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We use reproducing kernel Hilbert spaces to give the best approximation for Laguerre-
type Weierstrass transform. Estimates of extremal functions are also discussed.

1. Introduction

We consider the partial differential operators D; and D, defined on K := [0, o[ XR, by

0

D := a,
_ 9 L 2atlo L9
T ox2 x ox ot?’

(1.1)

D,: a>0.

For « = n— 1, n € N\ {0}, the operator D, is the radial part of the sub-Laplacian on
the Heisenberg group H” (see [2, 4]).

These operators have gained considerable interest in various fields of mathematics (see
[1, 4]). They give rise to generalizations of many two-variable analytic structures like the
Laguerre-Fourier transform &, the Laguerre-convolution product, the dispersion and
the Gaussian distributions (see [1, 2, 4]).

In this paper, we consider the Laguerre-type Weierstrass transform L, associated with
D; and D;:

L fo) = jKE,Kx, 0,151 f (s —5) dma(,), (12)

where E,, r >0, is the generalized heat kernel given by Definition 2.8 later on and m, is
the measure defined on K by

dmg(y,s) := Y dyds. (1.3)

al(a+1)

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:17 (2005) 27572768
DOI: 10.1155/IJMMS.2005.2757


http://dx.doi.org/10.1155/S0161171205408194

2758  Laguerre-type Weierstrass transform

This integral transform which generalizes the standard Weierstrass transform (see |3, 5,
6]) solves the generalized heat equation

Arul(x,t),r] := (D} = D3)u[(x,t),7] = %u[(x,t),r] (1.4)
on Kx]0, o[ with the initial condition u[(x,t),0] = f(x,t) on K, (see Proposition 2.11).
Let L2(K) be the space of square integrable functions on K with respect to the measure
my and let (-,-)2,,, be its inner product. For » € R, we consider the space H)(K) of
functions f in L2(K), such that the function [1+A?(1 +m?)]”?%_( f) is square integrable
onT = R x N with respect to some measure y,, defined later in Section 2.
The space H)(KK) is a Hilbert space with the inner product

(f>8)m = L (1422 (14 m?) " FL( ) A m)FL(@) L, m)dya(A,m). (1.5)
For y > 0, by introducing the inner product

(f)g>;4= (fag)H;+<er>Lrg>2)maa (1'6)

we construct the Hilbert space H,(K) comprising elements of H}(K) . Next, we exhibit
explicit reproducing kernels for Hy(K) and H,(K). After that, we provide an explicit so-
lution of the following problem. Given a function g in L2(K). Let v > (¢ +2)/2 and p > 0,
we prove that the infimum of {‘ullfllfﬂ + g - erllima, f € HY(K)} is attained at some
function denoted by fﬂ’fg, which is unique, called the extremal function. We also establish
the estimate of the extremal function f*,, that is,

g
[1fie = /1

when f e H)(K)andg=L,f.

In the classical case [3, 6], the authors obtain analogous results by using the theory of
reproducing kernels from the ideas of best approximations. Also the authors illustrated
their numerical experiments by using computers.

f{g—-o asy — 0, (1.7)

2. The reproducing kernels

We begin this section by recalling some results about harmonic analysis associated with
the differential operators D; and D,. Next we exhibit the reproducing kernels of some
Hilbert spaces associated to these operators.

Notations 2.1. We denote the following.
(1) K:=[0,0[xRand I':= R X N.
(ii) LE(K), p € [1,00], is the space of measurable functions f on [, such that

1/p
1F 1y, = UK | £ t) |"dma(x,t)] <w, pellol,

| fllco,m, :=ess sup | f(x,£)] < oo,
(x,t)eK

(2.1)

where m, is the measure given by (1.3).
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(1i1) Lg(l"),p € [1, 0], is the space of measurable functions g on T, such that

1/p
gl . := [ L |g<A,m>|dea(A,m>] <o, pe[lool,

iglleo,y, :=ess sup |g(A,m)| < oo,
(A,m)eTl

where y, is the positive measure defined on I by
I g, m)dy,(A,m) = Z Lﬁg)(o)J gL, m) A1),
r m=0 R

Here Ly is the Laguerre polynomial of degree m and order a.
ProposiTION 2.2 (see [4, page 135]). (i) The system
Diu = ilu,
Dou=-2AM2m+a+1)u,
u(0,0) =1, %(O,t) =0, VteR,
ox
admits a unique solution @y n(x,t), (A,m) €T, given by

LW (IMx?)

%2
m(x,t) = ex (iAt— |/\|—>, x,t) € K.
(D) ( ) L%)(O) p 5 ( )

(ii) For all (A,m) €T,

sup |@am(xt)] =1.
(x,t)eK
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(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

The function @, gives rise to an integral transform, called the Fourier-Laguerre trans-

form on K, which is studied in [2, 4].
Definition 2.3. The Fourier-Laguerre transform % is defined on L.(K) by

FL(f)A,m) = JK ¢-1m(%,1) f(x,5)dma(x,1),  (A,m) €T.

From Proposition 2.2(ii), the integral makes sense.
The Fourier-Laguerre transform satisfies the following properties [2, 4].

(2.7)

THEOREM 2.4. (i) Plancherel theorem. The Fourier-Laguerre transform &y, can be extended
to an isometric isomorphism from L(K) onto L2(T), denoted also by Fy. In particular,

|FL(NIy, = 1fl2me  f € LE(K).

(ii) Inversion formula. Let f be in LL(K) such that Fp(f) belongs to LL(T), then

Foot) = L FL(F) b m)gam(x, Ddyahym),  ae. (x,1) € K.

(2.8)

(2.9)
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Notations 2.5. We denote the following.
(1) W(K) = {f € Ly(K)/FL(f) € Ly(T)}.
(ii) HY(K), v € R, is the space
H(K) == | f € (K)/[1+ 2 (1+m?)]"*F1(f) € L2D)]. (2.10)

The space H)(KK) provided with the inner product
(fr8)my = L [1+A7 (1 +m?) ' FL(f ) A, m)FL(g) (A, m)dya(A, m) (2.11)

and the norm ”f“%.[g = (f, f)uy is a Hilbert space.

PrROPOSITION 2.6. Forv > (a+2)/2, the Hilbert space H)(K) admits the reproducing kernel

0] - | PSS,

that is,
(i) for every (y,s) € K, the function (x,t) — Ky[(x,1),(y,s)] € HY(K);
(ii) for every f € HY(K) and (y,s) € K

(fHal> (o) Dy = f(359)- (2.13)

Proof. (i) Let (y,s) € K. Since from Proposition 2.2(ii), the function

L 9-am(ys9)
) = e (1 em) (2.14)

belongs to L2(T) for v > (a +2)/2, then from Theorem 2.4(i), there exists a function in
L2(K), which we denote by H,[-,(y,s)], such that

Fy (o> (35)]) (L) = % (2.15)

LetI'y:= [-N,N] x {0,1,...,N}. Then we have

[ (y9)] = llmJ ¢1+A2(Pl j_m y),js) Ya(A,m), (2.16)

in the L2(K) sense.
So there exists a subsequence (N, ) pen, such that

(P)lm(x> )@ /\m()” s)
ry, [1+A2(1+m?)]"

Hal(x,1),(3,9)] = hm dys(\,m), ae. (x,t)eK. (2.17)
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Let

O ()P4 m(y55)
> = 51 Ny ’ T. 2.1
gn,(A,m) A2 (1tm2)] (A,m) € (2.18)

Since

PAm (%) QA m(y,s)

P m) = s e ) (219)
and from Proposition 2.2(ii),
1
lgn,(A,m)| < R0 (2.20)
Then from the dominated convergence theorem, J,[(x,t),(y,s)] is given by
Hal(x,1),(,9)] = Phn (% DP-1m(7:5) dy.(A,m). (2.21)

r [1+22(1+m?)]”

(ii) Let f e W(K) n HY(K) and (y,s) € K. From (2.11) and (2.15) and Theorem 2.4(ii),
we have

(Aol () gy = L9L(f)(A,M)w,m(y,S)dya(/\,M) = f(9). (2.22)

The assertion (ii) follows by the density of W'(K) in L2(K). O

Definition 2.7. Let a = 0.
(i) Define the Laguerre translation operators T(. > (1) €K, for f € LL(K), by the
following.
(a) Ifa=0,

1 (> .
TG (yss) = 2 ) f(A1(x,9,0),s+t+xysin6)d6. (2.23)
(b) Ifa >0,
o 2w 1 .
T (f)(p>9) :=;L Lf(A,(x,y,@),s+t+xyrsin9)r(1—rz)“ drdf.  (2.24)

Here and in what follows, A, (x, y,0) = (x> + y* + 2xyrcos0) /2.
(ii) The Laguerre convolution product %, of two functions f,g € LL(K) is defined
by

fkrgx,t):= JK T () (,9)g(y, —s)dmy(y,s),  (xt) € K. (2.25)
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Definition 2.8. Let r > 0. Define

E,(x,t) := J exp (— A2 [1+402m+a+1)2]) orm(x,t)dya (A, m). (2.26)
r

The generalized heat kernel E, is given by

E [(x,1),(y,9)] := TGnEr(1,5);  (x,1),(p,5) € K. (2.27)

ProrosITION 2.9. Let (x,t),(y,s) € K, and r > 0. Then, the following exist.
(1) The function €, solves the generalized heat equation

0

Bt =

€, (2.28)

where Ay is the operator given by (1.4).

(ii) FL(E [(x,1),-])(A,m) = exp(—rA*[1 +42m+ o+ 1)?])pam(x, 1).

(i) fyc B[, (35) dmg (o, £) = 1.

(iv) For fixed (y,s) € K, the function u[(x,t),r] := E,[(x,t),(y,s)] solves the generalized
heat equation:

Arul(x,t),r] = %u[(x,t),r]. (2.29)

Proof. The assertion (i) follows from Definition 2.8 and Proposition 2.2(i) by applying
derivation theorem under the integral sign.
(ii), (iii), and (iv) will be easily proved. O

Definition 2.10. The Laguerre-type Weierstrass transform is the integral operator given
for f € L2(K) by

L f(x,t) :=€, % f(x,1) = JKEr[(x, t),(3,9)]f (y,—s) dma(y,s). (2.30)

ProrosriTioN 2.11. (i) The integral transform L,, r > 0, solves the generalized heat equation

Arul(x,t),r] = %u[(x,t),r], (2.31)

on [Kx]0, oo [ with the initial condition u[(x,t),0] = f(x,t) on K.
(ii) The integral transform L., r >0, is a bounded linear operator from H)(K), v > (a +
2)/2, into L2(K), and
||er||2)ma = Cu(”)”fHHg) (232)

where

ca(r) = J exp (— A2 [1+402m+a+1)?])dy.(A,m). (2.33)
r
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Proof. (i) This assertion follows from Definition 2.10 and Proposition 2.9(iv).
(ii) Let f € H)(K). Applying Holder’s inequality, we get

Lo F 1Ly, = ELGE D, o, I1f N2 (2:34)

From Theorem 2.4(ii) and Proposition 2.2(ii), we obtain
E (6 1)s ]| o . < J exp (—rA2[1+402m+a+1)?])dya(d,m) 1= cu(r). (2.35)
> o F

On the other hand, from Theorem 2.4(i), we see that || f|3,m, < Il f lz;. which proves
(ii). O
Definition 2.12. Let y > 0. Define the Hilbert space H,(K) = H,,(K) with the norm
square

111, 2= gl £y + 1L 113 0, (2.36)

ProrositioN 2.13. For v > (a+2)/2, the Hilbert space H,(IK) admits the following repro-
ducing kernel:

K, [0 ()] = J Orm () Q) m(y,8)dya(A,m) (2.37)

rul1+422(1+m2)]" +exp (= 2rA2[1+4Q2m+a+1)2])

Proof. (i) Let (y,s) € K. In the same way as in the proof of Proposition 2.6(i), we can
prove that the function (x,t) — K,[(x,1),(y,s)] belongs to L2(K) and we have

9 . _ (Pf/\,m(y’s)
FLEL (o9 D) = u[1+22(1+m?)]" +exp (- 2rA2[1 +4Q2m+a+1)2])
(2.38)
On the other hand, since for (A,m) €T,
Fr (L, (K,|-,(y, A,
L(Ly (Kul > (,9)])) (A, m) (239)

=exp (- rA*[1+4C2m+a+1)*])FL (L (K[, (3,9)])) (A, m),
then from Theorem 2.4(i), we obtain

L (Kl (559D,

= Lexp (—2rA?[1+402m+a+1)]) |(§L(KH[-,(y,S)])(/1,m)|2dya(/\,7rl)

- ij exp (—2rA?[1+402m+a+1)?])
r

< 0 Ayl .
2 [+ A2(1+m?)] Valdm) < o

(2.40)

Therefore, we conclude that 1Kyl (y55)] H%{# < 00,
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(i) Let f € W n H,(K) and (y,s) € K. Then
(fsKul(s9) D gy =l + I, (2.41)
where
= (LKl o) Dy o= (L fo L (K[ (5159)]) ) g, (2.42)

From (2.38), we have

B [1+A2(1+m?) ]"F ()L, m)orm(y,s)dya(A,m)
1= v . (243)
ru[1+A2(1+m?)] +exp (—2rA2[1+402m+a+1)?2])
From (2.39), (2.38), and Theorem 2.4(i), we have
exp (= 2rA2[1+402m+a+ 1)2])FL(f) A, m)orm(y,8)dy«(A,m)
L= J L (244)
r ul[1+22(1+m2)]" +exp (—2rA2[1+40Q2m+a+1)?2])
The relation (2.41) and Theorem 2.4(ii) imply that
(Kl (09 )y = f(359). (2.45)
The assertion (ii) follows also from the density of W'(K) in L2(K). O

3. Extremal function for Laguerre-type Weierstrass transform

In this section, we prove for a given function g € L2(K) that the infimum of {ull f ”%I; +
lg—L £l %)mu, f € H)(K)} is attained at some function denoted by f#’fg, which is unique,
called the extremal function. We start with the following fundamental theorem (see [3, 6,

7).

THEOREM 3.1. Let Hk be a Hilbert space admitting the reproducing kernel K(p,q) on a set
E and H a Hilbert space. Let L : Hx — H be a bounded linear operator on Hy into H. For
p >0, introduce the inner product in Hx and call it Hk, as

o P, = 8l o e +LSLLS) e (3.1)

Then, the following hold.
(i) Hg, is the Hilbert space with the reproducing kernel K,(p,q) on E and satisfying the
equation

K(-,q) = (I +L*L)Ky(-,q), (3.2)

where L* is the adjoint operator of L : Hx — H.
(ii) For any u > 0 and for any g € H, the infimum

inf {pll fllf +ILf - glE} (3.3)
fEHK
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is attained by a unique function f,%, € Hx and this extremal function is given by
fﬂ*g(P) = (g’LK#("P»H' (3.4)

The main result of this paragraph can be stated now.

THEOREM 3.2. Letv > (a+2)/2. For any g € L2(K) and for any p > 0, the infimum
inf 4o+ llg = LofII3 :
jnf {ull fll +llg = Lof 1 (3.5)

is attained by a unique function ff, = f.%, . and this extremal function is given by

fis ) = || QU0 (9)] a5, (3.6)

where

Q,u[(x’t)a(y)s)] = Qy,v[(x:t))(y)s)]

_J’ exp (= rA?2[14+4C2m+a+1)2])erm(x Q-1 m(y,s)
Cru[14 220+ m2) ] +exp (- 2rA2[1+4Q2m +a+1)2])

dya(A,m).
(3.7)

Proof. By Proposition 2.13 and Theorem 3.1(ii), the infimum given by (3.5) is attained
by a unique function ﬁ;fg, and from (3.4), the extremal function f[;fg is represented by

£5009) = @LAK [ (529D (09 €K, (3.8)

where K|, is the kernel given by Proposition 2.13.
Since for (x,t) € K,

L f(x,t) = J exp (— A2 [1+402m+a+1)2 ) FL(f) (A, m)@rm(x, t)dya(A,m), (3.9)
r
and by (2.38), we obtain

Lr(Kﬂ[U(Y’S)])(xat)

_J’ exp (= rA?[1+42m+a+1)2]) oam () @_ym(y,s)
Cru[1422(0+m2) ] +exp (= 2rA2[1+4Q2m +a+1)2])

= Qﬂ[(x) t)) ()/,S)]

dy.(A,m)  (3.10)

This gives (3.6). O

CoOROLLARY 3.3. Let v > (a+2)/2. The extremal function j;jfg in (3.6) can be estimated as
follows:

Ma 2442
el = ], 7 18090 P dmate), (3.11)
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where
M, = JKe*()’zﬁz)dma(y,s), N, = (L%)l (3.12)
Proof. Applying Holder’s inequality to relation (3.6), we obtain
IﬁymﬂfSNMLf““WgUJHﬂQAWJ%UJHVdmd%ﬁ- (3.13)
Thus, and from Fubini-Tonnelli theorem, we get
1l = M [ €74 18009 PIQUA G, dimals). (310
On the other hand from Theorem 2.4(i), we have
1l 1B, = [ 1T o) ) Pdyahom). (13)

But for (A,m) € T, we have

exp (rA?2[1+4Q2m+a+1)2])p_ym(y,s)
1+u[1+22(1+m2)] exp (2rA2[1+4Q2m +a+1)2])

GJL(QF[U(}/’S)])(AJ’/”) =

(3.16)
Then the inequality (x + y)? > 4xy yields
Q0o M, < 5 | s s (3.17)
# 2 4y e [14+22(1+m?)]
From this inequality and (3.14), we deduce the result. O
COROLLARY 3.4. Letv > (a+2)/2,8 >0 and g,gs € L2(K) such that
\lg = gsll5,m, < 6. (3.18)
Then,
|1 = fi ] vsi. (3.19)
we ~ JwasllH; = o g
Proof. From (3.6) and Fubini’s theorem, we have for (A,m) €T,
2 21\ 95
Q;L(f*)u’m): exp (rA [1+4(2vm+oc+1) 1) FL(g)(A,m) . (3.20)
e 1+u[1+22(1+m?)] exp (2rA2[1+42m+a+1)2])
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Hence

o (5 gk exp(rA?[1+402m+a+ 1)) FL(g - g5) (A, m)
JFL(f”’g f“’ga)(l’m a 1+u[1+22(1+m2)] exp (2rA2[1+4Q2m+a+1)2])

(3.21)
Using the inequality (x + y)? > 4xy, we obtain
2 2\1” * * 2 1 2
(1422 (1 +m?) | Fo (£ — £k ) Aom) | < o |F1 (g — g5) Aym) | (3.22)
Thus, and from Theorem 2.4(i), we obtain
o Bl = 31716y, = g lle il (3.23)
which gives the desired result. U
CoROLLARY 3.5. Letv> (a+2)/2, f € H)(K), and g =1L, f. Then
||f;4g HV —0 asuy—0. (3.24)
Proof. From (3.20), we have
Fr(fHA,m) =exp (rA*[1+4C2m+a+1)*])FL(g (/\ m)
exp (rA?[1+4(2m+a+1)*])FL(g)(A,m) (3.25)

(f”g) 1+y[1+A2(1+m2)] exp (2rA2[1+ 4(2m+oc+1) 1)’
Thus

u[1+A2(1+m?) ] exp (2rA2[1+42m+a+1)2])Fr(g) (A, m)
1+u[1+22(1+m2)] exp (2rA2[1+4Q2m+a+1)2])

Fu(fi = 1) Oom) = -

(3.26)
Then we obtain
1= Sl = [ o) | 01Oy (327)
with
2 2 213 2 2
B Ohyn) = w1+ A2(1+m?)] e)Z(p(4rA [1+402m+a+1)?]) ' (3.28)
(1 +ul1+A2(1 +m2)]v> exp (4rA2[1+4Q2m+a+1)2])
Since
lirr(}hy,r,y(/\,m) =0,
& (3.29)

| hyryAm) | < [1+A%(1+m?)],

we obtain the result from the dominated convergence theorem. O
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