting that —(Dj,, fjx)*/(j +2) = —(Dy,, fix)*/3 for j € A}, (because Dy, fox = 0), we
have

= f. 2 . = f.
Ly (D_h,rff,z;l) BRI (D;I,r 1 h)fj,k'Dh,TJ;]l,kS_% (3.21)
6(j’k)€]\ (j+1) 2 et (j+2) (j+1) 2

where

D/I,rsz,k

26 = Z Ty k)
Ghein (j+1)2(j+2)h

D 1
() kZEAhf2 ( hm) (3.22)
(3j+5)f

- (j,k)ze,\h (G+1)2(j+2)2(j+3)h*

By (3.21), we estimate X5 from below as

G @)% e

(j,k)eAy

2s

[\
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Next, let us estimate X5 from above. By Schwarz’s and Young’s inequalities, (2.11) and
(3.21), we deduce that

19 ik ) Enfik \2
el s (o 2oy (B)
TT 24 " (j+2)h ‘,k)ZeAh (j+1h

(J

- 2 D7 f:
+2(D;r 1 )fj,k' o Sk
T(j+2)h) (j+1Dh

+<D@(ﬁz)) >+C 2. (;ﬁq)) (3.24)

(j,k)eAn

_ 19 ((I%Jﬁk>2+ ik )
2,2, \\GDk) FGaDG e 2rh

=, f 2
e s (2

This estimate and (3.23) yield

1 (19/24) 3y Enfik | 7
24 Z (]+1)2(]+2)2h4+c<(j+1)h>>__Z6

(j-k)e

gradhf]
(j+Dh z
G

A
A A

(11— f] . (__‘hf] )
12(7+1)2(j +2)2(j +3)h* (j+1h

(jk)eAn
0 N g2 Enfix \?
3 Ep
scy Ytec ¥ (S
imlk=1 ! (ke (j+Dh
(3.25)
Since
10 10 5 10 5
> [ = CH Y (Dy, fix)” < C'h* 3 (D, Dy, fix) (3.26)
=1 i1 i1

follows from (2.10), we have

S S ecs 3

j=

HMZ

(jk)eAn (j.k)eAn

(DL, Diy filf <€ 3 @ufu) =Ca’ 3 (Jifbh)
(3.27)

by using (3.5) and (3.6). Hence, (3.18) holds. O
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4. Spatially discretized equations for pseudo-advected vorticity
First, we introduce the linear system for {¢; «}(jx)ez> with {{jx}(jxea, given that
Enpjk = —(j+1)°W*{ix for (j,k) € An, (4.1)

Gikljcwr) =0, Gik = kN (4.2)

It is uniquely solvable. Indeed, if {jx = 0 is assumed for all (j, k), then ¢;x = 0 is derived
from (3.4) with (2.11). Therefore, we can represent ¢;  in A, as

.
¢i= > Lii G (4.3)

(j" k") EAR

) s
with constants {L;,k FGk Gk e A

Next, suppose that f; ; = (jfjfk,]‘jfk) is given for every (j,k) € A} X Z so that f; x = f; x4,
and { for,k | for,k = for,k +NJkez is also given. We define the operator P, , by

Poyfjk = fj,k + gradz Qjk> (4.4)
where Qj x is determined by

div,, gradz Qj,k = —divy, fj,k for (j,k) € A,
D;lr,rQO,k—'—fOr,k = 0’ DPJlr,rQN_lak+fI:7—l,k = O’ (45)
Qjk = Qjk+N-

It is easily verified that gradz Qj x is uniquely determined for given {f;+} and {fj,}. In-
deed, if f; x|(jx)en;xz = O with fi;|xez = 0 is assumed, then, by using (2.7), we have

0 = ({div, grad, Qjx,Qjk})a, = — | {grad, Qjx} |f\h, (4.6)

which means that Q;x = const. in A} X Z. 1t is clear that div, Pspfjr =0 in Ay and
(Ponfjx) - € =0for j =0, N — 1. In addition,

({6 Pop8ik ) p, = {{Poiifiks Popgik}) a0 (4.7)

because ({grad, Qjk»Posgjx})n, = —({Qjkdivy, Pogjk})a, = 0.
As an approximation of (1.6) by the finite difference method for r and z, we present
the system of ordinary differential equations for {; x(t) ((j,k) € Ap):

J
d¢; ——VI_
Dok Oy arad! s & TH1 Tk
dt " 2°F ST R
jok—1

-grad, {jx =0 (4.8)
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with (jxlje(ar)e = 0 and {jx = (jx+n. Here a is a fixed positive or negative number, and

ik 1 ({ik + k) DF bk
Vik=1{., | = _EPa,h . (4.9)
ik (i +Ciar1) Dy )k

with ¢; x given by (4.3) for (j,k) € Aj, and by (4.2) for the others.

It should be noted that (4.1) is not always valid for j = 0 or N. The sets {{j«} and {§;x}
correspond to w/r in (1.6) and ¢ in (3.1), respectively. As a result of the first condition of
(4.2), the mean velocity in (0,a)? of our flows in Theorem 5.2 is equal to zero, while the
case with ¢ klj<o =0 and ¢jklj=N = const. # 0 is open.

Clearly, the system (4.8) is uniquely solvable at least locally in time if we give the initial
data

(ik(0) = Co,jk- (4.10)

5. Construction of solutions to the stationary Euler equations
Let us define a generalized solution to (1.2).

Definition 5.1. If u € X, satisfies
(Vxu)xuf)=0 (5.1)

for any f € X;, then u is said to be an axisymmetric generalized solution to (1.2).

If this generalized solution belongs to the C!-class, then it is a classical solution to
(1.2), according to the well-known orthogonality of the divergence-free and the gradient
fields.

Let

w_(_ v 1 )
vj,k - ( (j+1)hDh,z¢J’k’ (j+1)hDh,r¢J’k . (5‘2)

Then we have the following theorem.

THEOREM 5.2. Assume that {y is an arbitrary function on (0,a) XRwhich satisfies (o(r,z) =
{o(r,z+a) and ||{oll < oo. Let {{o,jk}(jkyez> be aset such that { j i = 0 for j € (A})S, Cojk =
Co,jken> and Ap{(j + 1)Y2hY2{, i} converges to r'/2{y strongly in L*((0,a)?) as h — 0. Then
(4.8) with (4.10) is uniquely solvable globally in time. There exist sequences

{hy | hy > hyy1 >0, lim by, = 0}, {ti 10 < t, <tys1, limt, = oo} (5.3)
n—oo n—oo
(n=1,2,3,...) such that

) strongly in 12((0,a)?),
By, {(] + l)hnvj,];1 (tn)} —ru (5.4)
weakly in W} ((0,a)?),
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as n — oo, whereu € X, is an axisymmetric generalized solution to (1.2). Furthermore,

(Vxu)-e

Ap 4G+ DG (ta)} — o weakly in 12((0,a)?), (5.5)
and
lr='V x| <|&l], (5.6)
ﬂ (Vxu)-eldrdz = H (ordrdz. (5.7)
0 0

Proof. First, it should be noted that there exists a set {{y j«} satisfying the above conver-
gence of Ap{(j +1)V?h2{y j }. Indeed, it is satisfied, for example, if

1 (k+1)h (j+1h
Lok = WJ dzj Gr2dr for (j,K) € Ay (5.8)

kh j

(see [6, Chapter VI, Lemma 4.1]).
Let {&«} and {n;x} be sets such that ; x = &; x1n and #jx = 1jx+~. Then we can verify
that

j]?V};l,k d-
o | 777 ) - grady
Jok—1 Ap

== > (D GRERVI ) +D5(G+ DIE VT )Nk
(jrk)eAn (59)

=— > (+ DR (Vg - grady i+ & divy, Vie) ik
(j.k)eA

= —{{nj k> Vik - grady &ix}) o,

by (2.5), (2.7), the equalities Vij, = Vi, , = 0, and div, V;x = 0. Summing up the prod-
ucts of (4.8) and (j + 1)h*(; for (j,k) € Ay and using (5.9) with & = njx = ik, we
derive (d/dt)|{{;x} 3, = 0, which leads to

HGxd 12 = [{Gad 2 = ﬂo (AlGi+ DRG0 ) drdz < ClGIF. (5.10)
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This implies that (4.8) is solvable globally in time. In addition, applying (2.11), (3.4)—
(3.7), (3.18), and (4.1), we deduce that

WY (92 + | grad, ¢kl
(j.k)eA

N-1 N N N
— 2 — 2
h* > > | Dy, grad, ¢j| +h > > | D} grad, ¢kl (5.11)
0 k=1 i—1k=1

<Chr? ' > G+ DR < Ca’ | {{x} |f\h <[l

(jsk) € An

oY VP scr Y (G108, < Cal {Gab |, = C Gl (5.12)

(j,k)E[\h (j,k)EAh
Using
Ld i grad, ¢k (d
LAY grad; (503
2dt h (]k)eA (j+1h dt
bk _ (d
=-K 2 (]-I-]l)h (dt¢j’k) (5.13)

(o)A
= (o gol),

Vor = Vi_1x = 0, the periodicity of Vj x in k, (4.7), and (5.9), we have

1d
2dt|{ ]k}|Ah

Ly
o i i—1,k _
= _E <{¢j,kyvj,k . gradz Cj,k + (JH z] ! ) . gradh Cj,k}>
V: A

Jiok—=1
_ak?

> C-k<(j+1)thk-grad+¢-k+( Vi1 )-grad_q’)'k)
(ke g 8 PEEENG DRV, hry

_ s (j+1)thk'<((j’k+(j+l’k)Dh+’r¢j)k)
. ,

(k)e s (Cje+ Ciger1) Dy, bk

= —a| (Vi) |4,
(5.14)
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From this and (5.12), we derive

t
Jy 1t = =5 (| o} - | 3

4 suph* > )V;flk)(t,)

=<
2lal =0 ek,

, (5.15)
2
< Clléol]

where véh])k = vjhk) l1—o and C, is a positive constant independent of 4. Since (5.15) means

the integrability of [{V x(£)} Ith over (0, o), there exists a sequence

(W 2L <t <2l (n=1,2,3,...) (5.16)
for each h such that
GGl
Vi ()} |ih < 12|l_°1|| ) (5.17)
Indeed, if the nonexistence of this {tﬁ,h)} is supposed, then we have
= 2 n n—1 C1||(0||2 2
J’Zwl H{Vik}[y,dt > (2" =2 )W = Ci[dol]" (5.18)

which contradicts (5.15).

Noting (5.11), the equality 3(;xe4, | grad; ¢ikl? = S ikeh, | grad, ¢k |2, and [6,
Chapter VI, Theorem 3.1], we have the existence of a sequence

[ | B> By >0, Tim by =0} (n=1,2,3,...) (5.19)

such that By, {¢; x(t,)} with ¢, = tﬁh”) converges to a function y € W1((0,a)?) strongly in
L%((0,a)?) and weakly in W} ((0,a)?) as n — oo. Here, ¥/|,—0,, = 0 and w(r,z) = y(r,z +a)
hold. By virtue of [6, Chapter VI, Lemma 3.1], we derive that

Ap, {grad;, ¢jx(ts)} — Vy weakly in L*((0,a)*). (5.20)

In the same way as By, {¢; «(t,)}, both of By, {¢; 1 x(¢,)} and By, {¢; k-1 (¢,)} also converge
to ¥ strongly in L?((0,a)?) and weakly in W} ((0,a)?). Indeed, the fact that the limit of
By, {¢j-1k(t:)} is v follows from

ﬂ: (Bu {914 (82)} (122) = W (r — hpy2) ) 2drdz — 0,
a (5.21)
H (y(r—hnz) - w(r,z))zdr dz — 0 (the Lebesgue theorem),

0
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where we set ¥ = 0 for r < 0. Then,

iBhn {¢j—1,k(tn)}

aar — Vy  weakly in L?((0,a)?). (5.22)
gBhn{(pj,k—l(tn)}

According to [6, Chapter VI, Lemma 3.1], this implies that
By, {grad, ¢;x(t.)} — Vy weakly in L*((0,a)*). (5.23)

Remark that

R(ET

N-1 N N N

_ 2 - 2 2

<4l > > |Dj,grady, ¢;k|”+4n* > > | Dj grad; ¢k |” < ClIGol]
=0 k=1 j=0k=1

2 109
+ ' éBh{gradh Pikt

2
)drdz

(5.24)

follows from (2.17), (5.11), and ID;LZ grad, ¢ox| = 0. Then, by Rellich’s theorem, we de-
duce that Vy belongs to W1((0,a)?) and (5.23) is improved as

strongly in L?((0,a)?),

By, {grad,, ¢jk(ta)} — Vy {Weakly WL ((0.0)%) (5.25)
2 > .

Therefore, (5.4) is obtained by setting u = (u",u?) = (—y,/r,y,/r). Furthermore,

Ap, {grad, ¢ik(tn)} — Vy

) strongly in L?((0,a)?), (5.26)
Ahn{(j + l)hn"j,lzl (tn)} —ru

because (2.19) yields

HO | Bp{grad, ¢} —An{grad, ¢jx} |*drdz

N-1 (5.27)

N
<Ch* Y 3 (|Df,grady ¢;x |+ | D} grad, ¢;x %) < C'H|G]I"
j=0 k=1

It follows from (5.25) that

A, Dy, cgrad, ¢jx(tn)} — Vy, weakly in L*((0,a)?), (5.28)
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where s = r,z. Indeed, this is obtained by using [6, Chapter VI, Lemma 3.1] for (r,z) €
(0,a — €) x (0,a) with an arbitrary small constant € > 0.
It is easy to see that

‘ uniformly for r € [0,a] ify >0,
A {(G+ 1) }(r) — 17 (5.29)
uniformly for r € [§,a] ify<0,

as h — 0, where & > 0 is an arbitrary small constant, and A, {(j +2)"h"} converges to r”
in the same manner. To verify (5.29), we use

r

AR {G+ 1) =] = 1([E] +1)ym_ry

< |[(r+h) —r7]. (5.30)

The weak convergence of Ay, {(j + 1)*h}?{ji(t.)} (or a subsequence of it) in
L2((0,a)?) follows from (5.10). Let f be an arbitrary function in L?((0,a)?) which van-
ishes near » = 0. Then, by (5.20), (5.28), and (5.29), we have

[J; An G+ 0 2120000} drdz

]+2 nEh,Pj k(tn)}
H Ap A ]+2)h YA, {( ]il 3/zh3/2}fdrdz (5.31)

_,_H Wor ZVr £1Vez £ g, = H (Vxw-el oo g

5/2 rli2

From this, (5.5) follows. Therefore, (5.10) brings (5.6). It is not hard to see that V-u =10
in (0,a)%, u(r,z) = u(r,z+a), u (a,z) = 0, |lul| < o, and

| HO urdrdz

These mean that u € X;. Noting that the equality (d/dt){{(jx,1})a, = 0 is derived from
(4.8) and (5.9), we have ({{jx, 1})a, = ({0, k> 1})a,. It leads to (5.7) as h = h, — 0 and
t =t, — o because of (5.5) and (5.29).

Lastly, let us prove that u satisfies (5.1). By y, we denote an arbitrary function in
C%([0,a] x R) satisfying x(0,z) = 0, y(a,z) = const., | lim,_.o(y,/7)| < o0, lim,_o(y./r) = 0,
x(r,z) = x(r,z+a), and ||r 2Exll < co. Let {xjx}, {g})k} for (j,k) € (A, U {0})x Z and
{g7 ) for (j, k) € A}, X Z be defined by

=0. (5.32)

= ‘J Vydrdz
0

xjk = x(a(a—h)~'jh,kh),
. 1 1 (5.33)
8k = (g w&x) = ( G+Dh Dy, Xijks G+ 1)hDh,er,k>-
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Then, g; « satisfies Py ngjk = gj, thatis, div, gix =0, g0 =gy 14 = 0, and gjx = gjk+N-
In addition, we have

sup |Ap{(j+1)*h'2g; i} —r'/2g| < Ch'2, (5.34)

h<r<a
0<z<a

where g = (—x./r,x,/r). This is verified as
|Ah{(]+l 1/2h1/2g]k} 1/2 |

grady Xiwhlzn) VX
([r/h] +1)Ppiz 1?2

| grady, xi/m,1zm = Vx| 1 1
S (PrATS T A ’ [/h]+ DV2R2 7 (5.35)
B | grady, xi/m,1zm = Vx| vy |( 1 )
L2 r2 " (r+h)\2
172 X|
<Ch"Zsup | | Vx| + | Vx| + —=
0srsa
By (4.7), we have
1 r
~({Vik8ikl)a, = E<{(Cj,k+(j+1,k)D}tr¢j,k>gj,k}>Ah
1 VA
+ E(‘{((j,k +Ciki1) Dbk 8ok ), (5.36)

= ({(¢jxe?) x ((J+1)hV D), ik, T F>

where

<<{C]k Dhr¢]k Dhr¢]k) g]k}>

_ J
(eubib g gl
jkDp, ®; ]+ng Lk~ &k N (5.57)

+ ({Gk (Dh 9k = Dy $ik) o8 xd ) a,

I\Jlr—l

+ (GaDs B s 1~ Ziab )

Ay, = Ap—{(j,k)|j = N = 1}. Using (5.10), (5.11), and (5.34) with |r'2g| < o0, we esti-
mate F as

FSC(F1+F2+F3), (538)
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where
“ a=h N
Fi= (], dz] (4D, gk + b2~ AuDy giad(r2))dr)

a a , A\ 2
F2= (J dZL (An{Dy9ju} (riz+h) = A{D; 4} (r,2) dr) ,

] r r :
S8k & tosup (DR g - gy ]

)1/2h1/2
Jt (k) EA

F3= sup (j+1
(jrk)EA

<2h'? sup |Dy,Dj xjk| < Ch"* sup (| Vx| +|Vy:]|).

j,k)eA 0<r<a
(k) €Ay 0<z<a

(5.39)

By (5.26) and the Lebesgue theorem, it follows that

F < (J’O“dzjhﬂh (Ap{Dy, ¢k} (r+h,z) — V’r(”rh,z))zdr) 12
+ (J: dzj:_h (An{Dy,, ¢k} (r;2) = W’(T’Z))zdr) 12

a a—h 1/2
+ (J dzL (wr(r+h,z)—1//r(r,z))2dr) — 0 ash=h, —0, t=t, — oo.
0
(5.40)

In the same way, we deduce the convergence F, — 0, which implies that F vanishes as
h=h,—0and t =t, — co. Then, applying (5.5), (5.17) (with ¢, = tﬁ.h”)), (5.26), and
(5.34) to (5.36), we obtain ((V X u) X u,g) = 0. Since g is an arbitrary function in X; N
C!((0,a] x R), which is dense in X;, (5.1) is satisfied by u. O

LEMMA 5.3. In Theorem 5.2, the generalized solution u belongs to L*((0,a)?), and
lim ﬂ |Ahn{(j+1)f’hﬁv;h,?)(tn)}—r”u|2drdz=0 (5.41)
n—oo 0 >

is valid for p > 0.
Proof. From (5.12), we have

ﬂ ul2dr dz < lim H | An V02 (6)} P drdz < ClJGo | (5.42)
0 n—o JJo ?

The equality (5.41) with p = 1 is no other than (5.26). Moreover, (5.41) with p > 1 is
easily verified by using (5.29) and

|AR{G+1PRVY = rPu| < Ap{G+ 1P W AR (G + DR} = rul

(5.43)
+ A {(G+ P e =P [rul.
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Assume that 0 < p < 1 and set

a 1/2
Glp) = (ﬂo |Ah{(j+1)’)h”v§'f,3} —r/’u|2drdz> ,
a ) 1/2
Gilp) = (HO | AW {G+ PRV} = A (G + 1P drdz) ,

G(p) = (ﬂ: |A{(j+ 1)PhP}u—rPu|2drdz> 1/2.

From
a 5 1/4
Gilp) < (H |An{G+ 1R} (A v} —w) | drdz)
0
a ) 1/4
(H |Ah{V;fl]3}_u| drdz)
0
<C(Gi(2p)"?,
we derive

Gi(p) < C(Gi(2p))"* < C(Gi(4p) "

< 2C(G2p))"F < C(G(27p) + Gy (27p)) .

Here, v is an integer such that 2”p > 1. Then,

1727

Glp) < Gi(p) + Ga(p) = C(GR"p) + G2 (27p)) ™ +Galp) — O

ash=h, —0andt=t, — co. Hence, (5.41) is also valid for p € (0,1).

(5.44)

(5.45)

(5.46)

(5.47)

]

Remark 5.4. In the same way as in the proofs of Theorem 5.2 and Lemma 5.3, analogously

to (5.41), we can prove the convergence for v(()f'j)’k (= V;hk) lt=0):
a ) )
lim H |An {(G+ I)Phﬁv(()j”k} —1rPvy|"drdz=0
n—oo 0 > ) >

for p > 0, where vy is a function in X, such that ! (V xvy)-e? = .

LEMMA 5.5. Assume that vy € )Nil is not a generalized solution to (1.2), that is,
((V xvp) xvo,f) #0  for somef € X;.

Then, for w in Theorem 5.2 with {, = r~'(V X vy) - €7,

voll <|luf[ =C ifa<o,
lull <llvoll  ifa>0.

(5.48)

(5.49)

(5.50)
(5.51)
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Proof. Note that (2.9) (with fjx =D, ¢, j1 =1, j»=N,and § = 1) and (5.11) yield
(Dh ¢Nk h ~ o 2 2
2 r n - P
h kzl NDh C Z Z (Digy i) + (Dy, Dy, $i0)°) | < CHIIGI. (5.52)

Then, since

_ 2
1/2 1/2 (h) 2 (Dh,r¢N,k)
IR, = [ 1AM G 0 R P de s ;—(Nﬂ)h (5:53)
holds, we obtain
| { (h)}|Ah lull> ash=h, — 0, t=t, — oo, (5.54)

by (5.41). Analogously, (5.48) yields I{v&)’k} If-\h — |Ivoll? as h = h,, — 0. Therefore, from
(5.15), we derive

0 <llull>=|vol|” = Cl|Go]]>  ifa<o,

(5.55)
lall2 = |[vo||* < 0 ifa>0.

What remains is to prove [lull # [[voll. Suppose that [[ull = [|vyll holds. Then (5.15)
yields

t
L [Vik(E)} 2 dt —0 ash=hy— 0, t=t, — o. (5.56)
It leads to
T ’ 2 4
L {Vix(E)} 2 df —0 ash=h,—0, (5.57)
for any finite T > 0. Applying this to (5.15), we have
VR OVIE, = Ve 3|5, — 0 ash=h, — 0, uniformly for t € [0,T].  (5.58)

Let 6 be an arbitrary function in C?([0,a] X R) such that 6(r,z) = 6(r,z + a), and set
0;x = 0(jh,kh). Then, analogously to (5.14), by using (5.9), we obtain

J oo

—V
|<{ i dtcf"}> - %qeﬁk’vﬁk'gfad;fﬁk* (JHZ ] Lk) 'gradhfj,k]’>
k-1 N

JoK=

<{V ((Cj,k+(j+1,k)DZ,r9j,k> }>
k>
! (G +(j,k+1)D;tZ9j,k An

Ap
h

=< C| {V],k} |Ah'

(5.59)

DR
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For any t € [0, T], it follows that

| (106 Cik(t) — (O,j,k}>Ah | < . dt

| <{ ]k’dtC’k}>Ah

T
<C| Vit | de

<c(r[ 11v,a0) P

—0 ash=h,—0.

(5.60)
12

This means that

Ap G+ DYV R ()} — 28 weakly in L*((0,a)?), uniformly for ¢ € [0, T].
(5.61)

It is easier than (5.48) to verify that Ap, {(j + 1)"2h}/?¢ojx} converges to r'?¢, strongly
in L?((0,a)?), where ¢o,jx = ¢;kli=0, and ¢y is a function such that vy = (—¢o./7, ¢o/1).
Therefore, noting that

Enjk
({(bo,j,k)(j,k})/\h = Z ¢>o]k _,_{
(] k)EAy ]
Y 4 k( . (Dhr% k) . DZ,zDz;zsbj,k) (5.62)
(]keAh j (j+1h (j+1)h
B (k)
= (V)i D A,
we have
VooV D 2, — 135, = (o G0 = ok} a, — O (5.63)
as h = h, — 0, uniformly for ¢ € [0, T]. It leads to
| {v;-flk)(t) vf)h])k |ih — 0 ash=h, — 0, uniformly for t € [0, T], (5.64)
because of (5.58). This implies that
Ap G+ DRV (0} — /v, (5.65)

strongly in L?((0,a)?), uniformly for ¢ € [0, T]. Then it is clear from (5.29) that

An G+ DRy (0} — rvo

B strongly in L?((0,a)?), uniformly for t € [0, T].
Ap {grad;, ¢jx(t)} — Véo

(5.66)

Integrating (5.36) over (0, T) and letting h = h,, — 0, we obtain ((V X vy) X vy,g) = 0 by
the same procedure as in the proof of Theorem 5.2. It contradicts (5.49) and the equality
[lul| = [Ivoll does not hold. 0
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In (5.51), the nontriviality of u, that is, the inequality [lu|| > 0 is guaranteed by (5.7) if
Il Cor drdz # 0.
6. Infinite number of solutions
Let us consider the eigenvalue problem
Ep = —ur’e, (6.1)
¢(0,2) = ¢(a,2) = 0, P(r,2) = ¢(r,z+a), )

with [lim,_.(¢,/7)| < co and lim,_o(¢,/r) = 0. Since

11V g|* = —(¢,r2E¢) = ullgl® (6.2)

is derived from (6.1), p is real and positive if it exists.
Set ¢ = R (r)Z™(z) with

2nnz

sin o forn=1,2,3,...,
ZW(z) = (6.3)

2
cos% forn=0,-1,-2,....

Then R™ is a solution to

& 1d 2nm\?
LMWRM — _ ZR(n)) Lm==__-=_ (_) , 6.4
Hr dr?2  rdr a (6:4)
(n)
RW(0) =R (@) =0, |lim> R (6.5)
r—0r dr
By setting r = 22~ 4512 and R" (r) = §™(s), we have
dzsm 2 (nm\’1
+{1=-—= (=) = |s"™ =0, )
ds? u'? ( a ) s S 0 (6.6)
(n)
s (0) =0, lim ds < 00, (6.7)
s—0 ds
12 2
S(n)(” a ) _o. (6.8)
2
According to [1, Chapter 14], (6.6) with (6.7) is satisfied by
2
S"(s) = Fy (;ﬂz(%) ,s). 6.9)
Here, %,(-,-) denotes the regular Coulomb wave function of order zero, which is repre-
sented with Kummer’s confluent hypergeometric function 1 F; (-;-;-) as
2 2
Fo(11,5) = (ezm’fi 1) s Fy (1 — in; 23 2is). (6.10)
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In particular, % (0,s) = sins. Because of (6.8), the equality

(nm)? ) u2q?
e _ = =
J<’0< o oF) =0 forp=t (6.11)
should be satisfied. It is easy for n = 0. If n # 0, then we deduce that
lime #,F, (1 - i(nr)? 3252 /3) (a finite real number) >0 (6.12)
B0 2B °
from [1, (14.6.8) or (14.6.9)] and that
(n?'[)2 . 2
%( i ,/5) ~sinB for B> (n) (6.13)

from [1, (14.6.5)]. Therefore, there exists a set {g,n}men for each n such that (6.11)
with p = gy, holds, {4y} does not have an accumulation point except co, and py,,, ~
(2(m+1)m)?/a* with an integer [ as m — oo (in particular, p,, o = (2mm)?/a* for every m €
N). Moreover, for an arbitrarily given n, each of {y,,,} is simple, because the irregular
Coulomb wave function, which is used for a solution of (6.6) independent of (6.9), is
excluded by (6.7). We arrange {ptm,»} so that g, < tm+1,n-

Define {R"™"},,cn nez by

(m,n) -1/2 /"%271 2
RY™™M(r) = Fo| o, ) ) (6.14)

Then it is a smooth solution to (6.4) and (6.5) with ¢ = y,.,, and the orthogonality
J RMMRIW M e dr =0 for m # m' (6.15)
0
follows from gy.n # i » and
a , a ,
J (r=2LMWRUmM YR My =J R (p=2LWREM ) (6.16)
0 0

It should be noted that r2LWR™ = 0 with (6.5) means that R®™ = 0 and the inverse of
r~2L" exists, because zero is not an eigenvalue. Therefore, by the theory on completely
continuous operators, we derive that {R""},, .y for any fixed n € Z forms a complete
orthogonal system in L?(0,a) with the weight function r. Let ¢(™" = R (r)Z((z).
Then it is a smooth solution to (6.1) with y = py,, and {¢(m’”)}meN,nez is a complete
orthogonal system in L?((0,a)?) with the weight r.

The set {w™"},,cnnez defined by

—1 4 (m,n) o0 (m,n) (m,n)
(myn) _ V X (771¢ )eg) _ ( ¢z 1/2 /7, ¢r /1’) (6.17)
|V x (r-1glmmed) || n||gtmm]|

w
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is proved to form a complete orthonormal (resp., orthogonal) system in X, (resp., X)) by
using

Vx Vx (r-lgmmed) = —(r18¢mn) e =y, ,r¢™med. (6.18)

It corresponds to {w®)}en: the set of basis functions in the Galerkin method used in [9].

As was mentioned in Section 1, const. w{"™" for any m and 7 is an exact solution to (1.2).
Indeed,

(m.n)
(V xwlmm) scw(mm = ;v(llz(’”)ll) . (6.19)

Since (™0 = RU™0) = sin(mmnr?/a®), we have

w(m0) = <% cos %f) e, (6.20)
This leads to
ﬂ:(v xwm0) . eldrdz = ﬁ(l—(—l)m), (6.21)
while
J]: (Vxwm) . efdrdz=0 forn#0 (6.22)

follows from the definition of Z™.
Noting (5.7), that is, the conservation of circulation around the square domain (0,a)?,
we restrict X; to a subspace of itself:

v={reXi| || (vxn-elaraz- | (6.23)
0 a

(the value 4a~"? is only for convenience). Then, E = {w(2/=10) }jen is a subset of Y. It is
clear that cw™" is not an element of Y — E whatever m € N, n € Z, and ¢ € R are.

THEOREM 6.1. By Theorem 5.2, the system (4.8) with a < 0 generates a set {ui}ren Such
that each uy is an axisymmetric generalized solution to (1.2) belonging to Y — E and

1< ] < [full < llus] <..... (6.24)

Proof. Letvy =& wh? + (1 —8;)w>? with a constant §; € (—,0) U (1,0). Then, vy €
Y - E and |lv > = 87 + (1 — &;)? > 1. By Theorem 5.2 with & < 0 and {y = r~'(V X vo)-
€%, an axisymmetric generalized solution u = u; €Y to (1.2) is generated. Clearly, vy is
not a solution to (1.2), that is, (5.49) is valid. Therefore, ||[u;|| > 1 follows from (5.50).
It means that u; ¢ E, because |[w|| = 1 for any w € E. Redefine vo by vo = ;w0 + (1 —
8,)w9 where 8, € (—0,0) U (1,0) is a constant satisfying (/[vol|> =)87 + (1 — 8,)> >
llu;]I2. Then, in the same way as u;, we obtain a new generalized solution u, € Y — E
which satisfies [|uy]| > [Ju;||. Repeating this process, we complete the proof. O
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