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The aim of the present paper is to introduce the asymmetric locally convex spaces and
to prove some basic properties. Among these I do mention the analogs of the Eidelheit-
Tuckey separation theorems, of the Alaoglu-Bourbaki theorem on the weak compactness
of the polar of a neighborhood of 0, and a Krein-Milman-type theorem. These results
extend those obtained by Garcia-Raffi et al. (2003) and Cobzas (2004).

1. Introduction

Let X be a real vector space. An asymimetric seminorm on X is a positive sublinear func-
tional p : X — [0; 00), that is, p satisfies the conditions

(AN1) p(x) = 0,

(AN2) p(tx) = tp(x),t =0,

(AN3) p(x+y) < p(x) +p(y),
for all x, y € X. The function p: X — [0,), defined by p(x) = p(—x), x € X, is another
positive sublinear functional on X, called the conjugate of p, and

pi(x) =max{p(x),p(-x)}, x€X, (1.1)

is a seminorm on X. The inequalities

|p(x)—p(y)| =p°(x—y), | p(x)—p(y) | =p°(x—y) (1.2)

hold for all x, y € X. If the seminorm p® is a norm on X, then we say that p is an asym-
metric norm on X. This means that, beside (AN1)—(AN3), it satisfies also the condition

(AN4) p(x) = 0 and p(—x) = 0 imply that x = 0.

The pair (X, p), where X is a linear space and p is an asymmetric seminorm on X is
called a space with asymmetric seminorm, respectively, a space with asymmetric norm, if p
is an asymmetric norm.

In the last years, the properties of spaces with asymmetric norms were investigated in a
series of papers, emphasizing similarities as well as differences with respect to the theory
of (symmetric) normed spaces, see [3, 5, 6, 7, 12, 13, 16, 17]. This study was stimulated
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also by their applications in the complexity of algorithms, see [11, 14, 18]. The aim of
the present paper is to develop the basic results in the theory of asymmetric locally con-
vex spaces, a natural extension of asymmetric normed spaces and of (symmetric) locally
convex spaces as well.

The function p : X X X — [0;00) defined by p(x,y) = p(y —x), x,y € X, is an asym-
metric semimetric on X. Denote by

B,(x,r) = {x' € X:p(x' —x) <r}, Bp(x,r) = {x" € X:p(x' —x) <7}, (1.3)

the open, respectively closed, ball in X of center x and radius r > 0. Denoting by

B, =B)(0,1),  B,=B,(0,1) (1.4)

the corresponding unit balls, then

BI

(1) =x+rB;,, By(x,r) = x+1Bj. (1.5)

The unit balls B, and B, are convex absorbing subsets of the space X and p agrees with
the Minkowski functional associated to any of them.

An asymmetric seminorm p on X generates a topology 7, on X, having as basis of
neighborhoods of a point x € X the family {B},(x,r) : > 0} of open p-balls. The family
{By(x,r):r >0} of closed p-balls is also a neighborhood basis at x for 7.

The ball B;,(x,r) is 7p-open but the ball B,(x,r) need not to be 7,-closed, as can be
seen from the following typical example.

Example 1.1. Consider on R the asymmetric seminorm u(«) = max{a,0}, « € R, and
denote by R, the space R equipped with the topology 7, generated by u. The conjugate
seminorm is #(«) = —min{a,0}, and u*(a) = max{u(a),i(a)} = |a|. The topology 7,
called the upper topology of R, is generated by the intervals of the form (—o0;a), a € R,
and the family {(—oo;a+€):€ >0} is a neighborhood basis of a point & € R. The set
(—00;1) = B,(0,1) is 7,-open, and the ball B,(0,1) = (—co;1] is not 7,-closed because
R\ B,(0,1) = (1;00) is not 7,-open.

Remark 1.2. As can be easily seen, the continuity of a mapping f from a topological
space (T,7) to (R, 1,) is equivalent to its upper semicontinuity as a mapping from (7, 7)
to (IR>| - |)'

The topology 7, is translation invariant, that is, the addition +: X X X — X is con-
tinuous, but the multiplication by scalars - : R X X — X need not be continuous, as it is
shown by some examples, as, for example, that given in [5]. We will present another one
in the context of Example 1.1.

Example 1.3. In the space (R,u) from Example 1.1, the interval (—co;1/2) is a 7,-
neighborhood of 0 = (—1)0 but for any «, 5 > 0, the neighborhood (—co; -1+ &) X (— o0,
B) of (—1,0) contains the point (—1,—1) and (=1)(—=1) = 1 & (—o0;1/2).

The discontinuity of the multiplication by scalars, («,x) — ax, for &« = —1 follows also
from the fact that the interval (—o0;a) is 7,-open but —(—co;a) = (—a; c0) is not 7,-open.
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The following proposition will be useful in the study of the continuity of linear map-
pings between asymmetric locally convex spaces.

ProrosritioN 1.4. If X is a real vector space, f,g: X — R are sublinear functionals, and
o, 3 >0, then the following conditions are equivalent:

vxeX, gx)<f= f(x)=<aq, (1.6)
VxeX, u(f(x) < %u(g(x)). (1.7)

If g(x) = 0 for all x € X, then these two conditions are also equivalent to the following
one:

VieX, f(x)< %g(x). (1.8)
Proof. (1.6)=(1.7). Let x € X. If g(x) < 0, then g(nx) = ng(x) <0< a, n €N, so that
nf(x) = f(nx) <f,n e N, implying that f(x) <0 and

[24

u(f(x)) =0= ;

u(g(x)). (1.9)
If g(x) >0, then g((B/g(x))x) = B, so that
f(%x) <o &= f(X) =< %g(x) — u(f(x)) < gu(g(x)) (1.10)

(L.7)=>(1.6). Let x € X. If g(x) < 0 < f3, then u(g(x)) = 0, so that

fx) < u(fx) = %u(g(x)) = %g(x) <a (1.11)
If g(x) >0, then by hypothesis,

) < u(fx) = %u(g(x)) = %g(x) <a (1.12)
Since g(x) = 0, x € X, implies that u(g(x)) = g(x), x € X, the equivalence (1.7) & (1.8) is
obvious. 0

Let now P be a family of asymmetric seminorms on a real vector space X. Denote by
% (P) the family of all nonempty finite subsets of P, and for F € &(P), x € X, and r >0,
let

Br(x,r)={yeX:p(y—x)<r, peF} = ﬂ{Bp(x,r):p € F},

(1.13)
Bp(x,r)={yeX:p(y—x)<r, peF} = ﬂ{B}’,(x,r):p € F}

denote the closed, respectively, open multiball of center x and radius r. It is immediate
that these multiballs are convex absorbing subsets of X.
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Putting
pr(x) =max{p(x):peF}, xeX, (1.14)
then pr is an asymmetric seminorm on X and
Br(x,r) = By (x,1), Bp(x,r) = By, (x,7). (1.15)

The asymmetric locally convex topology associated to the family P of asymmetric semi-
norms on a real vector space X is the topology 7p having as basis of neighborhoods of
any point x € X the family N'(x) = {Bp(x,7) : ¥ >0, F € (P)} of open multiballs. The
family N'(x) = {Br(x,r) : 7 >0, F € F(P)} of closed multiballs is also a neighborhood
basis at x for 7p.

It is easy to check that the family N”(x) fulfills the requirements of a neighborhood
basis, that is,

(BN1) x € Bgp(x,7),

(BN2) for B, (x,r1) and Bg, (x,72) in N'(x), there exists Bp(x,7) € N'(x) such that

Bp(x,r) C B, (x,71) N B, (x,12).

For (BN2), one can take F = F; UF, and r = min{ry,r,}.

Obviously, for P = {p}, we obtain the topology 7, of an asymmetric seminormed
space (X, p) considered above, that is, 7(,; = 7,.

The topology 7p is derived from a quasiuniformity Wp on X having as vicinities the
sets

We(e) = {(x,y) XXX :p(y—x) <€, pEF}, (1.16)

for F € #(P) and € > 0. Replacing the sign < by < in the above definition, the corre-
sponding sets will form a basis for the same quasiuniformity Wp. A good source for the
properties of quasiuniform spaces is the book [10] (see also [4]). Quasiuniform structures
related to asymmetric normed spaces were investigated in [1, 2, 9].

We say that the family P is directed if for any p;, p> € P, there exists p € P such that p >
pi»i=1,2, where p > g stands for the pointwise ordering: p(x) > q(x) for all x € X. If the
family P is directed, then for any 7p-neighborhood of a point x € X, there exist p € P and
r > 0 such that B;,(x,r) C V (resp., By(x,r) C V). Indeed, if Bx(x,7) C V, then there exists
p € Psuch that p > g forall g € F so that B, (x,r) C Bp(x,r) C V. Similarly, the vicinities
defined by (1.16) with F = {p}, p € P, and € >0 form a basis for the quasiuniformity
Wp.

The family

P;={pr:FeF[P)}, (1.17)

where pr is defined by (1.14), is a directed family of asymmetric seminorms generating
the same topology as P, that is, 7p, = 7p. Therefore, without restricting the generality, we
can always suppose that the family P of asymmetric seminorms is directed.
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Because Br(x,7) = x + Bp(0,7) and Bg(x,r) = x + Br(0,7), the topology 7p is transla-
tion invariant,

V(x)={x+V:VeV()}, (1.18)

where by V'(x) we have denoted the family of all neighborhoods with respect to 7p of a
point x € X.

The addition +: X X X — X is continuous. Indeed, for x, y € X and the neighborhood
Bp(x+ y,r) of x+ y, we have B(x,7/2) + Br(y,1r/2) C Bp(x+ y,7).

As we have seen in Example 1.3, the multiplication by scalars need not be continuous,
even in asymmetric seminormed spaces.

The topology 7, generated by an asymmetric norm is not always Hausdorff. A nec-
essary and sufficient condition in order that 7, be Hausdorff is given in the following
proposition.

ProrosritioN 1.5 (see [13]). For an asymmetric seminorm p on a real vector space X, put
px) =inf{p(x)+p(x' —x):x" € X}, xeX. (1.19)

(1) The functional p is a (symmetric) seminorm on X, p < p, and p is the greatest of the
seminorms on X majorized by p.
(2) The topology T, generated by p is Hausdorff if and only if p(x) > 0 for every x # 0.

Proof. We will give a proof of the first assertion, different from that given in [13]. The
second assertion will be proved in the more general context of asymmetric locally convex
spaces.

First, observe that replacing x” by x" — x in (1.19), we get

p(=x) =inf {p(x") + p(x' +x) :x" € X}
. , , , ~ (1.20)
=inf {p(x" —x)+ p((x" —x)+x) : x' € X} = p(x),

so that p is symmetric. The positive homogeneity of p, p(ax) = ap(x),x € X, a = 0, is
obvious. For x, y € X and arbitrary x", y" € X, we have

plx+y)<px+y)+px’+y —x—y) < p(x")+p(x" —x)+p(y)+p(y —y),
(1.21)

so that passing to infimum with respect to x’, y" € X, we obtain the subadditivity of p,
plx+y) =< p(x)+p(y). (1.22)

Suppose now that there exists a seminorm g on X such that g < p, thatis, forall z € X,
q(z) < p(z), and p(x) < q(x) < p(x), for some x € X. Then, by the definition of p, there
exists x” € X such that p(x) < p(x”) + p(x’ — x) < q(x), leading to the contradiction

q(x) < q(x)+qlx—x") = qx')+q(x" —x) < p(x") + p(x" —x) < g(x). (1.23)
O
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The following characterization of the Hausdorff separation property for locally convex
spaces is well known, see, for example, [19, Lemma VIII.1.4].

ProrosritioN 1.6. Let (X,Q) be a locally convex space, where Q is a family of seminorms
generating the topology 1q of X. The topology 1q is Hausdorff separated if and only if for
every x € X, x # 0, there exists q € Q such that q(x) > 0.

In the case of asymmetric locally convex spaces, we have the following characteriza-
tion.

ProrosiTioN 1.7. Let P be a family of asymmetric seminorms on a real vector space X.
The asymmetric locally convex topology tp is Hausdorff separated if and only if for every
x € X, x # 0, there exists p € P such that p(x) >0, where p is the seminorm associated to
the asymmetric seminorm p through the formula (1.19).

Proof. Suppose that P is directed and let
P={p:peP} (1.24)

Denote by 75 the locally convex topology on X generated by the family P of seminorms.
The topology 7p is finer than 7. Indeed, G € 7 is equivalent to the fact that for every
x € G, there exist p € P and r > 0 such that Bj(x,r) C G. Because p(y — x) < r implies
that p(y —x) < p(y — x) <r, we have B;(x,r) - B;;(x,r) C G, so that G € 7p. If for every
x € X, x # 0, there exists p € P such that p(x) >0, then the locally convex topology 75 is
separated Hausdorff, and so will be the finer topology 7p.

Conversely, suppose that the topology 7p is Hausdorff and show that p(x) = 0 for all
p € P implies that x = 0.

Let x € P be such that p(x) = 0 for all p € P. By the definition (1.19) of the seminorm
p, for every p € P and n € N, there exists an element x(, ,) € X such that

1

P (Xpun)) + P (xp) = %) <. (1.25)

Define the order on P X N by (p,n) < (g,m) if and only if p < g and n < m. Since the
family P of asymmetric seminorms is directed, the set P X N is also directed with respect
to the order we just defined. Therefore, {x(pn) : (p,n) € P x N} isanetin X and by (1.25),
we have

1 1
Plpm) <5 Py —x) < (1.26)

forall (p,n) € PxN.

We will prove that the net {x(; )} converges to both 0 and x. Since the topology 7p is
Hausdorff, this will imply that x = 0.

To prove that the net {x(,, )} converges to 0, we have to show that for every p € P, the
net {p(x(p,))} tends to 0, that is,

VpeP, Ve>0, I(po,no) € PXN, V(q,n) € Px N, such that

1.27
(g,n) = (po,n0) = plx(gm) <E. (127
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Let p € P and € > 0. Put py = p and let ny € N be such that 1/ny < €. Then for every
(g,n) € P x N such that g > p and n > n, we have
L
no

=<

<E. (1.28)

S =

p(xgm) < q(x(gm) <

The convergence of {p(x(p ) —x)} to 0, which is equivalent to the 7p-convergence of
{x(p,m} t0 x, can be proved similarly, using the second inequality in (1.26). O

CoroLLARY 1.8. Let (X,P) be an asymmetric locally convex space. If the topology tp is
Hausdorff, then for every x € X, x # 0, there exists p € P such that p(x) > 0.

Proof. If the topology 7p is Hausdorff, then for every x € X, x # 0, there exists p € P
such that p(x) > 0. Replacing x by —x and taking x” = 0 in the definition (1.19) of the
seminorm p, we get

p(x) = p(0)+ p(0+x) = p(x) >0. (1.29)
O

As in the symmetric case, asymmetric locally convex topologies can be defined through
some basic families of convex absorbing sets.

A nonempty family € of subsets of a real vector space X is called an asymmetric locally
convex basis provided that

(BC1) each C € @ is convex and absorbing;

(BC2) for every C;,C; € 6, there exists C € € such that C € C; N Cy;

(BC3) for every C € € and « > 0, there exists D € € such that D C aC.

Define a mapping U : X — 2X by

WU(x) ={U cX:39C €6 suchthatx+C c U}. (1.30)

Recall that for an absorbing subset C of X, the Minkowski functional pc: X — [0;00)
is defined by

pe(x) =inf{t>0:x € tC}. (1.31)
If C is absorbing and convex, then pc is a positive sublinear functional, and
{xeX:pcx)<l}cCc{xeX:pclx) <1}. (1.32)
Conversely, if p is a positive sublinear functional on X, then C' = {x € X : p(x) < 1}
and C = {x € X : p(x) < 1} are convex absorbing subsets of X, and pc' = pc = p.
Denoting by
P={pc:Ce6} (1.33)
the family of all Minkowski functionals associated to the sets in 6, then P is a family of

asymmetric seminorms on X. By (BC1) and the fact that pc < pp if D C C, it follows that
the family P is directed.
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ProrosITiON 1.9. The family U(x) of subsets of X given by (1.30) satisfies the axioms of
a neighborhood system, so that it defines a topology 1¢ on X. This topology agrees with the
asymmetric locally convex topology generated by the family (1.33) of asymmetric seminorms.

Proof. One can easily check that the family U of subsets of X satisfies the axioms of a
neighborhood system.

Since both of the topologies 7¢ and 7p are translation invariant, in order to prove their
coincidence, it suffices to show that they have the same 0-neighborhoods. Denote by V'
the neighborhood mapping associated to 7p. If U € WU(0), then there exists C € € such
that C C U. The inclusions

{xeX:pclx)<l}cCcU (1.34)

show that U € 9(0).
Conversely, if V € 97(0), then there exist C € € and r > 0 such that {x € X : pc(x) <
r} C V. By (BC3), there exists D € € such that D C rC. But then

DcrCc{xeX:pclx)<r}CV, (1.35)
so that V € AL(0). O

2. Bounded linear mappings between asymmetric locally convex spaces
and the dual space

Let (X, P), (Y,Q) be two asymmetric locally convex spaces with the topologies 7p and 7
generated by the families P and Q of asymmetric seminorms on X and Y, respectively. In
the following, when we say that (X, P) is an asymmetric locally convex space, we under-
stand that X is a real vector space, P is a family of asymmetric seminorms on X, and 7p is
the asymmetric locally convex topology associated to P.

A linear mapping A : X — Y is called (P,Q)-bounded if for every q € Q, there exist
F € %(P) and L > 0 such that

VxeX, q(Ax)<Lmax{p(x):p € F}. (2.1)

If the family P is directed, then the (P, Q)-boundedness of A is equivalent to the con-
dition that for every g € Q, there exist p € P and L > 0 such that

VxeX, q(Ax)=<Lp(x). (2.2)

The continuity of the mapping A from (X, 7p) to (Y,7q) is called (7p, 7q)-continuity.
We will use also the term (P, Q)-continuity for this property, and (P, u)-continuity in the
case of (7p, 1, )-continuous linear functionals.

Because both of the topologies 7p and 7, are translation invariant, we have the follow-
ing result. Recall that a mapping F between two quasiuniform spaces (X,U) and (Y, W)
is called quasiuniformly continuous if for every W € W, there exists U € U such that
(F(x),F(y)) € W for every (x,y) € U.
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ProrositioN 2.1. Let (X, P) and (Y, Q) be asymmetric locally convex spacesand A : X — Y
a linear mapping. The following conditions are equivalent.

(1) The mapping A is (P, Q)-continuous on X.

(2) The mapping A is continuous at 0 € X.

(3) The mapping A is continuous at some point xo € X.

The following proposition emphasizes the equivalence of continuity and boundedness
for linear mappings.

ProrositioN 2.2. Let (X,P) and (Y,Q) be two asymmetric locally convex spaces and A :
X — Y alinear mapping. The following assertions are equivalent.

(1) The mapping A is (P, Q)-continuous on X.

(2) The mapping A is continuous at 0 € X.

(3) The mapping A is (P,Q)-bounded.

(4) The mapping A is quasiuniformly continuous with respect to the quasiuniformities
Wp and Wq.

Proof. The equivalence (1) ¢ (2) follows from the preceding proposition.

Suppose that the families P and Q are directed.

(2) ¢ (3). For q € Q, consider the 7o-neighborhood V = B,(0,1) of A0 =0 € Y, and
let U be a neighborhood of 0 € X such that A(U) C V. If p € P and r > 0 are such that
B,(0,r) C U, then

VxeX, plx)<sr=q(Ax)<1. (2.3)

By Proposition 1.4 applied to f(x) = g(Ax) and g(x) = p(x), this relation implies that
VieX, q(Ax)< % (). (2.4)

Conversely, if A is (P, Q)-bounded, then for every 7o-neighborhood V of 0 € Y, there
exist ¢ € Q and R >0 such that B;(0,R) C V. Let p € P and L > 0 be such that the condi-
tion (2.2) is fulfilled. Taking r := R/(L + 1), we have

Vx € By(0,r), q(Ax)<Lp(x) < %R <R, (2.5)

which shows that A(B,(0,7)) C B4(0,R) C V, thatis, A is continuous at 0 € X.

The implication (3)=(4) follows from the (P, Q)-boundedness of the mapping A and
the definition (1.16) of the vicinities.

To prove (4)=(3), suppose that A is (Wp, W' g)-quasiuniformly continuous. For g € Q,
let W={(y,y) €eYxY:q(y—y)=<1} €Wq,and let U = {(x',x) e X X X : p(x —
x") <r} € Wp be such that (x',x) € U implies that (Ax’,Ax) € W. Taking x" = 0, it fol-
lows that

VxeX, pkx)<r=qAx) <1, (2.6)
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so that, by Proposition 1.4,

VxeX, q(Ax) < =p(x). 2.7)

O

N |-

In the case of linear functionals on an asymmetric locally convex space, we have the
following characterization of continuity, where u is as in Example 1.1.

ProrosITION 2.3. Let (X, P) be an asymmetric locally convex space and ¢ : X — R a linear
functional. The following assertions are equivalent.

(1) @ is (P,u)-continuous at 0 € X.

(2) @ is (P,u)-continuous on X.

(3) There exist p € P and L > 0 such that

VxeX, ¢x)=<Lpx). (2.8)

(4) @ is upper semicontinuous from (X, 1p) to (R,] - |).

Remark 2.4. 1f the family P is not directed, then the (P, u)-continuity of the functional ¢
is equivalent to the condition that there exist F € &(P) and L > 0 such that

VxeX, ¢(x)<Lmax{p(x):p € F}=Lpp(x). (2.9)

The dual of an asymmetric locally convex space. For an asymmetric locally convex space
(X,P), denote by X* = Xﬁ the set of all linear (P, u)-continuous functionals. If P = {p},
then we obtain the dual space X}i’ of an asymmetric normed space (X, p) considered in
[13].
Let X* be the algebraic dual space to X, that is, the space of all linear functionals on X.
In contrast to the symmetric case, X" = X} is not a subspace of X*, but merely a convex
cone, that is,
(i) pyeX"=gp+yeX’,
(i) peX"anda= 0= ap € X".
There are examples in the case P = {p} of p-bounded linear functionals ¢ on a space
with asymmetric norm (X, p) such that —¢ is not p-bounded, see [5]. A simpler example
can be exhibited in the space (R, «) from Example 1.1.

Example 2.5. The identity mapping ¢(¢) = ¢, t € R, is (7, 7, )-continuous because
VteR, ¢(t)=t<max{t,0} = u(t), (2.10)

but —¢ is not (7,,7,)-continuous, because it is impossible to find L = 0 such that
(—9)(t) < Lu(t) for all t € R. Indeed, taking t = —1, we obtain the contradiction

l=(-¢)(-1)<L-u(-1)=0. (2.11)

Remark 2.6. 1t is easy to check that a linear functional ¢(t) = at, t € R, is (7, Ty)-
continuous if and only if a > 0. Indeed if a = 0, then ¢(t) = at < u(at) = au(t), t € R.
If a < 0, then, reasoning as above, one concludes that ¢ fails to be continuous.



S. Cobzas 2595

Suppose that the family P of asymmetric seminorms is directed, and for p € P, let
P (x) = max{p(x), p(—x)} be the symmetric seminorm attached to p, and let

P ={p*:pe P} (2.12)

Denote by X* = (X, P*)* the dual space of the locally convex space (X, P*). Since for a
seminorm q and a linear functional ¢ we have

VxeX, o¢kx)<Llqx) = VxeX, |ox)| <Lg(x), (2.13)

we have X" = X} ¢ X* = (X,P*)*. Indeed, if p € X", p € P, and L > 0 are such that for
all x € X, ¢(x) < Lp(x), then, the inequality p < p* and the above equivalence imply that
lp(x)| < Lp*(x), x € X, showing that ¢ € X*.

Let p be an asymmetric seminorm on a real vector space X and let ¢ : X — R be a
linear functional. Put

lglp = supg(By). (2.14)
We say that the functional ¢ is p-bounded if there exists L > 0 such that
VxeX, ¢x)=<Lpx). (2.15)

A number L > 0 satisfying (2.15) is called a p-Lipschitz constant for ¢. The functional ¢
is p-bounded if and only if |||, < co and ||¢|, is the smallest p-Lipschitz constant for ¢.
The p-boundedness of ¢ is also equivalent to its (7, 7,)-continuity. The functional || - [,
defined by (2.14) is an asymmetric norm on the asymmetric dual X, of (X, p), that s,
lo+vyl, < llol, + vl llagl, = alll,, for all ¢,y € X, and « = 0. Also, [l¢|, >0 for
9 €X;\ {0}

Similar considerations can be done with respect to the conjugate asymmetric semi-
norm p(x) = p(—x) of p and

lglp = supp(Bj). (2.16)
Some properties of the norm || - |, are collected in the following proposition.

ProrosITION 2.7. Let p be an asymmetric seminorm on a real vector space X and ¢ : X — R
a linear functional.
(1) The following equalities hold:

gl =supp(B,),  llgl; =supgp(Bj). (2.17)
Moreover, if the functional ¢ # 0 is p-bounded, then |||, >0 and ¢p(xo) = |l¢|,, for some
Xo € By, implies that p(xo) = 1.
(2) If o # 0is (p, p)-bounded, then

¢(B,) = (= llglsllelp). (2.18)
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If ¢ is p-bounded but not p-bounded, then

¢(B,) = (— s llolp). (2.19)

Proof. (1) If (x,) is a sequence in B, such that ¢(x,) — [l¢|, for n — oo, then x; = (1 -
1/n)x, € B;, and ¢(x,) — ll¢@|,. Because

supg(B,) <supp(B,) = llgl, (2.20)

it follows that sup ga(B;,) = llolp.

If  # 0, and z € X is such that ¢(z) > 0, then the inequality ¢(z) < llol,p(z) implies
that [lg[, > 0.

If xo € By issuch that ¢(xo) = [l@|,, then |||, p(x0) = ¢(x0) = [l@|, >0, so that p(xo) >
0.1If p(xo) < 1, then x; = (1/p(x0))xo € B, and

%Z; - 11'((/;!:) > llglp = supo(B,), (2.21)

SD(Xl) =

a contradiction.
(2) Suppose that ¢ is (p, p)-bounded. We have

lpls =sup{p(x): p(x) <1} = sup {p(—x) : p(x) < 1}

= —inf {p(x): p(x) < 1}. (222)
Similar calculations show that
llgl = —inf (B,). (2.23)
Because B, is convex, it follows that ¢(B}) is an interval in R and
(=llglsllely) Co(B,) C [ = llolslel,]. (2.24)

If [[pl, € go(BI’,), then [|¢|, = ¢(xo), for some xo € X with p(xo) < 1, in contradiction
to the assertion (1) of the proposition. Similarly, if —[l¢|5 € ¢(B}), then —ll¢l; = ¢(x1),
for some x; € X with p(x;) < 1. But then, for x] = (1/p(x1))x; € B), we obtain the con-
tradiction

o(x) _ —llgls

px1)  pla) <~llpl; = info(Bp). (2.25)

plx1) =
If ¢ is p-bounded but not p-bounded, then

lgls =supg(B;) = oo, (2.26)

so that, by (2.22), inffp(B;,) = —|lgls = —oo. Since (p(Bl’,) is an interval in R,|¢|, =
supp(B}), and llgl, & ¢(B}), it follows that ¢(Bj,) = (=03 [l¢]p). a
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Extension of bounded linear functionals. As in the symmetric case, an extension result for
continuous linear functionals defined on subspaces of an asymmetric locally convex space
will be particularly useful in developing a duality theory for such spaces.

ProposiTioN 2.8. Let (X,P) be an asymmetric locally convex space and Y a subspace of X.
Ifp:Y — Risa (P,u)-continuous linear functional, then there exists a (P, u)-continuous
linear functional ® : X — R such that @ |y= ¢.

Proof. Suppose that the family P is directed. By Proposition 2.3, there exist p € P and
L = 0 such that

VyeY, o(y)=<Lp(y). (2.27)

By the Hahn-Banach dominated extension theorem, there exists a linear functional
®: X — R such that ®|y = ¢ and

VxeX, d(x)=<Lpx), (2.28)

which, by the same Proposition 2.3, is equivalent to the (P, u)-continuity of ®. O
The following existence result is well known in the symmetric case.

ProrosiTioN 2.9. (1) If p is an asymmetric norm on a real vector space X and xo € X is
such that p(xo) > 0, then there exists a p-bounded linear functional ¢ : X — R such that
(1) ¢(x0) = p(x0),
(ii) llgplp = 1.
(2) Let (X, P) be an asymmetric locally convex space. If the topology tp is Hausdorff, then
for every xo € X, xo # 0, there exists y € X* such that y(xo) = 1.

Proof. (1) Let Z = Rxy and ¢ : Z — R be defined by ¢y(tx) = tp(xp), t € R. Then ¢y
is linear and ¢ (txy) = tp(xo) = p(txo) for t = 0. Since @o(txy) = tp(xp) <0 < p(txo) for
t <0, it follows that @¢(z) < p(z) for all z € Z. By the Hahn-Banach extension theorem,
there exists a linear functional ¢ : X — R such that ¢|z = @9 and ¢(x) < p(x) forallx € X,
implying that |||, < 1. Since

lolp = sup {@(x) :x € By} = sup {¢o(2) :z2€ ZNB,} zgoo( x0> =1, (2.29)

p(xo)

it follows that |||, = 1.

(2) If xp # 0 and 7p is Hausdorff, then by Corollary 1.8, there exists p € P such that
plxg) >0.If ¢ : X — R is a p-bounded linear functional satisfying the conditions (i) and
(ii) of the first assertion, then we can take y = (1/p(x0))¢. O

The w*-topology of the dual X°. This is the analog of the weak* -topology (w*-topology)
on the dual of a locally convex space. In the case of an asymmetric normed space (X, p),
it was considered in [13].

Let (X, P) be an asymmetric locally convex space and X° = X the asymmetric dual
cone. A w”-neighborhood of an element ¢ € X" is a subset W of X* for which there exist
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X15...,X, € X and € > 0 such that
Ve (@) ={v e X" 1y (x) —9(xi) <€, i=1,...,n} CW. (2.30)

For x € X, define g, : X" — [0;00) by gx(¢) = ¢(x), ¢ € X°. Then g, is additive and
positively homogeneous on X* and

Vi@ ={v X’ :1q(v—9) <€, i=1,...,n}. (2.31)

The w"-convergence of a net {pp,iclltopeX ® is equivalent to the fact that for
every x € X, the net {(¢; — ¢)(x), i € I'} converges to 0 in (R, u), that is,

VxeX, Ve>0, Jip €1 suchthat Vi=1ip, (¢;i—¢)(x)<e. (2.32)
Since X" ¢ X* and
Vie @) NV ose(@) = {y € X" : [(y —9)(x) | <€}, (2.33)

it follows that the w”-topology on X" is induced by the w*-topology of the space X *.

Asymmetric polars. Let (X,P) be an asymmetric locally convex space, (X,P*) the asso-
ciated locally convex space, X" the asymmetric dual of (X,P), and X* = (X,P*)* the
conjugate space of (X, P*).

The polar of a nonempty subset Y of (X, P®) is defined by

Ye={x*eX*:VyeY, x*(y) <1}. (2.34)
Define the corresponding set in the case of the asymmetric dual X* by
Yi=Y'nX"={peX":VyeY, oy <1}, (2.35)

and call it the asymmetric polar of the set Y.

As it is well known, the set Y*° is a convex w*-closed subset of X* (see, e.g., [19, page
341]). Since the w"-topology on X” C X* is induced by the w*-topology on X*, we have
the following result.

ProrosritioN 2.10. The asymmetric polar Y* of a nonempty subset Y of an asymmetric
locally convex space (X, P) is a convex w’ -closed subset of X".

In the following proposition, we prove the asymmetric analog of the Alaoglu-Bourbaki
theorem, see, for example, [8, Theorem 4.31] or [19, Satz VIII.3.11].

ProrosiTioN 2.11. The asymmetric polar of a neighborhood of the origin of an asymmetric
locally convex space (X, P) is a convex w’-compact subset of the asymmetric dual X".

Proof. Suppose that P is directed. If V is a 7p-neighborhood of 0 € X, then there exist
p € Pand r >0 such that B,(0,7) C V. Because p*(x) < r implies that p(x) < p*(x) < r, it
follows that B (0,r) C B,(0,7) C V, so that V is a neighborhood of 0 in the locally convex
space (X, P). By the Alaoglu-Bourbaki theorem (see [19, Satz WIII.3.11]), it follows that
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V* is a convex w*-compact subset of the dual X*. Since w"-compactness of V¢ is equiv-

alent to its w*-compactness in X*, it is sufficient to show that the set V* is w*-closed
in X*,

Let {¢;:i €I} be a net in V* that is w*-convergent to f € X*. This means that for
every x € X, the net {¢;(x) :i € I} converges to f(x) in (R,| - |). Since for every v € V,
pi(v) <1, foralli € I, it follows that f(v) < 1 forall v € V. Because f is linear, it is suffi-
cient to prove its (P, u)-continuity at 0 € X. Consider for some € > 0 the 7,,-neighborhood
(—oos€) of f(0) =0 € R. Then U = (€/2)V is a p-neighborhood of 0 € X, and forv e V
and u = (€/2)v € U, we have

€
fu) = ff(v =5<6 (2.36)
that is, f(U) C (—o0;€), proving the (P,u)-continuity of f at 0.
It follows that f € V¢, so that V* is w*-closed in X*. O

3. The continuity of the Minkowski functional and the separation of convex sets
Proposition 2.3 can be extended to sublinear functionals.

PropositioN 3.1. Let (X,P) be an asymmetric locally convex space, where P is a directed
family of asymmetric seminorms on X, and let f:X — R be a sublinear functional. The
following assertions are equivalent.

(1) The functional f is (P,u)-continuous at 0 € X.

(2) The functional f is (P,u)-continuous on X.

(3) There exist p € P and L > 0 such that

VxeX, f(x)=<Lp(x). (3.1

(4) The functional f is upper semicontinuous from (X, tp) to (R,] - |).

Proof. (1)=(3). Since (—o0;1] is a 7,-neighborhood of f(0) = 0 € R, there exist p € P
and r > 0 such that f(B,(0,7)) C (—o0;1], that is,

vVxeX, px)sr= f(x)=<1 (3.2)

By Proposition 1.4, this implies that
1
vVxeX, f(x)= ;p(x). (3.3)
(3)=(2). Let xy € X, and for some € >0, let (—o0; f(xy) + €) be a 7,-neighborhood
of f(xp). If p € P and L = 0 are as in the assertion (3) of the proposition, then U = x, +

(€/(L+1))B, is a p-neighborhood of x¢, and for every z € B, and x = xo + (€/(L+ 1))z €
U, we have

6= f0) + = () = f (x) +€LL? < flxo) +6 (3.4)

proving the (P,u)-continuity of f at x.
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Because the implication (2)=(1) is trivial, it follows the equivalence of the first three
assertions of the theorem.

As the equivalence (2) ¢ (4) holds for any mapping f : X — R (see Remark 1.2), it
follows the equivalence of all four assertions of the proposition. O

The above proposition has the following useful corollary.

CoROLLARY 3.2. Let f, g be sublinear functionals defined on an asymmetric locally convex
space (X,P). If f < g and g is (P,u)-continuous, then f is (P, u)-continuous too.
In particular, the result is true when f is linear.

Proof. By Proposition 3.1, there exist p € P and L > 0 such that for all x € X, g(x) <
Lp(x). It follows that for all x € X, f(x) < g(x) < Lp(x), which, by the same proposition,
implies the continuity of f. O

Concerning the continuity of the Minkowski functional, we have the following result.

ProrosritioN 3.3. Let C be a convex absorbing subset of an asymmetric locally convex space
(X,P).
(1) The Minkowski functional pc is (P,u)-continuous if and only if 0 is a tp-interior
point of C.
(2) If pc is (P,u)-continuous, then
7p-intC = {x € X : pc(x) < 1}. (3.5)

Proof. Suppose that the family P is directed.
(1) If 0 is a 7p-interior point of C, then there exist p € P and r > 0 such that

By(0,r)cCcC {xeX:pc(x) <1}, (3.6)
that is,
VxeX, px)<r= pclx)=<1. (3.7)

By Proposition 1.4, we have

N | =

VxeX, pclx)=<-—plx), (3.8)
which, by Proposition 3.1, implies the (P, u)-continuity of pc.

Conversely, suppose that pc is (P,u)-continuous. Since the set (—o0;1) is 7,-open in
R, theset {x € X : pc(x) < 1} = pgl (—o0;1) is Tp-open, contains 0, and is contained in C,
implying that 0 € 7p-intC.

(2) If pc is (P, u)-continuous, then the above inclusion shows that

{x e X: pc(x) <1} C 7p-intC. (3.9)

If x € 7p-intC, then there exist p; € P and r > 0 such that B;,l (x,r) € C.Let p, € Pand
L >0 be such that for all x € X, pc(x) < Lp,(x). If p € Pissuch that p = p;,i= 1,2, then
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B},(x,r) CBj, (x,r) C Cand
VxeX, pclx)=<Lp(x). (3.10)

If p(x) = 0, then, by the above inequality, pc(x) = 0 < 1. If p(x) >0, put x, = (1 +a)x for
a > 0. Since p(xq —x) = ap(x) <r for 0 < a < r/p(x), it follows that x4 € C for 0 < & <
r/p(x). But then, for any such &, we have

= X, <1 (3.11)
1+« 1+« 0

The separation of convex sets. The separation results for convex subsets of locally convex
spaces are key tools in the study of duality for these spaces as well as in optimization
problems.

In the following two theorems, we prove the asymmetric analogs of the classical sepa-
ration theorems of Eidelheit and Tukey (see [15, Theorems 2.2.26 and 2.2.28]).

TaeOREM 3.4. Let (X,P) be an asymmetric locally convex space. If Y1, Y, are two disjoint
nonempty convex subsets of X with Y, tp-open, then there exists a linear functional ¢ € X*
such that

VyeY, VyeYs o) <o(y). (3.12)

Proof. Let y? € Y;,i=1,2,and letxy = y3 — y!. Since the set Y; is 7p-open and the topol-
ogy Tp is translation invariant, the set

YZ=X0+Y1—Y2=U{Xo—y2+Y1Zy2€Y2} (313)

is Tp-open too.

Wehave 0 = xo + ) — 3 € Yand x ¢ Y. Indeed, if xo = xo + y1 — y2, for some y; € Y}
and y, € Y3, then the element y = y; = y, would belong to the empty set Y, N Y5.

By the preceding proposition, the Minkowski functional py of the 7p-open convex set
Y is sublinear, (P,u)-continuous, and py(xp) = 1 since xy & Y. By Proposition 2.9(1),
there exists a py-bounded linear functional v : X — R such that y(x) = py(xo) and
y(x) < py(x), x € X. Taking ¢ = (1/py(x0))y, it follows that

V) < L Wepx. (14

1
=1, V X, = —
#(x0) e o) py (%0 py (x0)

By Proposition 2.3, the functional ¢ is (P, u)-continuous. Because Y is tp-open and
0 € Y, by Proposition 3.3, we have Y = {x € X : py(x) < 1}. Since ¢(xy) = 1, we obtain

Vy €Y, ¥y eYy 1+9(y1) —e(y2) =@lxo+y1—y2) < py(xo+y—y2) <1,
(3.15)

implying that

Vyl ey, Vyz €Y, §0(}/1) < (p(yz) (316)
O
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We prove now the asymmetric analog of Tukey’s separation theorem.

THEOREM 3.5. Let (X, P) be an asymmetric locally convex space. If Y1, Y are two nonempty
disjoint convex subsets of X with Y, tp-compact and Y, tp-closed, then there exists a func-
tional ¢ € X" such that

supp(Y;) <info(Y3). (3.17)

Proof. Suppose that P is directed.
Since Y1 NY; = @ and Y; is 7p-closed, for every y € Yy, there exist p, € Pand r, >0
such that

(y+2r,B, ) NY,=0. (3.18)

The 7p-open cover {y + ryB;,y 1y € Y1} of the Tp-compact set Y, contains a finite subcover
{yk+rkBl',k tk=1,2,...,n}, where p; = p,, and r, = ry, for k = 1,...,n. Take p € P such
that p = pr, k=1,2,...,n, put r := min{ry : k = 1,2,...,n} and show that

(Y] +T’BI,,) NnNY,=09. (3.19)

Indeed, if y’ = y+ruforsomey €Y, u € B;,, and y’ € Y3, then, choosing k € {1,2,...,n}
such that y € yi + 1B}, , we have

’

pr>

y'=y+ru€ y+rB,+ 1B, C yk+rkB, +1kB, = yk+2rcBy,, (3.20)

in contradiction to (3.18).
ThesetZ:=Y, + rB;, is convex, Tp-open, and disjoint from Y,. By Theorem 3.4, there
exists ¢ € X" such that

VyeY, YVueB, Vy €Y, o(y)+rou)<o(y). (3.21)

By Proposition 2.3, there exist q; € P and L > 0 such that for all x € X, ¢(x) < Lq, (x). If
q € P is such that g > max{p,q:}, then ¢(x) < Lq(x), x € X, and B; C B}, so that

VyeY), Vue B;I, Vy' eY, o(y)+ro(u)<ey). (3.22)

By (3.21), ¢ # 0, so that by Proposition 2.7, llolg = sup go(B;j) > 0. Passing in (3.22) to
supremum with respect to u € By, we get

VyeY, Vy' eYs oy +riely <o(y), (3.23)

implying that
rllglg+supe(Y)) <infeo(Y>). (3.24)

It follows that
supp (Y1) <info(Y3). (3.25)

O
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Remark 3.6. The inequality in Theorem 3.4 cannot be reversed, in the sense that, under
the same hypotheses on the sets Y7 and Y>, we cannot find a (P,u)-continuous linear
functional ¥ on X such that

Vyz €Y, V}/l ey, W(}/z) < 1[/()/1) (326)

This is due, on one side, to the fact that the functional —¢ need not be (P, u)-continuous,
where ¢ is the linear functional given by Theorem 3.4. On the other side, analyzing the
proof of Theorem 3.4, it follows that we should work with the set Y := xy + Y, — Y} which
need not be 7p-open, because the 7p-openness of Y; does not imply the 7p-openness of
—Y1, see Example 1.3.

The same caution must be taken when applying Theorem 3.5.

Extreme points and the Krein-Milman theorem. We start by recalling some notions and
facts. A point e of a convex subset of a vector space X is called an extreme point of Y
provided that (1 —t)x+ty = e, for some x,y € Y and 0 < ¢ < 1, implies that x = y = e. A
nonempty convex subset Z of Y is called an extremal subset of Y if (1 —t)x+ty € Z, for
some x,y € Y and 0 < ¢ < 1, implies that x, y € Z (in fact, [x; y] C Z, by the convexity of
Z). Obviously, that a one-point set Z = {e} is an extremal subset of Y if and only if e is an
extreme point of Y. Also, if W is an extremal subset of the extremal subset Z of Y, then
W is an extremal subset of Y too. In particular, if e is an extreme point of an extremal
subset Z of Y, then e is an extreme point of Y. The intersection of a family of extremal
subsets of Y is an extremal subset of Y provided that it is nonempty. We denote by extY
the (possibly empty) set of extreme points of the convex set Y.
The following proposition is an immediate consequence of the definitions.

ProPOSITION 3.7. Let Y be a nonempty convex subset of a vector space X and f a linear
functionalon X. Iftheset Z = {z € Y : f(z) = sup f(Y)} is nonempty, then it is an extremal
subset of Y. A similar assertion holds for the set W = {w e Y : f(w) =inf f(Y)}.

We can state and prove now the Krein-Milman theorem in the asymmetric case.

THEOREM 3.8. Let (X, P) be an asymmetric locally convex space such that the topology tp
is Hausdorff. Then any nonempty convex tp-compact subset Y of X coincides with the tp-
closed convex hull of the set of its extreme points

Y = 1p-cl-co(extY). (3.27)

Proof. All the topological notions will concern the 7p-topology of X so that we will omit
“rp-" in the following. By Proposition 2.9(2), for every x € X, x # 0, there exists ¢ € X*
with ¢(x) = 1.

Fact 3.9. Every nonempty convex compact subset Z of X has an extreme point.

Let

% := {F: Fis a closed extremal subset of Z}, (3.28)
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and define the order in & by F) < F, ¢ F; C F, and show that the set & is nonempty and
downward inductively ordered. Because Y is 7p-compact and the topology 7p is Haus-
dorff, it follows that Y is convex and 7p-closed, so that Y € . Since a totally ordered
subfamily 9 of & has the finite intersection property, by the compactness of the set Z,
the set G = NG is nonempty, closed, and extremal. Therefore, G € F is a lower bound for
. By Zorn’s lemma, the ordered set & has a minimal element F,. If we show that Fj is a
one-point set, Fy = {x0}, then xy will be an extreme point of Z.

Suppose that F, contains two distinct points x;, x, and let p € P be such that p(x; —
x2) > 0. Let ¢ be a p-bounded linear functional such that ¢(x; —x;) = p(x; —x2) >0
(see Proposition 2.9(1)). It follows that ¢ € X", so that ¢ is upper semicontinuous as a
mapping from (X,7p) to (R, [ - |). By the compactness of the set Fy, the set

Fi={xeFy:9(x)=supp(Fo)} = {x € Fy: 9(x) = supp(Fp)} (3.29)

is nonempty and closed. By Proposition 3.7, F; is an extremal subset of F, thus an ex-
tremal subset of Z. Therefore, F; € %, F; C Fy, and x, € Fy \ F; in contradiction to the
minimality of F,.

Fact 3.10. 'Y = 1p-clco(extY).

The inclusion ext(Y) C Y implies that Y := 7p-clco(extY) C Y. As a closed subset
of a compact set, the set Y; is convex and compact. Supposing that there exists a point
y0 € Y \ Yy, then, by Theorem 3.5, there exists ¢ € X° such that

sup@ (Y1) < ¢(y0). (3.30)

Using again the upper semicontinuity of ¢ as a mapping from (X, 7p) to (R, - |), we
see that the set

F={yeY:¢9(y)=supp(Y)} ={y € Y:9(y) = supop(Y)} (3.31)

is nonempty, convex, and compact, so that, by Fact 3.9, it has an extreme point e,. Since
F is an extremal subset of Y, it follows that e, is an extreme point of Y, implying that
e; € Y. Taking into account (3.30), we obtain the contradiction

supp(Y) = ¢(e1) <supg(Y1) < @(yo) <supep(Y). (3.32)
(]

4. The asymmetric weak topology

The weak topology of a locally convex space (X, Q) is defined by the locally convex basis
W formed by the sets of the form

Ve xy,f;€={x€X:|x{"(x)|<€,1§isn}, (4.1)
forn e N, x{,...,x} € X* and € > 0. Obviously, we can suppose that x;* #0,i=1,...,n.

The duality theory for locally convex spaces is based on the following key lemma of
algebraic nature.
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LemMa 4.1 (see [19, Lemma VIIL.3.3]). Let X be a vector space and f, fi,..., fa: X = R
linear functionals. The following assertions are equivalent.

(1) f €splfiseeesfn)-

(2) There exists L = 0 such that
VxeX, f(x)<Lmax{|fi(x)|,...,|falx)]}. (4.2)

(3) N ker f; C ker f.
In our case, this lemma takes the form.

LemMma 4.2. Let f, fi,..., fu be real linear functionals on a vector space X, with fi,..., fu
linearly independent. Then the following assertions are equivalent.

(1) Forallx € X, fi(x) <0,i=1,...,n= f(x) <0.

(2) There exists L = 0 such that for all x € X, f(x) < Lmax{fi(x):1<i<n}.

(3) There exist ay,...,a, > 0, such that f = >\ aif:

Proof. Since the implications (2)=(1) and (3)=(2) are obvious, it is sufficient to prove
(1)=(3).

If fi(x) =0fori=1,...,n, then fi(—x) = —fi(x) =0,i=1,...,n, so that f(x) <0and
—f(x) = f(=x) <0, implying that f(x) = 0. Therefore Lemma 4.1(3) is fulfilled, so that
there exist ay,...,a, € R such that f = z?:l a; f;. It remains to show that a; > 0 for j =
1,...,n. Because fi,..., f, are linearly independent, there exist the elements xj € X such
that fi(x;) = —=8;; <0, 4,j = 1,2,...,n, where §;; is the Kronecker symbol. It follows that
f(xj) <0and

—a; = > aifi(x;) = f(x;) <0, (4.3)

forj=1,...,n. O

Define the asymmetric weak topology w* on an asymmetric locally convex space (X, P)
as the asymmetric locally convex topology generated by the asymmetric locally convex
basis W', formed by the sets

V/

o = (X EX 1 9i(x) <€ 1<i<n}, (4.4)

forn €N, ¢1,...,¢, € X" and € > 0. The neighborhoods of an arbitrary point x € X are
subsets of X containing a set of the form x + Vé,l ={xeX:pi(x' —x)<e, 1=<ix<
nt.

The sets

,,,, Pn>€

Vorgme = 1x €X 1 9i(x) <€, 1 <i<n} (4.5)

generate the same topology.
In the following proposition, we collect some properties of the topology w*.
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PrROPOSITION 4.3. Let (X,P) be an asymmetric locally convex space and X" = (X,P)" its
asymmetric dual cone.

(1) The topology tp is finer than w*.

(2) For ¢ € X" and € >0, the set {x € X : p(x) < €} is w¥-open and {x € X : p(x) > €}
is w¥-closed.

(3) A net {x;:i €I} in X is w¥-convergent to x € X if and only if for every ¢ € X", the
net {@(x;)} converges to ¢(x) in (R,u). This means the following:

VoeX’, Ve >0, Jig such that Vi> iy, ¢(xi—x) <E€. (4.6)

(4) The asymmetric dual (X, w*)" of the asymmetric locally convex space (X, w*) agrees
with X".

Proof. Suppose that P is directed.
(1) Let V' =V, . be an element of the locally convex basis (4.4). Because ¢; are
(P,u)-continuous, there exist p; € P and L; > 0 such that

VxeX, ¢i(x)<Lipi(x), fori=1,...,n. (4.7)

The multiball U" = {x € X : pi(x) < €/(L+1), 1 <i < n}, where L = maxL;, is con-
tained in V’, showing that V' is a 7p-neighborhood of 0 € X.

2)IfV={xeX:¢p(x)<e} and xy € V, then the w*-neighborhood {x € X : ¢(x —
Xp) < € — ¢(x9)} of x is contained in V' because

o(x—x0) <€—9(x0) = ¢(x) = (x —x0) +p(x0) <E€. (4.8)

The assertion (3) follows from definitions.

(4) Because 7p is finer than w¥%, the identity map Id : (X, 7p) — (X, w?*) is continuous,
implying the (P, u)-continuity of ¢ o Id for any ¢ € (X,w®)", that is, (X,w*)" C (X,P)".

Conversely, if ¢ is a (P,u)-continuous linear functional, then the set V = {x € X :
¢(x) < €} is a w¥-neighborhood of 0 € X and ¢(V') C (—o0;€) for every € > 0, proving
the (w*, 7,)-continuity of ¢ at 0, and by the linearity of ¢, on the whole X. O

As in the symmetric case, the closed convex sets are the same for the topologies 7p and
we,

ProprosITION 4.4. Let (X,P) be an asymmetric locally convex space and Y a convex subset
of X. Then Y is w*-closed if and only if it is Tp-closed.

Proof. Because 7p is finer than w*, it follows that any (not necessarily convex) w*-closed
subset of X is also 7p-closed.

Suppose now that the convex set Y is 7p but not w¥-closed. If xq is a point in w*-clY \
Y, then, applying Theorem 3.5 to the sets {xo} and Y, we get a functional ¢ € X* such
that

¢(x) <infe(Y). (4.9)
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Ifm:=infe(Y), then V ={x € X : p(x—x0) <271(m — ¢(x0))} is a w*-neighborhood of
Xo. Because

m+o(x
o(x) = p(x—x0) +¢(x0) < #<m, (4.10)
for every x € V, it follows that V N Y = &, in contradiction to xo € w*-cl Y. O

The proposition has the following corollary.

CoROLLARY 4.5. Let (X, P) be an asymmetric locally convex space. Then for every subset Z
of X, the following equality holds:

w*-clco(Y) = 1p-clco(Y). (4.11)

Proof. By the definition of the closed convex hull and the preceding proposition, we have
the equalities

w*-clco(Y) = ﬂ{Y: Y c X, Y convex and w*-closed}
= ﬂ{Y :Y ¢ X, Y convex and 7p-closed} (4.12)

= 1p-clco(Y). 0

Remark 4.6. We can define the asymmetric polar of a subset W of the dual X" of an
asymmetric locally convex space (X, P) by

Wy={xeX:VpeW, ¢(x) <1}. (4.13)

Since, for ¢ € X", a set of the form {x € X : ¢(x) < 1} is not necessarily 7p-closed, the
set W, need not be 7p-closed. Therefore, an asymmetric analog of the bipolar theorem
(see [19, Satz WIIL.3.9]), asserting that

(A°), =-clco (AU {0}) (4.14)
for any subset A of a locally convex space (X, Q), does not hold in the asymmetric case.
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