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Carcinogenesis is a multistage random process involving generic changes and stochastic
proliferation and differentiation of normal cells and genetically altered stem cells. In this
paper, we present the probability of time to tumour onset for a carcinogenesis model
wherein the cells grow according to a birth and death process with density-dependent
birth and death rates. This is achieved by transforming the underlying system of differ-
ence equations which results in a continued fraction. This continued fraction approach
helps us to find the complete solutions. The popular Moolgavkar-Venzon-Knudson
(MVK) model assumes constant birth, death, and transition rates.

1. Introduction

Cancer arises from the stepwise accumulation of genetic changes that confer upon an in-
cipient neoplastic cell the properties of unlimited, self-sufficient growth and resistance to
normal homeostatic regulatory mechanisms. Advances in human genetics and molecu-
lar and cellular biology have identified a collection of cell phenotypes that are required
for malignant transformation. Alterations to the DNA inside cells can endow cells with
morbid “superpowers,” such as the ability to grow anywhere and to continue dividing
indefinitely. A long held theory focusses on mutations to a relatively small set of cancer-
related genes as the decisive events in the transformation of healthy cells to malignant
tumours. Recently, however, other theories have emerged to challenge this view (Gibbs
[6]).

It is now universally recognized that carcinogenesis is a multistage random process
involving genetic changes and stochastic proliferation and differentiation of normal stem
cells and genetically altered stem cells (Tan [16]). Among a multitude of carcinogenesis
models, the Moolgavkar-Venzon-Knudson (MVK) model seems to have attracted most of
the research efforts and is enjoying wide applicability in both epidemiological and animal
experimental studies (Moolgavkar [11]).

Under the MVK model, a malignant cancer cell is assumed to arise following the oc-
currence of two critical mutations in a normal stem cell. Initiated cells that have sustained
the first mutation undergo a birth and death process (details about applications of birth
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and death processes can be attained from Parthasarathy and Lenin [15]). If the birth rate
exceeds the death rate, this results in a clonal expansion of initiated cells. The number of
stem cells at the risk of transformation is allowed to increase in a deterministic fashion
to reflect tissue growth and development. A detailed review of biological, mathematical,
and statistical aspects of the two-stage model has been provided by Moolgavkar and Lue-
beck in [12]. The mathematical properties of the two-stage model are also described in
(Tan [16]). For this basic two-stage (MVK) model, an assumption that a single malignant
cell is equivalent to a tumour is made in order to simplify mathematics. Exact expression
for the probability generating function for the two-stage model is derived by Denes and
Krewski [5] in terms of hypergeometric functions. They point out that this exact and ap-
proximate expression of Moolgavkar and Venzon in [13] exhibits qualitative differences.

In the two-stage model of carcinogenesis, the intermediate cells are assumed to grow
as a linear birth and death process. It is important to point out that even though they
all constitute forms of cancer, there is a quantitative difference between the formation
and growth of various solid tumuors and disseminated cancers such as leukemia (Afenya
and Calderén[1]). Further, the process of carcinogenesis is significantly influenced by
environmental factors underlying the individual.

In this paper, we assume that the initiated cells grow as a birth and death process with
density-dependent birth and death rates. Research into the time to tumour onset has oc-
cupied a central place in carcinogenesis modelling, because it bridges the gap between the
theory and application of models. The predominant method of computing these quanti-
ties is an application of the characteristic method of solving first-order partial differential
equations.

We obtain exact expressions for the time to tumour onset for several cases of density-
dependent birth and death rates. This is achieved by transforming the underlying sys-
tem of differential equations using Laplace transform to a system of difference equations
which results in a continued fraction. This continued fraction helps us to find the com-
plete solutions.

2. A density-dependent carcinogenesis model

To develop stochastic models of carcinogenesis, the traditional approach is by way of
Markov theories. The basic approach along this line consists of four basic steps:

(1) derive the probability generating function of the number of tumours,

(2) derive the incidence function of tumours,

(3) derive the probability distribution of time to tumour onset, and

(4) obtain the probabilities of the number of tumours.
The problem with such a modelling approach is that if the model is more complex than
the framework of the two-stage model, the modelling process becomes too complicated
to be useful. For the basic two-stage (MVK) model, an assumption that a single malignant
cell is equivalent to a tumour must be made in order to simplify mathematics.

First we consider a modified MVK model. Assume that there are two compartments,

intermediate cell compartment and tumour cell compartment and let X;(¢) and X;(¢)
denote the number of cells in each compartment.
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If X,(t) = n, birth, death, and mutation rates are A, g, and v (i.e., n(A/n), n(y/n), and
n(v/n)), respectively. Thus these rates decrease as n increases, thereby regulating the cell
population. That is, A/n, y/n, and v/n are the birth, death, and mutation rates, when n
cells are present. (In MVK model these rates are nA, ny, and nv.)

Let G(s1,8251) = 2. pmn(t)s]'s5 denote the probability generating function of (X, (¢),
Xa(t)). Let Ppn(t) = P(Xy(f) = m, X5(t) = n).

By random variable technique (see Bailey [2]),

aa—f = [A(sl -1) +#(i - 1) +(sy — 1)] [G—go(s2,8) ], 2.1)

where gn(s2,£) = 2o P(Xi(t) = m,X5(t) = n)s;. Following convention, it is assumed
that at time ¢ = 0 only the first compartment is nonempty, and hence the initial condition
is P(X,(0) = N, X,(0) = 0) = 1, that is, G(s;,5;0) = s).

Note that py,, = pgpim, for m =0,1,2,... and hence

8o(s2,1) = g1 (s2,1). (2.2)
If P(s1,2;t) = G(s1,82;1) — go(s2,1), then

%—1; = [/1(51 -1) +.“< 1

;—1>+V(52—1):|P—‘Mg1(52,t). (23)

Solving this differential equation,

P(S],Sz;t) _ Sll\]e[)l(sl71)+,u(1/5171)+1/(5271)]t
' (Alsi=D+p(1/si=1)+v(s2=1)](t =) (2:4)
—#Lgl(sw)e TR .

We use the fact that the generating function of modified Bessel functions is given by

> L(at)(Bs)" = et (2.5)

n=—oo

where o = 2,/Ay and = |/A/u.
Thus,

00
P(sl,sz;t) :Sll\fe—()lww)t Z In(oct)(ﬁs])ne””

n=—o0o

(2.6)
t )
B “J gi(s2,y)e BN S L (alt = ) (Bs1) "= dy.
0 n=—oo
Comparing the coefficient of si* on both sides, we obtain
om (52; l‘) — 6_(M””)tlm,N/3m_Ne”szt
(2.7)

t
— | g1z ) BN ot - y)) e dy,
0
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Comparing the coefficient of s;™ on both sides, we obtain

0= ef(AﬂAJrV)II,(m,N)ﬂf(mfN)ewzt

t (2.8)
b [ gilsy)e BEIDL alt - ) e dy,

Multiplying (2.7) by =" and (2.8) by " and subtracting, we get

G (s2,t) = e~ Hpt L N(“;)N fn’”*N(“t) b form=1,2,... (2.9)
using I, = L.
But gg(s2,1) = pgi(s2,1) and go(s2,0) = 0
I o Iiin(a

go(s2,1) = ”J g1 so,u)du = #J —(tptr)y Hi= N y/—)%N 11+N( ) eV dy. (2.10)

Let T be the time that a cancer tumour develops for the first time. Let f(t) be the proba-
bility density function of T and F(t) the cumulative distribution function of T'. If S(¢) =
1 — F(t), the incidence function h(t) of tumour onset at time ¢ is defined by h(t) =
—dInS(t)/dt:

P(T >t) = G(1,0;t) = P(1,0;t) +go(0,1). (2.11)
From (2.4)
t
P(1,0;t) = e " — ‘uj 21(0,y)e =V dy, (2.12)
0

and from (2.10)

t I_n(a Lin(a
£0(0,1) :#L Gy B y;N — (ay )dy. (2.13)

Thus,

te )y =N (@p) — i (ay)

P(T>t) = yj N1
+#J’ gy I N(“)’/;N {1+N(06)’)dy

. ,,IN(OC)IN(“)
—e t+‘”J l—e ty)] (M+utw)y 21 yﬁN 11+ Y dy (2.14)

2NIn(ay)
aypv

ast — oo,

et dy

_ e—vt +‘uj [1 _ e—v(t—y)]e—(/\+;4+v)y
0

uN

P(T>t) — N
[A+y+v+\/()t+y+v)2—4lyJ
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After considerable simplification,

G(Sl,Sz;t) _ SNe[)L(sl D+u(1/s1=1)+v(s;—1)]t

(2.15)
+HJ =D +u(1/s1=1)+v(s,—1)] }gl(Sz, )dy
From this, if s, = 1,
51; ZP X, t) ) :Sll\le[/\(slfl)+y(1/slfl)]t
(2.16)
+#J e[A(sl )+u(1/s1—=1)](t— y)}gl 1)/)61)/,

andifs; =1,

t
G (sy,1) ZP Xo(t) =n)sh = e”(”*”tﬂlj {1 -V g (55, 9)dy.  (2.17)
0

Therefore,

mi(t) = E(Xi(t)) = N+ A —p)t - (A—u)ﬂgo(l,y)d%
E(Xi()(Xi(£)—1)) =N(N - 1) +2yﬂ [1-go(1,y)]dy +2(d = wE(X: (1)),
ma(t) = E(X (1)) :vr[l—go(l,y)]dy, (2.18)
B0 060~ 1) = 27 [ma(y) - (1),

E(X, (0% (1)) = (A u)j[mzm ugi(1,y) dy+vj i (3)dy.

Note that

Iy 1 (at) =1 t !
gi(1,1) = e ly1(@ /quN“(“ e = ﬂfogl(l,y)dy. (2.19)

These give means and variances of X (¢), X»(t) and covariance between X (¢) and X, (t).

In the above analysis we have used generating functions. However, this technique may
not be available for other density-dependent rates. We use instead the continued fraction
approach. Perhaps, this is the first attempt in this direction. This approach leads to an
explicit expression for the Laplace transform of the time to tumour onset. Given a set
of birth and death parameters, one can invert this transform numerically. However, for
certain birth and death rates, this Laplace transform can lead to closed form expressions
for the time to tumour onset as illustrated in Section 4.



2660  Density-dependent carcinogenesis models

3. Exact representation

Consider a model of carcinogenesis consisting of intermediate and tumour cells.

An intermediate cell, when the system size at time t is #, produces two intermediate
cells with probability A,k + o(h) during (¢,t + h), dies with probability u,h+ o(h) or pro-
duces an intermediate cell and a tumour cell with probability v,h + o(h). We assume that
intermediate cells are generated from normal ones by a Poisson process and this rate can
be accommodated with rate, A,,.

Let X;(t) and X,(t) denote the number of intermediate and tumour cells at time ¢. Let
Pij(t) = P(X1(t) = i, Xa(t) = j).

These transition probabilities satisfy Kolmogorov forward differential equations:

Pr,no(t) =An-1Pp-10(2) +Hm+1Pm+1()(t)
— (M + i + V) Puo(t), m=2,3,...,

Poo(t) = w1 Pro(t),
Plo(t) = uaPao(t) — (A1 + p1 +v1) Pro(2).

(3.1)

Form=1,2,3,... andn=1,2,3,...
P;,nn(t) = Amflpmfln(t) +.“m+lpm+ln(t) + VmPun—1(t)
- (/lm +,“m+ym)Pmn(t)) (3.2)
Py, (t) = w1 Piy(t).

Assume P1o(0) = 1. The probability of time to tumour onset, starting with one initi-
ated cell is given by

qo(t) = P(T > 1) = > Py = > P(Xi(1) = ,Xx(t) = 0). (3.3)
i=0 i=0

Let fun(z) = f0°° e “ Py, (t)dt be the Laplace transform of Py, (t). The transition prob-
ability P1o(t) plays a vital role in the study of the incidence function. We show that fo(z)
can be expressed as a continued fraction.

From (3.1)

Zfoo(2) = 1 fio(2), (3.4)
zfi0(2) =1 = 2 foo(2) — (A1 + g1 +m1) fio(2), (3.5)
meO(Z) = Amflfmflo(z) +,“m+1fm+10(z) - (/\m +,“m + Vm)fmo(z)- (36)

From (3.5)
(z+A1 +p1+71) fio(z) = 1+ s fro(2) (3.7)

or

(Z+A1 +M1+V1) *‘uzsz(Z) = L (3.8)

fio(z)  fio(2)
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or

1

fro(2) = ol (3.9)
A+ — 2)
z 1T TN #2f10(z)
From (3.6), for m = 2,3,...
Sm+10(2) fm-10(2)
+ A+ o + V) — =Am1 =~ 3.10
R Y B (310
or
me(Z) _ )tm—l (311)
fm-10(2) (24 Ao+t ) — +1fmﬂo(z) '
m m m m me(z)
Thus
1
fo(z) = (3.12)
z+A v — Mz 7
Z'f'/lz'f'[/lz‘FVz—[,l_?,ﬂ
S
Continuing in this way,
1
fio(z) = (3.13)

)tlﬂz

Z+/\1 +[11 +v —
Az//B

Z+A3+‘l/l3+7l3— s

Z+A2+‘L12+V2—

Assume v; = v, for all i. Then the continued fraction expansion form of fio(z) can be
written in a convenient form,

1 A A
fio(z) = 12 243 . (3.14)

ozt Mt A=zt v— 2+ A5 s -

By inverting this Laplace transform, P1(t) can be obtained:

1 Az A3 )
Z+A1+‘1/l1— Z+)L2 +Ur— Z+/\3 +Us—

Puo(t) = e 'L ( . ) — e "L (R(2)).

(3.15)
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Here

1 Az A3
Z+A1 +Ur1— Z+A2 +Ur— Z+/\3 +Us—

R(z) = (3.16)

CF approximations occupy a remarkable place in mathematical literature due to their
interesting convergence properties and also due to their connections with many branches
of mathematics like number theory, special functions, differential equations, moment
problems, orthogonal polynomials, and so forth (Lorentzen and Waadeland [8]). Ap-
proximations employing CFs often provide a good representation for transcendental
functions. They are generally much more valid than the classical representation by power
series. On account of their algorithmic nature, they are used in numerical analysis, com-
puter science, automata, electronic communication, and so forth. Their importance has
grown further with the advent of fast computing facilities. A systematic study of the the-
ory of CFs with stress on computations can be found in [7]. Its application to the study
of BDPs was initiated by Murphy and O’Donohoe [14].

Again, from (3.1)

[

q(,)(t z mo(t ’)/1P1()+‘V2P2()+ ) (3.17)

We assume that v, = », independent of »n. This is valid as the probability of getting a
tumour cell is extremely small:

qo(t) = =v(P1o+ Py + - - - ) = —v(qo(t) — Poo(1)). (3.18)
Since initially there is no cancer cell, go(0) = 1,

(qo()e”)" = ve Poo(t),
qo(t)e” = 1+VJ e” Poo(y)dy, (3.19)

t
qQo(t)=e" +vJ e ") Py (y)dy.

0

Using (3.1), we express go(t) in terms of Pyy(¢) for future use:

Py (t) = urPro(t), Poo(t H1J Pio(y)dy. (3.20)

Substituting this in (3.19) and changing the order of integration,

t
Qo) = e +ylj Pro)(1 - e ") dy, (3.21)
0
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The hazard rate is given by q;(¢)/qo(t). Taking Laplace transform on both sides of (3.19),
we obtain

V+Z (Z-I-’V) Pro(2), (3_22)

lim q0(#) = lim2do(2) = 1 fi0(0) = iR,

qo(z) = =

We will now give several examples wherein explicit expressions for go(t) can be ob-
tained. This is achieved by identifying certain continued fractions associated with Laplace
transform, R(z) of €' Pyo(t).

4. Examples

Example 4.1 (modified MVK model). Here A, = nA, y, = ny whereas v, = v (for MVK
model v, = nv):

R(z) = 1 1-2Au 2-3Au
T e At p— 24 20+ 2u— 2+ 3h+ By
VA 1-2(u/A) 2+ 3(u/A)
= ZHAMp zA2042u z3M3u e
) 1 )
B 1/A 1-2¢ 2-3c u f) (4.1)
R(Z)_u+c+1—u+2+2c—u+3+3c— (C_A’u_l ’

1A 1-2c 2-3c vmu—(1-0)
Cv+2— v+3+c—z+2c+4— o ’

,\J _t[e(}%] dv (Wall [17, (92.17)]),

where v = (z — A +u)/A. Inverting this Laplace transform,

e(/lfy)t(/l _ #)2

-1 —
(R(2)) = pRIeT—

(4.2)

This is a well-known result of a simple birth and death process (Bailey [2, page 94]). Thus

—t e mt(" — [")2

P . 4.3
W)= (43)
We can find the time to tumour onset from (3.21):
eA—u t(A ‘u)z
t) — _W—dt. 4.4
qo(t) MJ R (4.4)
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Example 4.2 (given in the previous section). Here A, = A, y, = p:

_ 1 A
R(z) = P F— ...
1 2
- Z+/\+y _R(Z))WA.“(R(Z)) - (Z+A+[4)R(Z) +1=0,
zHA+p =\ (z+A+p)? —4Au
R(z) =
2Mu
_ 20
A+ uty(z+A+p)?—ahy (4.5)
—(A+u)t
L (R(z)) = 20 o
at
L204 (ay)e~ Hwny
qo(t) = e*”wJ e T(1-e)dy
0 ay
- 2 ast — oo.

Ap+v+ | A+pu+v)? -4

In the following examples, A, + y, = a, and A,pns1 = by, are known for n = 1,2,3,....
For an arbitrary gy >0, find A; from A, + py, pa from Ay, A, from A, + po, ps from Ayps,
and so forth.

Specifically, for n = 1,2,3,...,

A,_
Ap=ay, — Uns Un+1 = by, B 1) (4.6)

n

where
a, 1
bnfl an-1 1
bn—Z an-2 1
B, = . R (4.7)
1
b oai-ml,,

and A,_, is obtained after deleting first row and first column of the determinant B, with
Bl =dady — W andAo =1.

We have taken specifically certain continued fractions which are continued fractions
expansions of Laplace transforms of known functions. Such solutions are useful in gain-
ing insights and for comparing the tumour onset with different density-dependent birth,
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death, and immigration parameters. We have concentrated on intermediate and tumour
cells and have not taken into account the normal cells. However, the rate of normal cells
becoming intermediate can be included along with the birth rate of the intermediate cells.

Example 4.3. Here, for n =1,2,3,...,

A+l =a+2(n—1),

Appinsr =n(n+a—-1), a>0,

R(z) = 1 a 2(a+1)
z+a—z+a+2—-z+ta+4- (4.8)
© -zt
= I ¢ dt (Lorentzen and Waadeland [8, page 583]),
o (1+¢t)2
1
-1 _
L1 (R(2)) = 30 a>0.
From (3.15)
e—vt
Plo(t): (1+t)a) a>0) (49)
and ¢qo(t) can be found from (3.21) and
0 eﬂ/t
qo(t) — U1 JO mdt (4.10)

Example 4.4. Leta>0,0<c<1,

An+[4n:a+(l’l—l)(1+C),
A1 = (a+n—1)ne, n=1,2,3,...,

_ 1 ac
z+a—z+c+a+1-

R(z)
_ (7 fztw 4.11
—L e T Cef(lfc)t]a dt  (Wall [17, (92.17)]), (4.11)

efvt(l _ C)a
[1—ce-(1-01]" ©

® e (1—¢)"
qo(t) — JO (1= ce--0r]" ast — oo,

Po(t) =

Note that Example 4.2 is a special case of this example.
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Example 4.5. Here, forn=1,2,3,...,

/\n_'_‘un _ (N—21)06’
n2 (N2 — n2)
Anﬂn+1: 22(4712—1) 2, n=12,..., N—1,
R(z) = 1 120%(N? - 1%)/22(4.12-1)
Cz+((N-1)/2)a—  z+((N-1)/2)a—
11
=N 271 (Bowman and Shenton [4, page 29]),
=0 =7 (4.12)
PN
L™ (R(2)) = N 2 jot
j=0

N 5
11
) —p— > —— ast— oo,
qo( ) HIN = vt j as 00

Example 4.6.

Mtpn=N-n+1)p+(n-1)g, n=123,...,N-1,
Anpini1 = (N —n+1)npg, n=12,...,.N—-1,

b(N,j,p) = (Ij)pquf, j=0,1,2,...,N,

Rz) = — Npq rq
Z+Np—z+(N-1)p+q- z+p+(N—-1)q

(Bowman and Shenton [4, page 30]),

N (4.13)
b(N,j,p)
_ z )P )

20 zZ+j
LN (R(2) = (q+pe )",
Plo(t) = e_” (q+p€_t)N;

b(N,j,p)
V]zo v+j o

5. Discussion

In the literature, much attention has been paid to carcinogenesis models with constant
birth, death, and mutation rates. But cancer assumes myriad forms. In this paper, we
have discussed models with density-dependent rates. When these rates are known, one
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can numerically invert the Laplace transform of the time to tumour onset. We have given
explicit expressions for this quantity in specific cases.
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This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:
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‘ Publication Date
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