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The notions of Smarandache BCC-algebras and Smarandache BCC-ideals are introduced.
Conditions for a (special) subset to be a Smarandache BCC-ideal are given.

1. Introduction

Generally, in any human field, a Smarandache Structure on a set A means a weak struc-
ture W on A such that there exists a proper subset B of A which is embedded with a strong
structure S. In [9], Kandasamy studied the concept of Smarandache groupoids, sub-
groupoids, ideal of groupoids, seminormal subgroupoids, Smarandache Bol groupoids,
and strong Bol groupoids and obtained many interesting results about them.
Smarandache semigroups are very important for the study of congruences, and they
were studied by Padilla [13]. In this paper, we discuss a Smarandache structure on BCC-
algebras, and introduce the notion of Smarandache ideals, and investigate its properties.
We give conditions for a (special) subset to be a Smarandache BCC-ideal.

2. Preliminaries

BCC-algebras were introduced by Komori [11] in a connection with some problems on
BCK-algebras solved in [14], and Dudek [4, 5] redefined the notion of BCC-algebras by
using a dual form of the ordinary definition in the sense of Komori.

An algebra (X;*,0) of type (2,0) is called a BCC-algebra if it satisfies the following
conditions:

(al) (Vx,y,z€ X) (((x* y) k(2% y)) * (x k2) =0),

(a2) (Vxe X) (0xx=0),

(a3) (VxeX) (x*x0=x),

(a4) (Vx,yeX) (xky=0,y*xx=0=>x=y).
Note that every BCK-algebra is a BCC-algebra, but the converse is not true. A BCC-
algebra which is not a BCK-algebra is called a proper BCC-algebra. The smallest proper
BCC-algebra has four elements, and, for every n > 4, there exists at least one proper BCC-
algebra [4].
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A nonempty subset I of a BCC-algebra X is called a BCC-ideal of X if it satisfies the
following assertions:

(a5) 0€1,

(a6) (Vx,zeX) (Vyel) ((xky)kxzel=>x*xzel).

Note that every BCC-algebra X satisfies the following assertions:

(bl) (Vx e X) (x*xx=0),

(b2) (Vx,y € X) (x* y <x),

(b3) (Vx,p,z€X) (x<y=>x*xz<y*z,zxy<z%X),
where x < y ifand only if x % y = 0.

3. Smarandache BCC-algebras

We know that every proper BCC-algebra has at least four elements (see [4]), and that if X
is a BCC-algebra, then {0,a}, a € X, is a BCK-algebra with respect to the same operation
on X. Now let us consider a proper BCC-algebra X = {0,1,2,3,4} with the following
Cayley table:

* |0 1 2 3 4
0/0 0 0 0 O
111 01 0 1
212 2 01 2 (3.1)
313 3 10 3
414 0 0 0 O

Then {0,1}, {0,2}, {0,3}, {0,4}, {0,1,2}, and {0,1,3} are BCK-algebras with respect
to the operation * on X, and note that X does not contain BCK-algebras of order 4. Based
on this result, we give the following definition.

Definition 3.1. A Smarandache BCC-algebra (briefly, S-BCC-algebra) is defined to be a
BCC-algebra X in which there exists a proper subset Q of X such that

(i) 0 e Qand |Q| = 4,

(ii) Q is a BCK-algebra with respect to the same operation on X.

Note that any proper BCC-algebra X with four elements cannot be an S-BCC-algebra.
Hence, if X is an S-BCC-algebra, then | X| > 5. Notice that the BCC-algebra X = {0,1,2,3,
4} with Table 3.1 is not an S-BCC-algebra.

Example 3.2. (1) Let X = {0,a,b,¢,d, e} be a set with the following Cayley table:

(3.2)

o Q0 =8 Olx
® e =8 oo
® ALY OO0 o
c ©8 8 © oln,

QAo O
QO O O Ol
SO Q 8 2 2N Ol
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Then, (X;*,0) is an S-BCC-algebra. Note that Q = {0,a,b,c} is a BCK-algebra which
is properly contained in X.

(2) Let (X; *,0) be a finite BCK-chain containing at least four elements, and let ¢ be its
maximal element. Let Y = X U {d}, where d ¢ X, and define a binary operation ® on Y
as follows:

xxy ifx,yeX,

o 0 ifxeY, y=d, (33)
x = .
’7la itx=d y=o,

c ifx=d, yeX.

Then, (Y;©,0) is an S-BCC-algebra.

(3) Let (X;*,0) be a BCK-algebra containing at least four elements in which a is the
small atom. Let Y = X U {w}, where w ¢ X, and define a binary operation ® on Y as
follows:

xxy ifx,yeX,

w ifyeX, x=w,

0 ifx=0, y=w, (3.4)
0 ifx=w=y,

a ifxe X\ {0}, y=w.

X0y=

Then, (Y;©,0) is an S-BCC-algebra.

In what follows, let X and Q denote an S-BCC-algebra and a nontrivial BCK-algebra
which is properly contained in X, respectively, unless otherwise specified.

Definition 3.3. A nonempty subset I of X is called a Smarandache BCC-ideal (briefly,
S-BCC-ideal) of X related to Q if it satisfies the following:

(cl)0€l,

(2) (Vx,zeQ)(Vyel)((x*xy)kzel=>x*xzel).
If I is an S-BCC-ideal of X related to every nontrivial BCK-algebra Q contained in X, we
simply say that I is an S-BCC-ideal of X.

Example 3.4. Let X = {0,a,b,¢,d,e} be the S-BCC-algebra described in Example 3.2(1).
Then, I = {0,a} and ] = {0,a,b,c,d} are S-BCC-ideals of X related to Q = {0,a,b,c}.

ProrosriTioN 3.5. Every S-BCC-ideal I of X related to Q satisfies the following:
(c3) (VxeQ) (Vael) (xxacl > xel).
(c4) (VxeQ)(Vael)(axxel).
(c5) (Vxe Q) (Va,bel) (x*x ((x*xa)xb)el).

Proof. (c3) Taking z = 0 and y = a in (c2) and using (a3) induce the desired implication.
(c4) Foreveryx e Qand a1, we have (a*a) xx=0%x=0€l,andsoa*xx el
by (c2).
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(c5) Let x € Qand a,b € I. Then, (x x a) * (x xa) =0 € I, and so x * (x * a) € I by
(c2). Since

((x*b)* ((xxa)*b)) *(x*k(xxa)=0€l, (3.5)
it follows from (c3) that (x % b) * ((x % a) * b) € I, so from (c2) that x * ((x x a) x b) € I.
O

COROLLARY 3.6. For every S-BCC-ideal I of X related to Q, the following implication is
valid:

(Vxe Q) (Vael) (x<a=xecl). (3.6)
CoROLLARY 3.7. Let I be an S-BCC-ideal of X relative to Q. Then,
(VxeQ)(Va,bel) (xxa<b=x€l). (3.7)

THEOREM 3.8. Let Q, and Q, be nontrivial BCK-algebras which are properly contained in
X such that Q; C Q,. Then, every S-BCC-ideal of X related to Q, is an S-BCC-ideal of X
related to Q.

Proof. Straightforward. O

CoRroOLLARY 3.9. If Q is the largest BCK-algebra which is properly contained in X, then every
S-BCC-ideal of X related to Q is an S-BCC-ideal of X.

The converse of Theorem 3.8 is not true in general as seen in the following example.

Example 3.10. Consider an S-BCC-algebra X = {0,1,2,3,4,5} with the following Cayley
table:

|0 1 2 3 4 5
0/]0 0 0 0 0 O
1{1 0 0 0 0 1
212 1 0 0 0 1 (3.8)
313 11 011
414 1 1 1 01
5155 5 5 5 0

Note that Q, := {0,1,2,3} and Q; := {0, 1,2,3,4} are BCK-algebras. Then, the set Q; is
an S-BCC-ideal of X related to Qy, but not Q,. In fact, we know that (4 x2) x0=1€ Q,
and4*x0=4¢ Q.

Remark 3.11. Note that every BCC-ideal of X is an S-BCC-ideal of X, but the converse is
not valid. Example 3.10 shows that there exists a BCK-algebra Q of order n > 4, which is
properly contained in an S-BCC-algebra X such that an S-BCC-ideal of X related to Q is
not a BCC-ideal of X.

We provide conditions for a subset to be an S-BCC-ideal.
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TaEOREM 3.12. If I is a subset of Q that satisfies conditions (cl) and (c3), then I is an
S-BCC-ideal of X related to Q.

Proof. Let x,y € Q and a € I be such that (x*xa)* y €. SinceaclIcQand Qisa
BCK-algebra, it follows that (x * y) x a = (x % a) x y € I, so from (c3) that x x y € I.
Hence, I is an S-BCC-ideal of X related to Q. O

THEOREM 3.13. If a nonempty subset I of X satisfies conditions (c1) and (c5), then I is an
S-BCC-ideal of X related to Q.

Proof. Letx,y € Qand a € I be such that (x * a) x y € I. Taking b = 0 in (¢5), and using
(a3), we have x * (x x a) € I. It follows from (a3), (al), and (c5) that

xky=(xxy)k0=(x*xy)*k (((xky)*k((x*ka)*xy))*(x*x(x*xa))) el (3.9)

Thus, I is an S-BCC-ideal of X related to Q. O

TaeoreM 3.14. Let H be a BCC-subalgebra of X. Then, H is an S-BCC-ideal of X related
to Q if and only if it satisfies the following:

(VxeH)(Vy,zeQ) ((yxx)xzeH= y*xzeH). (3.10)

Proof. Straightforward. O
Given an element w € X \ {0}, consider the set

[0,w] :={xeX|x<w}, (3.11)

which is called the initial segment of w [7]. Obviously, 0 € [0,w] for all w € X. Since
X < w is equivalent to xw = 0, the initial segment of w is de facto the left annihilator of
w. In general, [0,w] is not an S-BCC-ideal of X, but it is a subalgebra. For example, let X
be the S-BCC-algebra in Example 3.2(1). Then, [0,e] = {0, e} is not an S-BCC-ideal of X
related to Q = {0,a,b,c} since (b*xe) xd =0 € [0,e],butb*xd=a¢ [0,e].

THEOREM 3.15. For every c € X \ {0}, if the inequality
(VxeQ) (x*x((x*kc)*xc)=<c) (3.12)

holds, then [0,c] is an S-BCC-ideal of X related to Q.

Proof. Let x € Q. If b € [0,c], then b < ¢ and hence (x * ¢) * ¢ < (x * ¢) * b by (b3). It
follows from (b3) and assumption that

xk ((xkc)xb) <x* ((x*c)*c)<c. (3.13)
Now if a € [0,c], then x * ¢ < x * a, and so
x* ((xxa)xb) <x* ((x*xc)xb) <c (3.14)

This shows that x * ((x * a) * b) € [0,c]. Applying Theorem 3.13, we conclude that [0, c]
is an S-BCC-ideal of X related to Q. O
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THEOREM 3.16. The initial segment [0,c], where c € X \ {0}, is an S-BCC-ideal of X related
to Q if and only if the implication

(Vx,y€Q) ((x*kc)xy<c= x*xy<c) (3.15)

is valid.

Proof. Let x,y € Q and a € [0,c] be such that (x * a) * y € [0,c]. Then, a < ¢ and (x *
a) * y < c. The inequality a < ¢ implies that (x * ¢) * y < (x % a) *x y < ¢, so from hy-
pothesis that x * y < ¢, that is, x * y € [0,c]. Therefore, [0,c] is an S-BCC-ideal of X
related to Q. Conversely assume that [0,c], c € X \ {0}, is an S-BCC-ideal of X related to
Q, and let x, ¥ € Q be such that (x * ¢) * y < c. Then, (x * ¢) * y € [0,c]. Since [0,c] is
an S-BCC-ideal of X related to Q and ¢ € [0,¢], it follows from (c2) that x * y € [0,c] so
that x * y < c. This completes the proof. O

CoroLLARY 3.17. If[0,c], c € X\ {0}, is an S-BCC-ideal of X related to Q, then
(VxeQ) (xkc<c=x<c). (3.16)
THEOREM 3.18. For every c € X \ {0}, if the equality
(Vx,y€Q) (((x*kc)*y)kc=(x*y)*c) (3.17)

is valid, then [0, c] is an S-BCC-ideal of X related to Q.

Proof. Let x,y € Q and a € [0,¢] be such that (x *x a) * y € [0,c]. Then, a < ¢ and (x *
a) * y < c. It follows that

(xxy)skc=((xkc)ky)kec=<((xka)ky)kc<ckc=0, (3.18)
so that (x * y) * ¢ = 0, that is, x * y < c. Hence, x * y € [0,¢] and therefore [0,¢] is an
S-BCC-ideal of X related to Q. O
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