

A FIXED POINT THEOREM FOR A PAIR OF MAPS SATISFYING A GENERAL CONTRACTIVE CONDITION OF INTEGRAL TYPE

P. VIJAYARAJU, B. E. RHOADES, AND R. MOHANRAJ

Received 18 October 2004 and in revised form 20 July 2005

We give a general condition which enables one to easily establish fixed point theorems for a pair of maps satisfying a contractive inequality of integral type.

Branciari [1] obtained a fixed point result for a single mapping satisfying an analogue of Banach's contraction principle for an integral-type inequality. The second author [3] proved two fixed point theorems involving more general contractive conditions. In this paper, we establish a general principle, which makes it possible to prove many fixed point theorems for a pair of maps of integral type.

Define $\Phi = \{\varphi : \varphi : \mathbb{R}^+ \rightarrow \mathbb{R}\}$ such that φ is nonnegative, Lebesgue integrable, and satisfies

$$\int_0^\epsilon \varphi(t)dt > 0 \quad \text{for each } \epsilon > 0. \quad (1)$$

Let $\psi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ satisfy that

- (i) ψ is nonnegative and nondecreasing on \mathbb{R}^+ ,
- (ii) $\psi(t) < t$ for each $t > 0$,
- (iii) $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for each fixed $t > 0$.

Define $\Psi = \{\psi : \psi \text{ satisfies (i)–(iii)}\}$.

LEMMA 1. *Let S and T be self-maps of a metric space (X, d) . Suppose that there exists a sequence $\{x_n\} \subset X$ with $x_0 \in X$, $x_{2n+1} := Sx_{2n}$, $x_{2n+2} := Tx_{2n+1}$, such that $\overline{\{x_n\}}$ is complete and there exists a $k \in [0, 1)$ such that*

$$\int_0^{d(Sx, Ty)} \varphi(t)dt \leq \psi \left(\int_0^{d(x, y)} \varphi(t)dt \right) \quad (2)$$

for each distinct $x, y \in \overline{\{x_n\}}$ satisfying either $x = Ty$ or $y = Sx$, where $\varphi \in \Phi$, $\psi \in \Psi$.

Then, either

- (a) S or T has a fixed point in $\{x_n\}$ or
- (b) $\{x_n\}$ converges to some point $p \in X$ and

$$\int_0^{d(x_n, p)} \varphi(t) dt \leq \sum_{i=n}^{\infty} \psi^i(d) \quad \text{for } n > 0, \quad (3)$$

where

$$d := \int_0^{d(x_0, x_1)} \varphi(t) dt. \quad (4)$$

Proof. Suppose that $x_{2n+1} = x_{2n}$ for some n . Then $x_{2n} = x_{2n+1} = Sx_{2n}$, and x_{2n} is a fixed point of S . Similarly, if $x_{2n+2} = x_{2n+1}$ for some n , then x_{2n+1} is a fixed point of T .

Now assume that $x_n \neq x_{n+1}$ for each n . With $x = x_{2n}$, $y = x_{2n+1}$, (2) becomes

$$\int_0^{d(x_{2n+1}, x_{2n+2})} \varphi(t) dt \leq \psi \left(\int_0^{d(x_{2n}, x_{2n+1})} \varphi(t) dt \right). \quad (5)$$

Substituting $x = x_{2n}$, $y = x_{2n-1}$, (2) becomes

$$\int_0^{d(x_{2n+1}, x_{2n})} \varphi(t) dt \leq \psi \left(\int_0^{d(x_{2n}, x_{2n-1})} \varphi(t) dt \right). \quad (6)$$

Therefore, for each $n \geq 0$,

$$\int_0^{d(x_n, x_{n+1})} \varphi(t) dt \leq \psi \left(\int_0^{d(x_{n-1}, x_n)} \varphi(t) dt \right) \leq \cdots \leq \psi^n(d). \quad (7)$$

Let $m, n \in \mathbb{N}$, $m > n$. Then, using the triangular inequality,

$$d(x_n, x_m) \leq \sum_{i=n}^{m-1} d(x_i, x_{i+1}). \quad (8)$$

It can be shown by induction that

$$\int_0^{d(x_n, x_m)} \varphi(t) dt \leq \sum_{i=n}^{m-1} \int_0^{d(x_i, x_{i+1})} \varphi(t) dt. \quad (9)$$

Using (7) and (9),

$$\int_0^{d(x_n, x_m)} \varphi(t) dt \leq \sum_{i=n}^{\infty} \psi^i(d) \leq \sum_{i=n}^{\infty} \psi^i(d). \quad (10)$$

Taking the limit of (10) as $m, n \rightarrow \infty$ and using condition (iii) for ψ , it follows that $\{x_n\}$ is Cauchy, hence convergent, since X is complete. Call the limit p . Taking the limit of (10) as $m \rightarrow \infty$ yields (3). \square

THEOREM 2. Let (X, d) be a complete metric space, and let S, T be self-maps of X such that for each distinct $x, y \in X$,

$$\int_0^{d(Sx, Ty)} \varphi(t) dt \leq \psi \left(\int_0^{M(x, y)} \varphi(t) dt \right), \quad (11)$$

where $k \in [0, 1)$, $\varphi \in \Phi$, $\psi \in \Psi$, and

$$M(x, y) := \max \left\{ d(x, y), d(x, Sx), d(y, Ty), \frac{[d(x, Ty) + d(y, Sx)]}{2} \right\}. \quad (12)$$

Then S and T have a unique common fixed point.

Proof. We will first show that any fixed point of S is also a fixed point of T , and conversely.

Let $p = Sp$. Then

$$M(p, p) = \max \left\{ 0, 0, d(p, Tp), \frac{d(p, Tp)}{2} \right\} = d(p, Tp), \quad (13)$$

and (11) becomes

$$\int_0^{d(p, Tp)} \varphi(t) dt \leq \psi \left(\int_0^{d(p, Tp)} \varphi(t) dt \right), \quad (14)$$

which, from (1), implies that $p = Tp$.

Similarly, $p = Tp$ implies that $p = Sp$.

We will now show that S and T satisfy (2).

$$M(x, Sx) = \max \left\{ d(x, Sx), d(x, Sx), d(Sx, TSx), \frac{[d(x, TSx) + 0]}{2} \right\}. \quad (15)$$

From the triangular inequality,

$$\frac{d(x, TSx)}{2} \leq \frac{[d(x, Sx) + d(Sx, TSx)]}{2} \leq \max \{d(x, Sx), d(Sx, TSx)\}. \quad (16)$$

Thus, (11) becomes

$$\int_0^{d(Sx, TSx)} \varphi(t) dt \leq k \int_0^{d(Sx, TSx)} \varphi(t) dt, \quad (17)$$

a contradiction to (1).

Therefore, for all $x \in X$, $M(x, Sx) = d(x, Sx)$, and (2) is satisfied. If condition (a) of Lemma 1 is true, then S or T has a fixed point. But it has already been shown that any fixed point of S is also a fixed point of T , and conversely. Thus S and T have a common fixed point.

Suppose that conclusion (b) of Lemma 1 is true. Then, from (3),

$$\int_0^{d(Sx_{2n}, Tp)} \varphi(t) dt \leq \psi \left(\int_0^{d(x_{2n}, p)} \varphi(t) dt \right), \quad (18)$$

which implies, since X is complete, that $\lim d(Sx_{2n}, Tp) = 0$.

Therefore,

$$d(p, Tp) \leq d(p, Sx_{2n}) + d(Sx_{2n}, Tp) \rightarrow 0, \quad (19)$$

and p is a fixed point of T , hence a fixed point of S . Condition (11) clearly implies uniqueness of the fixed point. \square

Every contractive condition of integral type automatically includes a corresponding contractive condition not involving integrals, by setting $\varphi(t) \equiv 1$ over \mathbb{R}^+ .

There are many contractive conditions of integral type which satisfy (2). Included among these are the analogues of the many contractive conditions involving rational expressions and/or products of distances. We conclude this paper with one such example.

COROLLARY 3. *Let (X, d) be a complete metric space, S and T self-maps of X such that, for each distinct $x, y \in X$,*

$$\int_0^{d(Sx, Ty)} \varphi(t) dt \leq k \int_0^{n(x, y)} \varphi(t) dt, \quad (20)$$

where $\varphi \in \Phi$, $k \in [0, 1)$, and

$$n(x, y) := \max \left\{ \frac{d(y, Ty)[1 + d(x, Sx)]}{1 + d(x, y)}, d(x, y) \right\}. \quad (21)$$

Then S and T have a unique common fixed point.

Proof.

$$n(x, Sx) = \max \{d(Sx, TSx), d(x, Sx)\}. \quad (22)$$

As in the proof of Theorem 2, it is easy to show that any fixed point of S is also a fixed point of T , and conversely.

If $n(x, Sx) = d(Sx, TSx)$, then an argument similar to that of Theorem 2 leads to a contradiction. Therefore $n(x, Sx) = d(x, Sx)$, and either S or T has a common fixed point, or (3) is satisfied. In the latter case, with $\lim x_n = p$, $n(p, p) = 0$, so that, from (20), p is a fixed point of S , hence of T . Uniqueness of p is easily established.

Corollary 3 is also a consequence of Lemma 1.

We now provide an example, kindly supplied by one of the referees, to show that Lemma 1 is more general than [2, Theorem 3.1].

Example 4. Let $X := \{1/n : n \in \mathbb{N} \cup \{0\}\}$ with the Euclidean metric and S, T are self-maps of X defined by

$$S\left(\frac{1}{n}\right) = \begin{cases} \frac{1}{n+1} & \text{if } n \text{ is odd,} \\ \frac{1}{n+2} & \text{if } n \text{ is even,} \\ 0 & \text{if } n = \infty, \end{cases} \quad T\left(\frac{1}{n}\right) = \begin{cases} \frac{1}{n+1} & \text{if } n \text{ is even,} \\ \frac{1}{n+2} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n = \infty. \end{cases} \quad (23)$$

For each n , define $x_{2n+1} = Sx_{2n}$, $x_{2n+2} = Tx_{2n+1}$. With $x_0 = 1$, let $O(1)$ denote the orbit of $x_0 = 1$; that is, $O(1) = \{1, 1/2, 1/3, \dots\}$ and $\overline{O(1)} = O(1) \cup \{0\} = X$. For $x, y \in O(1)$, $y = 1/m$, m even and $x = 1/n = Ty = 1/(m+1)$, $Sx = 1/(m+2)$, so that

$$\begin{aligned} d(Sx, Ty) &= \left| \frac{1}{m+1} - \frac{1}{m+1} \right| = \frac{1}{m+1} - \frac{1}{m+2} = \frac{1}{(m+1)(m+2)}, \\ d(x, y) &= \left| \frac{1}{n} - \frac{1}{m} \right| = \left| \frac{1}{m+1} - \frac{1}{n} \right| = \frac{1}{m} - \frac{1}{m+1} = \frac{1}{m(m+1)}. \end{aligned} \quad (24)$$

Thus

$$\frac{d(Sx, Ty)}{d(x, y)} = \frac{m}{m+2} \leq 1. \quad (25)$$

Also

$$\sup_{n \in \mathbb{N}} \frac{d(Sx, Ty)}{d(x, y)} = 1, \quad (26)$$

so that there is no number $c \in [0, 1)$ such that $d(Sx, Ty) \leq cd(x, y)$ for $x, y \in O(1)$ and $x = Ty$. Therefore, [2, Theorem 3.1] cannot be used. On the other hand, the hypotheses of Lemma 1 are satisfied. To see this, it will be shown that condition (2) is satisfied for some $\varphi \in \Phi$.

We will first show that for any $x = 1/n$, $y = 1/m \in O(1)$ satisfying either $x = Ty$ or $y = Sx$,

$$d(Sx, Ty) \leq \left| \frac{1}{n+1} - \frac{1}{m+1} \right|. \quad (27)$$

There are four cases.

Case 1. $y = 1/m$, m even, $x = 1/n = Ty = 1/(m+1)$, and $Sx = 1/(m+2)$. Then

$$d(Sx, Ty) = \left| \frac{1}{m+2} - \frac{1}{m+1} \right| = \left| \frac{1}{n+1} - \frac{1}{m+1} \right|. \quad (28)$$

Case 2. $y = 1/m$, m odd, $x = 1/n = Ty = 1/(m+2)$, and $Sx = 1/(m+3)$. Then

$$\begin{aligned} d(Sx, Ty) &= \left| \frac{1}{m+3} - \frac{1}{m+2} \right| = \frac{1}{m+2} - \frac{1}{m+3} \\ &\leq \frac{1}{m+1} - \frac{1}{m+3} = \left| \frac{1}{n+1} - \frac{1}{m+1} \right|. \end{aligned} \quad (29)$$

Case 3. $x = 1/n$, n even, $y = 1/m = Sx = 1/(n+2)$, and $Ty = 1/(n+3)$. Then

$$\begin{aligned} d(Sx, Ty) &= \left| \frac{1}{n+2} - \frac{1}{n+3} \right| = \frac{1}{n+2} - \frac{1}{n+3} \\ &\leq \frac{1}{n+1} - \frac{1}{n+3} = \left| \frac{1}{n+1} - \frac{1}{n+3} \right|. \end{aligned} \quad (30)$$

Case 4. $x = 1/n$, n odd, $y = 1/m = Sx = 1/(n+1)$, and $Ty = 1/(n+2)$. Then

$$d(Sx, Ty) = \left| \frac{1}{n+1} - \frac{1}{n+2} \right| = \left| \frac{1}{n+1} - \frac{1}{m+1} \right|. \quad (31)$$

Thus in all cases, (20) is satisfied.

Define φ by $\varphi(t) = t^{1/2-2}[1 - \log t]$ for $t > 0$ and $\varphi(0) = 0$. Then, for any $\tau > 0$,

$$\int_0^\tau \varphi(t) dt = \tau^{1/\tau}, \quad (32)$$

and $\varphi \in \Phi$.

Using [1, Example 3.6],

$$\begin{aligned} \int_0^{d(Sx, Ty)} \varphi(t) dt &\leq d(Sx, Ty)^{1/d(Sx, Ty)} \\ &\leq \left| \frac{1}{n+1} - \frac{1}{m+1} \right|^{1/(1/(n+1)-(1/m+1))} \\ &\leq \frac{1}{2} \left| \frac{1}{n} - \frac{1}{m} \right|^{1/(1/n)-(1/m)} = d(x, y)^{1/d(x, y)} \end{aligned} \quad (33)$$

for each x, y as in Lemma 1, and condition (2) is satisfied with $\psi(t) = t/2$. \square

Acknowledgment

The authors thank each of the referees for careful reading of the manuscript.

References

- [1] A. Branciari, *A fixed point theorem for mappings satisfying a general contractive condition of integral type*, Int. J. Math. Math. Sci. **29** (2002), no. 9, 531–536.
- [2] S. Park, *Fixed points and periodic points of contractive pairs of maps*, Proc. College Natur. Sci. Seoul Nat. Univ. **5** (1980), no. 1, 9–22.
- [3] B. E. Rhoades, *Two fixed-point theorems for mappings satisfying a general contractive condition of integral type*, Int. J. Math. Math. Sci. **2003** (2003), no. 63, 4007–4013.

P. Vijayaraju: Department of Mathematics, Anna University, Chennai-600 025, India
E-mail address: vijay@annauniv.edu

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
E-mail address: rhoades@indiana.edu

R. Mohanraj: Department of Mathematics, Anna University, Chennai-600 025, India
E-mail address: vrmraj@yahoo.com

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru