

SMARANDACHE BCC-ALGEBRAS

YOUNG BAE JUN

Received 14 June 2005 and in revised form 10 September 2005

The notions of Smarandache BCC-algebras and Smarandache BCC-ideals are introduced. Conditions for a (special) subset to be a Smarandache BCC-ideal are given.

1. Introduction

Generally, in any human field, a *Smarandache Structure* on a set A means a weak structure W on A such that there exists a proper subset B of A which is embedded with a strong structure S . In [9], Kandasamy studied the concept of Smarandache groupoids, sub-groupoids, ideal of groupoids, seminormal subgroupoids, Smarandache Bol groupoids, and strong Bol groupoids and obtained many interesting results about them. Smarandache semigroups are very important for the study of congruences, and they were studied by Padilla [13]. In this paper, we discuss a Smarandache structure on BCC-algebras, and introduce the notion of Smarandache ideals, and investigate its properties. We give conditions for a (special) subset to be a Smarandache BCC-ideal.

2. Preliminaries

BCC-algebras were introduced by Komori [11] in a connection with some problems on BCK-algebras solved in [14], and Dudek [4, 5] redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Komori.

An algebra $(X; *, 0)$ of type $(2, 0)$ is called a *BCC-algebra* if it satisfies the following conditions:

- (a1) $(\forall x, y, z \in X) (((x * y) * (z * y)) * (x * z) = 0)$,
- (a2) $(\forall x \in X) (0 * x = 0)$,
- (a3) $(\forall x \in X) (x * 0 = x)$,
- (a4) $(\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y)$.

Note that every BCK-algebra is a BCC-algebra, but the converse is not true. A BCC-algebra which is not a BCK-algebra is called a *proper BCC-algebra*. The smallest proper BCC-algebra has four elements, and, for every $n \geq 4$, there exists at least one proper BCC-algebra [4].

A nonempty subset I of a BCC-algebra X is called a *BCC-ideal* of X if it satisfies the following assertions:

- (a5) $0 \in I$,
- (a6) $(\forall x, z \in X) (\forall y \in I) ((x * y) * z \in I \Rightarrow x * z \in I)$.

Note that every BCC-algebra X satisfies the following assertions:

- (b1) $(\forall x \in X) (x * x = 0)$,
- (b2) $(\forall x, y \in X) (x * y \leq x)$,
- (b3) $(\forall x, y, z \in X) (x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x)$,

where $x \leq y$ if and only if $x * y = 0$.

3. Smarandache BCC-algebras

We know that every proper BCC-algebra has at least four elements (see [4]), and that if X is a BCC-algebra, then $\{0, a\}$, $a \in X$, is a BCK-algebra with respect to the same operation on X . Now let us consider a proper BCC-algebra $X = \{0, 1, 2, 3, 4\}$ with the following Cayley table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	1	2
3	3	3	1	0	3
4	4	0	0	0	0

(3.1)

Then $\{0, 1\}$, $\{0, 2\}$, $\{0, 3\}$, $\{0, 4\}$, $\{0, 1, 2\}$, and $\{0, 1, 3\}$ are BCK-algebras with respect to the operation $*$ on X , and note that X does not contain BCK-algebras of order 4. Based on this result, we give the following definition.

Definition 3.1. A *Smarandache BCC-algebra* (briefly, *S-BCC-algebra*) is defined to be a BCC-algebra X in which there exists a proper subset Q of X such that

- (i) $0 \in Q$ and $|Q| \geq 4$,
- (ii) Q is a BCK-algebra with respect to the same operation on X .

Note that any proper BCC-algebra X with four elements cannot be an S-BCC-algebra. Hence, if X is an S-BCC-algebra, then $|X| \geq 5$. Notice that the BCC-algebra $X = \{0, 1, 2, 3, 4\}$ with Table 3.1 is not an S-BCC-algebra.

Example 3.2. (1) Let $X = \{0, a, b, c, d, e\}$ be a set with the following Cayley table:

*	0	a	b	c	d	e
0	0	0	0	0	0	0
a	a	0	0	0	0	a
b	b	b	0	0	a	a
c	c	b	a	0	a	a
d	d	d	d	d	0	a
e	e	e	e	e	e	0

(3.2)

Then, $(X; *, 0)$ is an S-BCC-algebra. Note that $Q = \{0, a, b, c\}$ is a BCK-algebra which is properly contained in X .

(2) Let $(X; *, 0)$ be a finite BCK-chain containing at least four elements, and let c be its maximal element. Let $Y = X \cup \{d\}$, where $d \notin X$, and define a binary operation \odot on Y as follows:

$$x \odot y = \begin{cases} x * y & \text{if } x, y \in X, \\ 0 & \text{if } x \in Y, y = d, \\ d & \text{if } x = d, y = 0, \\ c & \text{if } x = d, y \in X. \end{cases} \quad (3.3)$$

Then, $(Y; \odot, 0)$ is an S-BCC-algebra.

(3) Let $(X; *, 0)$ be a BCK-algebra containing at least four elements in which a is the small atom. Let $Y = X \cup \{w\}$, where $w \notin X$, and define a binary operation \odot on Y as follows:

$$x \odot y = \begin{cases} x * y & \text{if } x, y \in X, \\ w & \text{if } y \in X, x = w, \\ 0 & \text{if } x = 0, y = w, \\ 0 & \text{if } x = w = y, \\ a & \text{if } x \in X \setminus \{0\}, y = w. \end{cases} \quad (3.4)$$

Then, $(Y; \odot, 0)$ is an S-BCC-algebra.

In what follows, let X and Q denote an S-BCC-algebra and a nontrivial BCK-algebra which is properly contained in X , respectively, unless otherwise specified.

Definition 3.3. A nonempty subset I of X is called a *Smarandache BCC-ideal* (briefly, *S-BCC-ideal*) of X related to Q if it satisfies the following:

- (c1) $0 \in I$,
- (c2) $(\forall x, z \in Q) (\forall y \in I) ((x * y) * z \in I \Rightarrow x * z \in I)$.

If I is an S-BCC-ideal of X related to every nontrivial BCK-algebra Q contained in X , we simply say that I is an *S-BCC-ideal* of X .

Example 3.4. Let $X = \{0, a, b, c, d, e\}$ be the S-BCC-algebra described in Example 3.2(1). Then, $I = \{0, a\}$ and $J = \{0, a, b, c, d\}$ are S-BCC-ideals of X related to $Q = \{0, a, b, c\}$.

PROPOSITION 3.5. *Every S-BCC-ideal I of X related to Q satisfies the following:*

- (c3) $(\forall x \in Q) (\forall a \in I) (x * a \in I \Rightarrow x \in I)$.
- (c4) $(\forall x \in Q) (\forall a \in I) (a * x \in I)$.
- (c5) $(\forall x \in Q) (\forall a, b \in I) (x * ((x * a) * b) \in I)$.

Proof. (c3) Taking $z = 0$ and $y = a$ in (c2) and using (a3) induce the desired implication.

(c4) For every $x \in Q$ and $a \in I$, we have $(a * a) * x = 0 * x = 0 \in I$, and so $a * x \in I$ by (c2).

(c5) Let $x \in Q$ and $a, b \in I$. Then, $(x * a) * (x * a) = 0 \in I$, and so $x * (x * a) \in I$ by (c2). Since

$$((x * b) * ((x * a) * b)) * (x * (x * a)) = 0 \in I, \quad (3.5)$$

it follows from (c3) that $(x * b) * ((x * a) * b) \in I$, so from (c2) that $x * ((x * a) * b) \in I$. \square

COROLLARY 3.6. *For every S-BCC-ideal I of X related to Q , the following implication is valid:*

$$(\forall x \in Q) (\forall a \in I) \quad (x \leq a \implies x \in I). \quad (3.6)$$

COROLLARY 3.7. *Let I be an S-BCC-ideal of X relative to Q . Then,*

$$(\forall x \in Q) (\forall a, b \in I) \quad (x * a \leq b \implies x \in I). \quad (3.7)$$

THEOREM 3.8. *Let Q_1 and Q_2 be nontrivial BCK-algebras which are properly contained in X such that $Q_1 \subset Q_2$. Then, every S-BCC-ideal of X related to Q_2 is an S-BCC-ideal of X related to Q_1 .*

Proof. Straightforward. \square

COROLLARY 3.9. *If Q is the largest BCK-algebra which is properly contained in X , then every S-BCC-ideal of X related to Q is an S-BCC-ideal of X .*

The converse of Theorem 3.8 is not true in general as seen in the following example.

Example 3.10. Consider an S-BCC-algebra $X = \{0, 1, 2, 3, 4, 5\}$ with the following Cayley table:

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	1	0	0	0	1
3	3	1	1	0	1	1
4	4	1	1	1	0	1
5	5	5	5	5	5	0

(3.8)

Note that $Q_1 := \{0, 1, 2, 3\}$ and $Q_2 := \{0, 1, 2, 3, 4\}$ are BCK-algebras. Then, the set Q_1 is an S-BCC-ideal of X related to Q_1 , but not Q_2 . In fact, we know that $(4 * 2) * 0 = 1 \in Q_1$ and $4 * 0 = 4 \notin Q_1$.

Remark 3.11. Note that every BCC-ideal of X is an S-BCC-ideal of X , but the converse is not valid. Example 3.10 shows that there exists a BCK-algebra Q of order $n \geq 4$, which is properly contained in an S-BCC-algebra X such that an S-BCC-ideal of X related to Q is not a BCC-ideal of X .

We provide conditions for a subset to be an S-BCC-ideal.

THEOREM 3.12. *If I is a subset of Q that satisfies conditions (c1) and (c3), then I is an S-BCC-ideal of X related to Q .*

Proof. Let $x, y \in Q$ and $a \in I$ be such that $(x * a) * y \in I$. Since $a \in I \subseteq Q$ and Q is a BCK-algebra, it follows that $(x * y) * a = (x * a) * y \in I$, so from (c3) that $x * y \in I$. Hence, I is an S-BCC-ideal of X related to Q . \square

THEOREM 3.13. *If a nonempty subset I of X satisfies conditions (c1) and (c5), then I is an S-BCC-ideal of X related to Q .*

Proof. Let $x, y \in Q$ and $a \in I$ be such that $(x * a) * y \in I$. Taking $b = 0$ in (c5), and using (a3), we have $x * (x * a) \in I$. It follows from (a3), (a1), and (c5) that

$$x * y = (x * y) * 0 = (x * y) * (((x * y) * ((x * a) * y)) * (x * (x * a))) \in I. \quad (3.9)$$

Thus, I is an S-BCC-ideal of X related to Q . \square

THEOREM 3.14. *Let H be a BCC-subalgebra of X . Then, H is an S-BCC-ideal of X related to Q if and only if it satisfies the following:*

$$(\forall x \in H) (\forall y, z \in Q) \quad ((y * x) * z \in H \implies y * z \in H). \quad (3.10)$$

Proof. Straightforward. \square

Given an element $w \in X \setminus \{0\}$, consider the set

$$[0, w] := \{x \in X \mid x \leq w\}, \quad (3.11)$$

which is called the *initial segment* of w [7]. Obviously, $0 \in [0, w]$ for all $w \in X$. Since $x \leq w$ is equivalent to $xw = 0$, the initial segment of w is de facto the left annihilator of w . In general, $[0, w]$ is not an S-BCC-ideal of X , but it is a subalgebra. For example, let X be the S-BCC-algebra in Example 3.2(1). Then, $[0, e] = \{0, e\}$ is not an S-BCC-ideal of X related to $Q = \{0, a, b, c\}$ since $(b * e) * d = 0 \in [0, e]$, but $b * d = a \notin [0, e]$.

THEOREM 3.15. *For every $c \in X \setminus \{0\}$, if the inequality*

$$(\forall x \in Q) \quad (x * ((x * c) * c) \leq c) \quad (3.12)$$

holds, then $[0, c]$ is an S-BCC-ideal of X related to Q .

Proof. Let $x \in Q$. If $b \in [0, c]$, then $b \leq c$ and hence $(x * c) * c \leq (x * c) * b$ by (b3). It follows from (b3) and assumption that

$$x * ((x * c) * b) \leq x * ((x * c) * c) \leq c. \quad (3.13)$$

Now if $a \in [0, c]$, then $x * c \leq x * a$, and so

$$x * ((x * a) * b) \leq x * ((x * c) * b) \leq c. \quad (3.14)$$

This shows that $x * ((x * a) * b) \in [0, c]$. Applying Theorem 3.13, we conclude that $[0, c]$ is an S-BCC-ideal of X related to Q . \square

THEOREM 3.16. *The initial segment $[0, c]$, where $c \in X \setminus \{0\}$, is an S-BCC-ideal of X related to Q if and only if the implication*

$$(\forall x, y \in Q) \quad ((x * c) * y \leq c \implies x * y \leq c) \quad (3.15)$$

is valid.

Proof. Let $x, y \in Q$ and $a \in [0, c]$ be such that $(x * a) * y \in [0, c]$. Then, $a \leq c$ and $(x * a) * y \leq c$. The inequality $a \leq c$ implies that $(x * c) * y \leq (x * a) * y \leq c$, so from hypothesis that $x * y \leq c$, that is, $x * y \in [0, c]$. Therefore, $[0, c]$ is an S-BCC-ideal of X related to Q . Conversely assume that $[0, c]$, $c \in X \setminus \{0\}$, is an S-BCC-ideal of X related to Q , and let $x, y \in Q$ be such that $(x * c) * y \leq c$. Then, $(x * c) * y \in [0, c]$. Since $[0, c]$ is an S-BCC-ideal of X related to Q and $c \in [0, c]$, it follows from (c2) that $x * y \in [0, c]$ so that $x * y \leq c$. This completes the proof. \square

COROLLARY 3.17. *If $[0, c]$, $c \in X \setminus \{0\}$, is an S-BCC-ideal of X related to Q , then*

$$(\forall x \in Q) \quad (x * c \leq c \implies x \leq c). \quad (3.16)$$

THEOREM 3.18. *For every $c \in X \setminus \{0\}$, if the equality*

$$(\forall x, y \in Q) \quad (((x * c) * y) * c = (x * y) * c) \quad (3.17)$$

is valid, then $[0, c]$ is an S-BCC-ideal of X related to Q .

Proof. Let $x, y \in Q$ and $a \in [0, c]$ be such that $(x * a) * y \in [0, c]$. Then, $a \leq c$ and $(x * a) * y \leq c$. It follows that

$$(x * y) * c = ((x * c) * y) * c \leq ((x * a) * y) * c \leq c * c = 0, \quad (3.18)$$

so that $(x * y) * c = 0$, that is, $x * y \leq c$. Hence, $x * y \in [0, c]$ and therefore $[0, c]$ is an S-BCC-ideal of X related to Q . \square

Acknowledgments

The author is highly grateful to referees for their valuable comments and suggestions which were helpful in improving this paper. This paper was supported by Korea Research Foundation Grant (KRF-2003-005-C00013).

References

- [1] P. J. Allen, H. S. Kim, and J. Neggers, *Smarandache disjoint in BCK/D-algebras*, Sci. Math. Jpn. **61** (2005), no. 3, 447–449.
- [2] ———, *Super commutative D-algebras and BCK-algebras in the Smarandache setting*, Sci. Math. Jpn. **62** (2005), no. 1, 131–135.
- [3] W. A. Dudek, *On constructions of BCC-algebras*, Selected Papers on BCK and BCI-algebras **1** (1992), 93–96, Shaanxi Scientific and Technological Press, Xian, China.
- [4] ———, *On proper BCC-algebras*, Bull. Inst. Math. Acad. Sinica **20** (1992), no. 2, 137–150.
- [5] ———, *The number of subalgebras of finite BCC-algebras*, Bull. Inst. Math. Acad. Sinica **20** (1992), no. 2, 129–135.

- [6] W. A. Dudek and X. H. Zhang, *On ideals and congruences in BCC-algebras*, Czechoslovak Math. J. **48**(123) (1998), no. 1, 21–29.
- [7] _____, *Initial segments in BCC-algebras*, Mathematica Moravica **4** (2000), 27–34.
- [8] J. Hao, *Ideal theory of BCC-algebras*, Scientiae Mathematicae **1** (1998), no. 3, 373–381.
- [9] W. B. V. Kandasamy, *Smarandache groupoids*, <http://www.gallup.unm.edu/~smarandache/Groupoids.pdf>.
- [10] H. S. Kim, Y. H. Kim, and J. Neggers, *Coxeter algebras and pre-Coxeter algebras in Smarandache setting*, Honam Math. J. **26** (2004), 471–481.
- [11] Y. Komori, *The class of BCC-algebras is not a variety*, Math. Japon. **29** (1984), no. 3, 391–394.
- [12] J. Meng and Y. B. Jun, *BCK-Algebras*, Kyung Moon Sa, Seoul, 1994.
- [13] R. Padilla, *Smarandache algebraic structures*, Bull. Pure Appl. Sci. Sect. E Math. Stat. **17E** (1998), no. 1, 119–121.
- [14] A. Wroński, *BCK-algebras do not form a variety*, Math. Japon. **28** (1983), no. 2, 211–213.

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: ybjun@gsnu.ac.kr

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk