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We have proved a theorem on |T , pn|k summability methods. This theorem includes a
known theorem.

1. Introduction

Let
∑
an be a given infinite series with partial sums (sn). By (wδ

n), we denote the nth Cesàro
means of order δ(δ > −1) of the sequence (sn). The series

∑
an is said to be summable

|C,δ|k, k ≥ 1, if (see [3])

∞∑
n=1

nk−1
∣∣wδ

n −wδ
n−1

∣∣k <∞. (1.1)

In the special case for δ = 1, |C,δ|k summability reduces to |C,1|k summability.
Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv −→∞ as n−→∞,
(
P−i = p−i = 0, i≥ 1

)
. (1.2)

The sequence-to-sequence transformation

ϑn = 1
Pn

n∑
v=0

pvsv (1.3)

defines the sequence (ϑn) of the (N̄ , pn) means of the sequence (sn), generated by the
sequence of coefficients (pn) (see [4]). The series

∑
an is said to be summable |N̄ , pn|k,

k ≥ 1, if (see [1])

∞∑
n=1

(
Pn
pn

)k−1∣∣ϑn− ϑn−1
∣∣k <∞. (1.4)

If we take pn = 1 for all values of n, then |N̄ , pn|k summability is the same as |C,1|k
summability.
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Given a normal matrix T = (tnk), we associate two lower semimatrices T = (tnk) and
T̂ = (t̂nk) as follows:

tnk =
n∑
i=k

tni, n,k = 0,1, . . . ,

t̂00 = t00 = t00, t̂nk = tnk − tn−1,k, n= 1,2, . . . .

(1.5)

It may be noted that T and T̂ are the well-known matrices of series-to-sequence and
series-to-series transformations, respectively. Then, we have

Tn(s)=
n∑

v=0

tnvsv =
n∑

v=0

tnvav,

∆Tn(s)=
n∑

v=0

t̂nvav.

(1.6)

The series
∑
an is said to be summable |T , pn|k, k ≥ 1, if (see [5])

∞∑
n=1

(
Pn
pn

)k−1∣∣∆Tn(s)
∣∣k <∞. (1.7)

In the special case, for tnv = pv/Pn, |T , pn|k summability is the same as |N , pn|k summa-
bility.

2. The main result

The object of this paper is to prove the following theorem.

Theorem 2.1. Let k ≥ 1. Let (sn) be a bounded sequence and suppose that (λn) is a sequence
such that

m∑
n=0

(
Pn
pn

)k−1∣∣λn∣∣k∣∣tnn∣∣k =O(1) as m−→∞,

m∑
n=0

∣∣∆λn∣∣=O(1) as m−→∞.

(2.1)

If

1∣∣tnn∣∣
n−1∑
v=0

∣∣∆v
(
t̂nv
)∣∣=O(1) as n−→∞, (2.2)

m+1∑
n=v+1

(
Pn
pn

)k−1∣∣∆vt̂nv
∣∣∣∣tnn∣∣k−1 =O

(Pv
pv

)k−1∣∣tvv∣∣k
 as m−→∞, (2.3)
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1∣∣tnn∣∣
n−1∑
v=0

∣∣∆λv∣∣∣∣t̂n,v+1
∣∣=O(1) as n−→∞, (2.4)

m+1∑
n=v+1

(
Pn
pn

)k−1∣∣t̂n,v+1
∣∣∣∣tnn∣∣k−1 =O(1) as m−→∞, (2.5)

then the series
∑
anλn is summable |T , pn|k.

Proof. Let (yn) be the T-transform of the series
∑
anλn. Then we have, by (1.6),

Yn = yn− yn−1 =
n∑

v=0

t̂nvavλv. (2.6)

Since t̂nn = tnn, by Abel’s transformation, we get that

Yn =
n−1∑
v=0

∆v
(
t̂nvλv

)
sv + t̂nnλnsn

=
n−1∑
v=0

∆λvt̂n,v+1sv +
n−1∑
v=0

λv∆v
(
t̂nv
)
sv + sntnnλn

= Yn(1) +Yn(2) +Yn(3).

(2.7)

Using Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)k−1∣∣Yn(r)
∣∣k <∞ for r = 1,2,3. (2.8)

Since (sn) is bounded, when k > 1, applying Hölder’s inequality with indices k and k′,
where 1/k+ 1/k′ = 1, we have that

m+1∑
n=1

(
Pn
pn

)k−1∣∣Yn(1)
∣∣k ≤ m+1∑

n=1

(
Pn
pn

)k−1{n−1∑
v=0

∣∣∆λv∣∣∣∣t̂n,v+1
∣∣∣∣sv∣∣

}k

=O(1)
m+1∑
n=1

(
Pn
pn

)k−1 n−1∑
v=0

∣∣∆λv∣∣∣∣t̂n,v+1
∣∣∣∣tnn∣∣k−1

×
{

1∣∣tnn∣∣
n−1∑
v=0

∣∣∆λv∣∣∣∣t̂n,v+1
∣∣}k−1

=O(1)
m+1∑
n=1

(
Pn
pn

)k−1 n−1∑
v=0

∣∣∆λv∣∣∣∣t̂n,v+1
∣∣∣∣tnn∣∣k−1

=O(1)
m∑
v=0

∣∣∆λv∣∣ m+1∑
n=v+1

(
Pn
pn

)k−1∣∣t̂n,v+1
∣∣∣∣tnn∣∣k−1

=O(1)
m∑
v=0

∣∣∆λv∣∣=O(1) as m−→∞,

(2.9)

by virtue of the hypothesis of Theorem 2.1.
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Again using Hölder’s inequality, we have

m+1∑
n=1

(
Pn
pn

)k−1∣∣Yn(2)
∣∣k ≤ m+1∑

n=1

(
Pn
pn

)k−1{n−1∑
v=0

∣∣λv∣∣∣∣∆vt̂nv
∣∣∣∣sv∣∣

}k

=O(1)
m+1∑
n=1

(
Pn
pn

)k−1 n−1∑
v=0

∣∣λv∣∣k∣∣∆vt̂nv
∣∣∣∣tnn∣∣k−1

×
{

1∣∣tnn∣∣
n−1∑
v=0

∣∣∆vt̂nv
∣∣}k−1

=O(1)
m+1∑
n=1

(
Pn
pn

)k−1 n−1∑
v=0

∣∣λv∣∣k∣∣∆vt̂nv
∣∣∣∣tnn∣∣k−1

=O(1)
m∑
v=0

∣∣λv∣∣k m+1∑
n=v+1

(
Pn
pn

)k−1∣∣∆vt̂nv
∣∣∣∣tnn∣∣k−1

=O(1)
m∑
v=0

(
Pv
pv

)k−1∣∣λv∣∣k∣∣tvv∣∣k =O(1) as m−→∞,

(2.10)

by virtue of the hypothesis of Theorem 2.1.
Finally, we have that

m∑
n=1

(
Pn
pn

)k−1∣∣Yn(3)
∣∣k =O(1)

m∑
n=1

(
Pn
pn

)k−1∣∣tnn∣∣k∣∣λn∣∣k =O(1) as m−→∞, (2.11)

by virtue of the hypothesis of Theorem 2.1.
Therefore, we get that

m∑
n=1

(
Pn
pn

)k−1∣∣Yn(r)
∣∣k =O(1) as m−→∞, for r = 1,2,3. (2.12)

This completes the proof of Theorem 2.1. �

3. An application

Now we will prove the following corollary.

Corollary 3.1 (see [2]). Let k ≥ 1. If the sequence (sn) is bounded and (λn) is a sequence
such that

m∑
n=1

pn
Pn

∣∣λn∣∣k =O(1) as m−→∞,

m∑
n=1

∣∣∆λn∣∣=O(1) as m−→∞,

(3.1)

then the series
∑
anλn is summable |N̄ , pn|k.
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Proof. In Theorem 2.1, let tnv = pv/Pn. Then to prove the corollary, it is sufficient to show
that the conditions of Theorem 2.1 are satisfied.

If tnn = pn/Pn, (2.1) are automatically satisfied.
Since

∆vt̂nv = t̂nv − t̂n,v+1

= tnv − tn−1,v − tn,v+1 + tn−1,v+1

=
n∑
i=v

tni−
n−1∑
i=v

tn−1,i−
n∑

i=v+1

tni +
n−1∑
i=v+1

tn−1,i

= 1
Pn

n∑
i=v

pi− 1
Pn−1

n−1∑
i=v

pi− 1
Pn

n∑
i=v+1

pi +
1

Pn−1

n−1∑
i=v+1

pi

=− pnpv
PnPn−1

,

(3.2)

we get

1∣∣tnn∣∣
n−1∑
v=0

∣∣∆vt̂nv
∣∣= Pn

pn

n−1∑
v=0

pnpv
PnPn−1

=O(1) as n−→∞. (3.3)

Thus condition (2.2) is satisfied.
Using ∆vt̂nv and tnn,

m+1∑
n=v+1

(
Pn
pn

)k−1∣∣∆vt̂nv
∣∣∣∣tnn∣∣k−1 =

m+1∑
n=v+1

(
Pn
pn

)k−1
pnpv
PnPn−1

(
pn
Pn

)k−1

= pv

m+1∑
n=v+1

pn
PnPn−1

= pv
Pv

=
(
Pv
pv

)k−1∣∣tvv∣∣k as m−→∞,

(3.4)

condition (2.3) is satisfied.
Since

t̂nv = tnv − tn−1,v =
n∑
i=v

tni−
n−1∑
i=v

tn−1,i

= 1
Pn

n∑
i=v

pi− 1
Pn−1

n−1∑
i=v

pi

= Pv−1

(
− 1
Pn

+
1

Pn−1

)
= Pv−1

pn
PnPn−1

,
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1∣∣tnn∣∣
n−1∑
v=0

∣∣∆λv∣∣∣∣t̂n,v+1
∣∣= Pn

pn

n−1∑
v=0

∣∣∆λv∣∣Pv pn
PnPn−1

= 1
Pn−1

n−1∑
v=0

∣∣∆λv∣∣Pv =O(1)
n−1∑
v=0

∣∣∆λv∣∣=O(1) as n−→∞,

(3.5)

and condition (2.4) is satisfied.
Finally,

m+1∑
n=v+1

(
Pn
pn

)k−1∣∣t̂n,v+1
∣∣∣∣tnn∣∣k−1 =

m+1∑
n=v+1

(
Pn
pn

)k−1
Pv pn
PnPn−1

(
pn
Pn

)k−1

= Pv

m+1∑
n=v+1

pn
PnPn−1

=O(1) as m−→∞,

(3.6)

so condition (2.5) is satisfied.
This completes the proof of the corollary. �
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