THE DIFFERENTIAL FORMULA OF HASIMOTO
TRANSFORMATION IN MINKOWSKI 3-SPACE

NEVIN GURBUZ

Received 3 April 2005 and in revised form 6 June 2005

In this work, the formula is given for the differential of the Hasimoto transformation in
Minkowski 3-space.

1. Introduction

Hasimoto [10] introduced the map from vortex filament solutions of Euler’s equations
for incompressible fluids in the local induction approximation to solutions of the non-
linear Schrodinger equation and he showed vortex filament equation is equivalent non-
linear Schrodinger equation. After this discovering of Hasimoto, several authors [1, 5, 9,
12, 13, 14, 15, 17, 20, 21, 22, 23, 24] studied the connection between the integrable non-
linear Schrodinger equation and the nonstretching vortex filament equation. Ding and
Inoguchi also presented this connection in Minkowski 3-space [6, 7, 8].

Langer and Perline derived the formula for the differential of the Hasimoto trans-
formation in 3D spaces [16]. We also present a formula for the differential formula of
Hasimoto transformation in Minkowski 3-space in this paper.

Since this construction has potential applications to further investigation using the
inverse scattering scheme and finite-gap solutions, much works have been revived by sev-
eral authors. In recent years, Langer and Perline found a recursion relation which gener-
ates the hierarchy of space curve equations which maps by Hasimoto transformation and
nonlinear Schrédinger equation [18]. Calini and Ivey [2, 3, 4] studied finite-gap solutions
of the vortex filament equation. Holm and Stechmann also investigated vortex solution
motion driven by fluid helicity [11].

2. Nonlinear Schrodinger equation

Definition 2.1. The motion of very thin isolated vortex filament X = X(s,t) of incom-
pressible unbounded fluid by its own induction is described asymptotically by

X

g = Kb, (21)
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where s is the length measured along the filament, ¢ the time, « the curvature, b the unit
vector in the direction of the binormal [10].

THEOREM 2.2. The binormal motion of timelike curves in the Minkowski 3-space is
equivalent to the nonlinear Schrodinger equation (NLS™) of repulsive type

. 124 1
ety = [y 'y =0. (22)

Proof. The Frenet-Serret formulas for curve y is given by

T 0 &K 0 T
n|=|-gx 0 —&1||n|, (2.3)
b 0 &T 0 b

where x = /[(T",T")| is the curvature of y, 7 is the torsion, and (T, T) = ¢, {n,n) = &,
(b,b) = 3 are causal characters of y. Here are the tangent vector field T, binormal vector
field b, and principal normal vector field #.

We consider binormal motion of timelike curves. In this case

&g =-1, & =1, &5 =1;
(2.4)
Txb=-n b=TXn;
and the Frenet formula is
T = kn, n' =xT —1b, b =1n (2.5)
We get binormal motion vortex filament X = X (s, 1),
T = %X () = k(s 0B(s, 1),
ot (2.6)
a—T(s t)—a—X—K'b+K7n '
ot 7 Osot ’
where a prime denotes 9/0s.
With differentiating (2.6) as to s,
2
T _ Kn+1>T — k. (2.7)
0s?
Then
oT *T

We will show that the binormal motion of unit speed timelike curves is equivalent to
the nonlinear Schrédinger equation of repulsive type (NLS™).
We get

& =T, & =(n+ib)exp ( - irrd?), ¥ = Kexp ( - zE Td?). (2.9)

0
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Equation (2.5) can be written as follows:

§=1@h+vE),  G=vh,

0 1., = — ) L .
% = Ei(llf L-v'&), % = —iy'§ +iRG,

(2.10)

where R is a real function of s and t. Let V = (§},&,,&3) be a pseudo-unitary matrix. We
have

3 & 0 %W %1// &
& v 0 0 &
(2.11)
1 1.,
& 0 —511//’ 511// &
&= -v iR o [|&], Wi=zV
2 iy 0  —iR)\&
The integrability condition Y; — Z; — [Y,Z] = 0 of (2.10) denotes
, 01— ,—
R = E(V"Wﬂlf V), (2.12)
v — iy +iRy = 0. (2.13)
From (2.12),
R= %(WW+A). (2.14)
Using (2.14) and (2.13), we obtain
. I 1
iy +y" = Slylly =0 (2.15)

This form is equivalent to the nonlinear Schrodinger equation of repulsive type (NLS™).
(]

THEOREM 2.3. The binormal motion of spacelike curves in the Minkowski 3-space is equiv-
alent to the nonlinear heat system (see [1])

e = 7’55+T2q,
5 (2.16)
qt = —q4ss—q'T.

3. The differential formula in Minkowski 3-space

We get the space of curves with nonvanishing curvature Y = {y:[0,I] — R} : k # 0},
where [ = co. U =iT + jn+ kb is vector field along y where i, j, k are functions on [0,/].
U must satisfy i = jk for arclength-preserving condition.
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We can add on a tangential term for the resulting vector field perserving arclength
parametrization. For this reason, we define the linear “normalization operator”

Nmkzq<jjmeT+jn+kh (3.1)
0

Here vector fields are vector fields whose components are expressed as to «, 7, and their
derivatives in Minkowski 3-space.

3.1. The differential of the Hasimoto transformation for timelike curves. For the first
time in literature, conclusions of the formula of the differential of the Hasimoto transfor-
mation were presented by Langer and Perline [16]. In this paper, we also state conclusions
and this formula for the first time in Minkowski 3-space.

Hasimoto transformation will be written as

H(y) =y =xp, (3.2)
where
p(s) = e iimdu, (3.3)
The differential of # can be expressed as
d¥H(U) = &1 ({,R*U) +icy. (3.4)
(, is the complex vector field
G =(n+ibp, (3.5)
9R is the linear “recursion operator” as given by
RU =N(Tx U"), (3.6)

X is the Minkowski cross product, and c¢ is a real constant involving boundary terms.
Considering brevity, we write the differential formula as follows:

d¥H(U) = M(U) = e;p{(n+ib),R*U). (3.7)

We compute differential formula to the field U = xb. Thus

U =«'b+x1N,
(3.8)
TxU =«Txb+xrT Xn.
From (2.4),
TxU =—-«'n+xth,
(3.9)

RU=N(TxU') = %KZT* «'n+xrh.
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Continuing,
(RU) = (%19 -+ KT2>H + (2t +x1')b,
(3.10)
Tx (RU) = (%;9 —«" +KT2)T>< n+ (&' t+x7’)T % b.
From (2.4),
Tx (RU) = (%;@ — "+ KT2> b— (2« T+« )n,
1 1 (3.11)
R2U = —EKZTT -2k T+xr)n+ (EKS +x — KT2>b,
and as result
J‘/L(U)=p|:(2K’T+KT’)—i(%KS'—K”-i-KTz)]. (3.12)
We can give some results of this formula. First, differentiating v = xp, one gets
v’ =p(k —ixt),
(3.13)
v’ =p[(x" —x1?) —i(2k'T+x1")].
The filament flow y; = U induces a flow on v satisfying
. b1 2
iy +y" =Sy [Ty =0 (3.14)

This form is equivalent to (2.15), the nonlinear Schrodinger equation of repulsive type.

3.2. The differential of the Hasimoto transformation for spacelike curves. The Hasi-
moto transformation is given by

Hily) =xpi, i=1,2, (3.15)
where the differential of #€ can be expressed as

d¥:(U) = & ({1, R*U), i=1,2,

(3.16)
(=T, &= (n+b)p1, =(n- b)pa,



2614  The differential formula

where

p1(s) = exp ( - Lsrdu),

i (3.17)
pa(s) = exp (J ‘rdu),
0
and finally we formula can be written as
d#H;(U) = Mi(U) = &1 ({1, R?U),  i=1,2. (3.18)
We compute the differential formula for vector field U = xb. Thus
U =«'b+xn,
(3.19)
TXU =«'Txb+xtT Xn.
Since
TXxb=—-&n b=gTXxn,
Tx U =«'n+xth,
RU =N(TxU') = l1<2T-H<'n+mb,
2 (3.20)
(RU) = (%1@ + & +KT2>H+ (2k'T+x1")0,
Tx(RU) = (%19 +x +KT2>T xn+ (2K t+x1t’)T X b.
From (3.20),
RU=Tx(RU) =---+ (%1& +x” +KT2)b+ (2K’ T+x1")n, (3.21)
and as result
My (U) = e1p1 {(n+b),R*U) = py <2K'T+KT' -« - - %1@),
(3.22)

My(U) = e1p2{(n—b),R*U) = p, (2K'T+KT' +k + Kk + %K3>.

We can give some results of this formula : with differentianting q = xp; and r = «p,,
we obtain

r'=r1,=pa(x' +x1),

q =qs=p1 (k' — k1),
(3.23)

124

r" =1y =pa| (K" +x1?+ 26T +%7)],

g =qs=p1[ (" +x1> -2’7 — k7]
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We conclude that the filament flow y; = U induces a flow on g and r satisfying

1y =d#H,(U) = re + rzq,
(3.24)
g = d¥,(U) = —qs — ¢°r.

This form is equivalent to the nonlinear heat equation (2.16).
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