SCHATTEN’S THEOREMS ON FUNCTIONALLY
DEFINED SCHUR ALGEBRAS

PACHARA CHAISURIYA AND SING-CHEONG ONG

Received 25 January 2005 and in revised form 20 July 2005

For each triple of positive numbers p,q,r > 1 and each commutative C" -algebra & with
identity 1 and the set s(B) of states on B, the set ¥ (B) of all matrices A = [aji] over
B such that [A"] := [¢(lajk|")] defines a bounded operator from ¢’ to ¢' for all ¢ €
s(B) is shown to be a Banach algebra under the Schur product operation, and the norm
Al = Al pqr = sup{ll@[A"]II" : ¢ € s(B)}. Schatten’s theorems about the dual of
the compact operators, the trace-class operators, and the decomposition of the dual of
the algebra of all bounded operators on a Hilbert space are extended to the ¥ (%) setting.

1. Introduction

Fix p and g with 1 < p,q < co. The space of pth power summable sequences of com-
plex numbers is denoted by ¢’, and the space of matrices which define bounded linear
transformations from ¢’ to €' is denoted by B(¢,€"). Let A = [aji], B = [bjk] be infi-
nite matrices, not necessarily in B(€",€"). The Schur product A e B of A and B is defined
by A e B = [aj;bjr]. Many areas in mathematics such as matrix theory, function theory,
operator theory, and operator algebras have made use of results from the study of Schur
product and have injected new problems in return. See [1, 4, 6] for further references to
the related literature.

As a generalization of a result of Schur in [9] for p = 2, and g = 2, Bennett proved in
[1, Theorem 2.2] the following theorem.

Tueorem 1.1 (Bennett). If A = [Aj],X = [ojk] € B, "), then AeX = [Ajkojk] €
Be", "), and

1A 0 Zllpg < Al glIZl g (1.1)
(i.e, B(L',€") is a commutative Banach algebra under the Schur product operation and
operator norm || - |l 4.)

Based on these results of Schur and Bennett, in [2] we studied algebras, under the
Schur product operation, of matrices over a Banach algebra, which have the matrix of
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the norms of the entries define bounded operators. Here we give a functional version
of the generalization. This is another direction of generalization of the numerical Schur
r-algebras, ¥ discussed therein.

A matrix A = [ajk], over G, is in the absolute Schur r-algebra " if the Schur rth power
A" :=[lajl’] of A is in B(€",€"). The r-norm of A is defined by ||All := [[|Alll pq,r :=
A" 1", where [|A" ]| = |A" Il p,q is the operator norm of A" as an element of B(¢’,€").
That ||| - [Il p,q.- is a norm follows, as expected, from an inequality that is analogous to the
Holder inequality.

THEOREM 1.2. For each r > 1, &' is a Banach algebra under the Schur multiplication and
the norm (|| - ||l p.g,r-

This is a special case of a result in [2] that will be used here. The matrices could be
over a Banach algebra, and the norm is defined by the nonnegative matrix of the rth
power of norms of the entries. Here we investigate the situation where the matrices are
over a commutative C" -algebra %, the norm is defined by the absolute values of linear
functional values of the entries, as the linear functional runs over the set of states on %.

In [7] Schatten’s theorems [8] concerning the dual of the compact operators, the trace-
class operators, and the decomposition of the dual of the algebra of bounded operators on
a Hilbert space have been extended to the setting of matrices of functions acting on func-
tion sequence space analogous to the £ sequence space. Here we extend these Schatten-
type theorems to the algebra ¥ (%) consisting of certain classes of matrices over a com-
mutative C " -algebra %, in a situation where p and g need not be equal to 2.

Since the p and q will be fixed throughout our discussion, we will sometimes suppress
the subscripts p, g in || - || 4 and write || - || instead, if no confusion can arise. We will
occasionally use subscripts if an emphasis for clarity is warranted. We also use || - || to
denote the norm on a Banach space, and let the context determine which one is intended.

For convenience of reference, we also record the following simple useful fact.

Lemma 1.3. Let [ajr] and [Bjk] be matrices over the complex field C such that |ajx| < Bk
for all j and k. Suppose that [Bjx] € B(L",€"); that is, the matrix defines a bounded linear
transformation from €' to €'. Then [aj] € B(€’,€") and ||[aji ]Il < [[[Bjx]ll.

2. Definitions and preliminary results

We establish some of our results in a more general setting before moving on to the settings
on which Schur product makes sense. Let & be a Banach space with norm || - ||, and dual
space %’. Consider the set M (%) of all infinite matrices over . Let (¥*); denote the set
of all bounded linear functionals on % which have norm 1. Let s(¥) < (¥"); be a set of
linear functionals on & such that

() llxll = sup{l f(x)|: f € s(%)} for every x € ¥

(ii) the linear span of s(%) is all of X'.
One such example is s(&) = (XN by the Hahn-Banach theorem and the fact that all
linear functionals in & are multiples of elements in (%)).

For each f € %', and each matrix A = [ajk] € M(X), denote by f[A] = [f(ajr)] the

complex matrix whose (j,k) entry is f(aji). For fixed p and g with 1 < p,g < oo, regard
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the matrix f[A] as a linear transformation of £’ to £, if it is defined. (The closed graph
theorem implies that it is bounded if it is everywhere defined.) Let #(¥) = F (%), , be
the set of matrices A = [aj;] € M(X) such that f[A] € RB(e’,€") for all f € s(¥). The
following result provides us with a natural way of defining a norm on ¥(%).

THEOREM 2.1. Let & and s(X) be as above, and A = [aji] € S (X), so that f[A] € B, ")
forall f € s(%X). Then

sup {||f[A]]]: f € s(%)} < 0. (2.1)

Proof. First we note that since each f € ¥ is a linear combination f = Si1a;g; of
elements gi,...,g, in (%), and for the given A € ¥ (%), g;[A] € B, 1<j<mn,
and hence f[A] = a;(g1[A]) + - - - + an(gn[A]) € B(£",€"). Therefore, the map T4 : f —
f[A] is a linear transformation from X" to B(€",e"). Since both the domain ¥* and
codomain B (¢’,€") are Banach spaces, the continuity of the map 7 4 will follow if we
can show that the graph of J 4 is closed. To that end, suppose that {(f,,Ta(fs))} is a
sequence in the graph (7 4) € X @ B(E7,0") of T4 that converges to some (f,M) €
A @©n B(E, ") with M = [mj]. Then f, — f in & and f,[A] — M in B(¢’,¢"). Thus,
for each j,k =1,2,..., | fulajx) — mjr| < || fu[A] = M| — 0 as n — oo. Also the conver-
gence of {f,} to f implies that [ fa(ajx) — f(ajk)| — 0as n — co. Therefore, f(aji) = mjk
for all j, k, and hence f[A] = M. Thus the graph of J4 is closed. By the closed graph
theorem, 7 4 is bounded. Therefore,

sup {|f[Alll: f € s(X)} = sup{ | Ta(f)| : f €s(X)} <[|Tall < o0. (2~2D)

Next we prove that (%) is a Banach space.

THEOREM 2.2. The set F(X) is a Banach space under the usual (entrywise) scalar multipli-
cation and addition, and the norm

IAll:=sup {[|fA]l|: f € S)}, A€ FE). (23)

Proof. First we show that the function as defined in Theorem 2.1 is indeed a norm on
F(X).Let A, Be F(&)andlet f € s(X). Then || f[A+B]ll = || f[A] + f[BIIl < |l f[A]ll +
[l f[B]ll < IlAll +IB|l. Therefore, || f[A+ B]Il < [JAll + [|B]| for all f € s(¥), and hence
[|A+Bl < [|All +|B]l.

To prove that (%) is complete, let {A,} be a Cauchy sequence in ¥ (). Then for each
fes®)

||f[An] _f[Am]” = ||f[An_Am]|| = HAn_Am” — 0 asn,m— oo. (2.4)

Thus { f[A,]} is a Cauchy sequence in B(€",€"). Since B(€,€") is complete, there exists a
bounded matrlx Af € B(€",€") to which {f[A,]} converges in B(€",€"). For each j,k =
1,2,.

| £(aj) = £ (@) | <11 f 1A = FTARI <[4 — Anl| — 0 (2.5)
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as n,m — co. Since this is true for every f € s(%¥), the quantity ||A, — A, || does not de-
pend on f,and |Ix|| = sup{|y(x)|: v € s(X)} for all x € &, we have

a(j",i—aij—fsugE’f ,k ]k )— sup ’f Jk f(“(fr’nf)‘ (2.6)

<||An—Anl| — 0 asn,m— 0.

Thus the sequence {a;”,i} is a Cauchy sequence in ¥. By the completeness of &, there

exists an aj; € & such that a(j"k) — ajx in &. Thus there is an A = [aj] € JM(X) such that
{A,} converges to A entrywise. It is clear from this construction that for each f € s(%),
fIA] = Ay. Since each Ay € B(¢",€"), we have A € F(%X).

We have to show that ||A, — A|l — 0 as n — oo. Let € > 0 be given. Since {A,} is a
Cauchy sequence, there exists an N such that [|A, — A,,|| < €/3,foralln,m = N.Letn = N
be arbitrarily fixed. We will show that ||A, — Al| < €. There exists an f € s(%) such that

14, — Al <[1fT4n — ALl + 5 = If[AL] = FIALII+ 5 = [IflA] - Afll+ 5. @)

Since f[A,] — Ay in the norm of B(¢",¢"), there existsa v > N such that || f[A,] — Af| <
€/3. Thus

€ €
[1An = All <[[fTAa] = Afll+ 5 < NIf 14D = FIAI+ 1AV ] = Afll+5
c e (2.8)
< ||An—AV||+§+§ <E.
Therefore, (%) is complete. O

For a given matrix A = [aji], denote by A, the matrix whose (j,k) entry is aj; for
1 < j,k < nand 0 otherwise.

ProposITION 2.3. Let A = [aji] € S(X). Then ||Am [| 7 ||A]l as n — oo.

Proof. Leté = {&},_, € €; f € s(¥);and n € N. Denote £ = {&,&,...,&,,0,...}. Then

Hmmk(i

j=1

9, Vq

) (2.9)

1/q

) <3

n

> flaj)é

k=1

iﬂa,»k)fk

k=1

= (17T, 1| = U7 LA, Mg lE” 1 = 1A, N1EI
So
114, ] Il (2.10)
Since this is true for every f € s(X),
14, |1 = [[Age, (2.11)
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Let € > 0. There is an f € s(¥) such that || f[A]ll > ||All — €/4. Since f[A] is in B(¢,
¢"), there is a unit vector £ = {Ek}}:zl € ¢’ such that

9, Vaq

I f1ATEll, = (z Z flaj)é ) > || fIA]ll - Z. (2.12)
Thus there exists an 7, such that
(3| S rtw0n] ) =irman-§-5-nran-5 e
j=11k=1

For the finite sum, there is an #, such that n, > n, and that

Irtae, 18] = (2

ZHﬂAm—g—§=HﬂAm—§

n a\ n,
S raps) ) = (2

j=1

n, 9, Vq

" flan)E

k=1

) (2.14)

So, forn=n,,

A, 1= (14, 1= 1F[AG, T = 1A, 16N = [ FTAT] —g

(2.15)
€ €
= Al =7 =S > llAll e

Therefore, IIA,ﬂ [| 7 ||All, as asserted. O

With ¥ and s(%¥) as above and for 1 < r < o, let ¥ (¥) denote the set of all ma-
trices A = [ajk] € M(X) with the property that f[A]" = [|f(aj)|] € B(£',¢") for all
fes®).

THEOREM 2.4. Foreach A € ¥ (X), it holds that

sup {[| £141"|: f e s} < . (2.16)

Proof. By Theorem 1.2, the set of all matrices A = [Ajx] over C with bounded absolute
Schur rth power (A" = [|A|'] € B(€’,€")) is a Banach algebra. Since X" is the linear span
of s(%X), for the fixed A = [aj] € I (%), themap T4 : f — f[A] is a linear map from x°
into ¥. To show that 7 4 is a closed map, let {(fu, fu[A])} be a sequence in the graph
GT4) X @x P of T4 converging to some (f,A) €X & S Then f, — fin% and
fulA] = Ain F". Let A = [Ajx]. We then have, for each (j,k) € N X N,

falaj) — flak), falajx) — Ajx  asn— oo (2.17)

Therefore, f[A] = A and J 4 has a closed graph. Since % and & are Banach spaces, J 4
is bounded by the closed graph theorem. Thus

sup {[| f[Alllg- : f € s(O)} = sup {[|Ta(NI| N1f 11 = 1} = ||Tal| < oo. (2.18)
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Since || f[Alllgr = Il f[Allll p.qr = ||f[A]M||m,we have
sup{Hf[A]mH 1 fe s(%)} < 0. (2.19)

For each A € ¥ (%), define ||A|| or [[|Alll pq,- by

LAl == [IIAlll p.g,r := sup { Il F1A] |||p,q,r (fes(®)}
I (2.20)
=sup {[|f[4)"|| :fes@}
The preceding theorem guarantees that || - || is a function defined on ¥ (¥). We will

prove that it is a norm in Theorem 2.6. Using an argument similar to that in Proposition
2.3, we can show that this function has the same monotone property.

ProrosiTiON 2.5. Let A = [aj] € S (%X). Then IIA,ﬂ | 7 ||A]l as n — oo.

Proof. This is just a routine adaptation of the proof of Proposition 2.3, therefore omitted.
O

THEOREM 2.6. For r > 1, the function || - || defined in (2.20) is a norm on the space & (%),
and &' (%) is a Banach space under this norm and the usual addition and scalar multiplica-
tion.

Proof. To see that || - || isindeed a norm, let A,B€ ¥ (%) and f € s(%). Then by Theorem
1.2,

I£1a+B1"|| = || (FLa1+ £1BD || = Il FLAT+ FIBYII
= (I STAV M g+ 1 FIBI ) o)
(by the triangle inequality for the norm on &")
< (1Al +11BII) .
Since f € s(%) is arbitrary, we have
I[A+BIl < [|A]l +IBIl, (2.22)

as asserted.
Let {A, = [a(j”,i] }o1 be a Cauchy sequence in ¥ (%). Then for each (j,k) € N XN,

Ha(j",z —a(jr;)H = sup{’f(a;",i —a?,?)‘ o f Es(%)}
< sup {||| flAn = Anllll 5 q: f €O} (2.23)

=|A,—Anl| — 0 asn,m— oo,

Thus each {a;",i}:ﬂ is a Cauchy sequence in &. By the completeness of &, there is an
ajr € & to which {a;n,i}::zl converges. Let A = [aji]. For each f € s(%), {(flA ]} S
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is a Cauchy sequence. By the completeness of ¥, there is a VS " such that || f[A,] -
Afll = 0 in &". Since f(a;",i) — f(aj) forall j, k, as n — oo, f[A] = Ay € F'. As this is
true for all f € s(%), we have A € &' (¥). To see that ||A, — Al| — 0, we first note that for
each v € N, we have, by the finiteness of » and Lemma 1.3,

1/r
(n) r
1(An), — 4, I =< ||[lla% — asdl Lj,m L, 0 asn— . (2.24)
Let € > 0. There is an N € N such that
[|[An—Anill<€e Vn=N,VIx>1. (2.25)

Then, by Proposition 2.5,

4

Taking limit as [ — co and using (2.24), we have

~ (An), | =||can ~ Au), | <llAn-Auwill<e Vn=N,vi=1 (226)

il

(a0, -4, [[<e vn=N. (2.27)
Since v € N is arbitrary, we have, by Proposition 2.5,
l|[A,—All<e Vn=N; (2.28)

thus |[|A, — Al = 0asn — . O

3. Schur algebras over commutative C -algebras

In this section, we fix a commutative C"-algebra % with identity 1 and the set s(%) of
states on 9B, that is, the set of positive linear functionals of norm 1 on %. By the Gelfand-
Naimark theorem, & is isometrically *-isomorphic to the function algebra C(X) for
some compact Hausdorff space X. We will treat B as C(X). Since s(%) contains all eval-
uation linear functionals ¢,(a) = a(x) for x € X, and a € B, we have ||al| = sup{l¢p(a)l:
@ €s(W)}, forall a € B.

As in the scalar case, define the Schur product (also known as Hadamard product, or
entrywise product) of two matrices A = [ajk], B = [bjx] in M (%) (the set of all matrices
over B) by A B = [ajbjr]. The product ajxbjx is the algebra product defined in %.
Schur product of this form with entries in the algebra of bounded linear operators on a
Hilbert space was first studied in [6]. For each ¢ € s(%), and for each A = [ajx] € M(RB),
¢[A] = [¢(ajr)] is the scalar matrix obtained by applying ¢ to each entry of A. Let ¥ (%)
denote the set of all matrices A € AM(%RB) with the property that ¢[A] defines a bounded
linear transformation from & to ' for every ¢ € s(%). Denote by %" the Banach space
dual of % (the space of bounded linear functionals on %B). Since each f € R’ is a linear
combination of at most four states (see [5, Corollary 4.3.7, page 260]), it then follows
from Theorem 2.1 that

sup {||p[A]]|: @ € s(B)} < (3.1)
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(where the norm ||@[A]]| is the operator norm of ¢[A] as an element in B(¢",¢")). Define
the norm of A € F(B) by [|All = sup{llp[A]ll : ¢ € s(B)}.
The following proposition follows immediately from Theorem 2.2.

PrOPOSITION 3.1. For a commutative C" -algebra 9B with state space s(B), F(B) is a Ba-
nach space under the norm || - || and the usual addition and scalar multiplication.

We do not know, however, whether (%) is a Banach algebra under the Schur multi-
plication operation.

We now turn our attention to functional analog of Schur r-algebras. As before, we
fix a commutative C"-algebra & with the set s(%) of states. For each real number r > 1,
A = [ajk] € M(B), denote by A" = [lajk|'], where x| = V/x"x for x € B. For ¢ € s(B),
denote by g[A"'] := [¢(lajkl)]. Let ¥ (B) denote the set of all matrices A € M(PB) such
that ¢[A"'] € B(£’,¢"), that is, the numerical matrix ¢[A"'] defines a bounded linear
transformation from ¢’ to €’ for every ¢ € s(%).

We show that for each A € ¥ (B),

1r

A1l = 1Allgr 2= sup | fo[4" ]| o€ s <o, (3.2)

and that this is indeed a norm on &' (). Furthermore, we show that &' (%) is in fact a
Banach algebra under the Schur multiplication and this norm. As a suitable adaptation
of the argument used in the proof of Proposition 2.3, we have the following.

ProposITiON 3.2. Let A€ S (B). Then 1A, 1l 7 1Al as n — co.
We also need this simple observation.

LemMma 3.3 (Minkowski’s inequality for linear functionals). Let ¢ € s(%B). Then

1r 1r

[p(la+b)] <[o(al)] +[e(b)]" Vabe®. (3.3)

Proof. Since B = C(X) for some compact Hausdorff space X, the given ¢ € s(%) has an
integral representation ¢(a) = [xady, for all a € B and some measure y, on X. The
Minkowski inequality for y, is exactly the asserted inequality. O

THEOREM 3.4. The function || - || defined in (3.2) above is a norm on &' (B); and ¥ (B) is
a Banach algebra under the Schur product operation and this norm.

Proof. Let A =[aj] € S (B). Since each f € 9B’ is a linear combination of at most four
states, the map f — f[A"'] is a linear transformation from %" to B(£’,€"). Using argu-
ments similar to that used in the proof of Theorem 2.1, we have

sup{H(p[Am]H g€ s(%)} < oo, (3.4)

Therefore, the expression (3.2) indeed defines a function on &' (%).
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To see that (3.2) indeed defines a norm, let A = [ajx], B = [bjx] € S (B). Then
go[A['] 1" = [(p(lajk "N e forall ¢ € s(B). Using the norm on &', we have

1r

HQDI:(A-FB)[']]HV’ _ H[((go( |ajk+bjk |7))1/r)r]
=[[[(totlasl " +to(bx ") ]
(by Lemmas 1.3 and 3.3) (3.5)

r 1r
< [llgUael NN +Te (bl
(by triangle inequality for the norm on &")

< [lAll+IBII.

r

Since this is true for all ¢ € s(B), we have [|A + Bl| < [|All + || BI|.

For the completeness, pick a Cauchy sequence {A"” = [a;-"]i]} in ¥ (B). For each ¢ €
s(B),

1/r

r 1r [r]
(m) (m) (n) m)
o(lan-an]) <[o[(a”-a") ]| <ia”-a"l—0.  Go
Since ||al| = SUP e (a8) |p(a)| for all a € B,
(n) (m)
‘ Ay —aj || — 0 asn,m— co. (3.7)

Since % is complete, there is an ajx € B such that a;",i — ajk. Let A = [aji]. We show that

Acd (B)and A"
For a fixed v € N, since (p(la(j",z —ajl) < ||a(jn;z —ajll for all ¢ € s(B) and all (j,k) €
N x N, we have, by Lemma 1.3,

—a;
‘ H H ik 1<j,k<v

Let € > 0. There is an N such that ||A” — A” || < € for all n,m > N. Then, for a fixed
v € N, by Proposition 3.2,

|

Taking limit as m — oo, we have IIA;") - Aﬁ || < €forall m > N. Since this is true forall v €

N, we have, by Proposition 3.2, IA” — Al| <€ forall n> N. Thus ||A|| < [|JA - A" || +
IA™ |l < €+ [|A™ || < o0, and hence A € ¥ (), and also A" — A.

1/r

— 0 asn— oo, (3.8)

() (m)
A —A
v, v

a a

= [|(a” -4") H<||A A"||<e VYmn=N. (3.9)
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To see the submultiplicativity of the norm, let A,B € ¥ (%); and let ¢ € s(%). Then
o[A"],9[B"] € B(£",€"). For each (j,k),

r r r r

bir| <llawll [bjx] <Al |bji] . (3.10)

lajkbik] = |aj
Thus

D<Al o(lbj]). (3.11)

o(abix] ) = o(laj| [bj

Therefore, by Lemma 1.3,

lo[as By || = lp (I I = 0IAT @I,

Ur (3.12)
= llalllo[B"]]| <Al

Since ¢ € s(%B) is arbitrary, A ¢« B€ ¥ (B) and
IA e BIl < [[A[llIBII. (3.13)

This completes the proof. O

The following simple observation will be used to prove a Hélder inequality for the
norm || - [l p,q.

LemMma 3.5 (Holder’s inequality for positive linear functionals). Let a,b € RB. Then, for

each ¢ € s(B), r € (1,0), and r satisfying 1/r + /r =1,

V)

p(labl) < [p(la)] " [o(101")] . (3.14)

Proof. As in the proof of Lemma 3.3, ¢ has an integral representation, and the asserted
inequality is just the usual Holder inequality, written in functional form. O

TuEOREM 3.6 (Holder’s inequality). Let A = [aji] and B = [bji] be matrices with entries
in B. Then, forr € (1,00) and r" satisfying 1/r+1/r" =1,

A e Blll p,q1 < [IIAlll pq.r - 1Bl pgr- (3.15)

Note that this inequality should be interpreted with the conventions 0 - oo = 0, and
a-o = o forae (0,00).
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Proof. If the right-hand side is oo, there is nothing to prove. So suppose that both fac-
tors on the right are finite and nonzero. Let ¢ € s(®B) and & = {fk}:zl e ¢’. Write |£] =
{1&| }::1. Using Lemma 3.5 and the usual Holder inequality, we have

- <§1 éﬁv(lajkbjﬂ)fk q>w < (é [égoﬂajkbjk“ |gk|]q)l/q
(5 (3 ot 76 (o1 )] 1))
(by Lemma 3.5)
< (g [é[‘/’(!ajkm] |fk|}%[k§ |:€0(|bjk|r*>i| |Ek|]w >)1/q -
< (i[kigouam')|fk|]q)m(g[kiq»(wjkr*)|gk|DW)

*

Jo[a" e, - HfP[B“*']IleW |
]

< ol -taeon ol ) 0

< 1Al pygr B p g NENTp = A pg,r 1B p g 1€11p-

Therefore,
|||¢[A.B]|Hpq1f|||A|||pqr|||B|||pqr (3.17)
Since ¢ € s(%B) is arbitrary, we have, as asserted,

A @ Blll p,q1 < 1Al pgr 1Bl p,g,r%- (3.18)

Here is an analogue of the relationship between £ and its dual space.

TueoreM 3.7. Let B = [bji] be a matrix with entries in B and 1 < r < c. Then B € &' (RB)

ifand only if Ae B ¥ (B) forall A € g (B), where 1/r +1/r" = 1. Moreover, whenever
applied,

1Bl p,qr = sup {[[[A e Blllpg1: A €S (B), [IAlll,q, <1} (3.19)
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Proof. Sufficiency follows from the preceding Theorem 3.6. For necessity, define @ :
S (B) ~F(B) by D(A)=AeBforall Ac S (B). We show that the graph of ®
is closed. Suppose A, = [a(ij] —A=lap]in¥ (B)and A, eB— C=[cjx] in F(B).
Then for all (j,k),

a;",i — ajk a;",ibjk — Cjk asn— oo, (3.20)
Therefore, ajrbjr = cjk. Since this is true for all (j,k), we have the graph of @ is closed

and O is a bounded linear transformation, by the closed graph theorem.

By the same argument, we see also that B" = [1bjk|] has the same property as B, and
B" defines a bounded linear transformation Oy from ' (B) to S "(B). For each n
N, (B" ), = [l 1,

o[(B" )" = ¢[B" '] for all ¢ € s(B). Thus

is in ' (), as it has only finitely many nonzero entries, and

[1]

1™,

| =llogmll]|| (B,

< 3.21
ol (3.21)

¥
4

[ = [I1E™, <5 e

It is just a matter of writing out the definitions to see that [[®pu || = ||Dp]], and that
r/r

[ . -1 ’ .
!II(B ),ﬂ. g1 = 11B, lll g and [[[(B" "), lllpq,+ = 1B, Ill},,- Therefore, the preceding
inequality is equivalent to

1Bl pqr < || @510 || = @3] < oo. (3.22)
Thus B € &' (B). We also have

1Bl pgr < 1@Il = sup {[I[A e Blllpgr:A €S (B), lIAlll g, <1} < llIBlll pgr
(3.23)
by Holder’s inequality, Theorem 3.6. Therefore, all inequalities reduce to equalities. [
Arguments similar to those used in [2] can be used to proof the following.
PrOPOSITION 3.8. For 1 <r <t < co, and B as above, ¥ (B) C g (B).

Proof. Let A = [ajk] € ¥ (B). Then for each (j, k), we have
y Ur
ol =11 a1 = ( swp g(lanl)) = MAllpyr  G240)
pes(B)

Choose a suitable constant «, with 0 < « < 1, such that a«A has all entries bounded in
norm by 1. Then for r < v’ and ¢ € s(%), we have, for each (j,k) € N XN,

o o(lapl”) <a'p(lan|); (3.25)
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that is, each entry of q)[(ocA)m] is bounded by the corresponding entry of (p[(ocA)m].
Thus

alllAlllpgr = laAlllpgr < laAlllpqr = alllAlll pg,r- (3.26)

So that [|[Alllpqr < Il|Alllp,gr» and hence ¥ (B) = 9" (B). To see that the inclusion is

proper, we take a sequence {ax} of nonnegative numbers which is in ¢" but not in €
(more explicitly, take o = [1/k] ""). Then the matrix A with the first column, the sequence
{(ax)""1} (1 the identity of ), and all other columns 0 isin " (B) but notin &' (B). O

4. Dual spaces

We consider in this section an analogue of compact and trace-class operators on a Hilbert
space, in the Schur algebras considered in the preceding sections. Analogues of Schatten’s
trace duality theorems will be proved in this setting. Let % be a unital commutative C" -
algebra with the set s(%) of states as in the preceding section. Let [y be the set of all
infinite matrices with entries in % having only finitely many nonzero entries. Denote by
H'(B) the closure in &' (B) of JMo. That is,

H(B)={A €S (B): Ve >03IA, € Ay such that ||A; — Al| < €}, (4.1)

where the norm || - || is the norm ||| - [|[4, of Y (B). With the norm inherited from
I (B), H'(B) is a Banach space. We will identify the dual of I (%), in analogy with the
fact that the dual of the compact operators on a Hilbert space is the trace-class operators.

Denote by (A¥) the space of matrices over the complex field C that are absolutely
summable. This is just the space 2' (N x N). Therefore, it is a Banach space with the ¢ '
norm; that is, a matrix S = [sj;] over Cis in (s4) if and only if

ISty := > |sje| < oo. (4.2)
k=1

As an analogue of the trace-class operators on a Hilbert space, we consider the space

M(F(B),(AY)) defined as follows:

M(yr(%),(sﬁy)) = {(D = [%‘k] 1Pk € %#, Z |(pjk(ajk)| <o VA = [ajk] S Ef;r(%)}
k=1
(4.3)

Thus a matrix @ of functionals is in (S (B), (AF)) if and only if it “Schur multiplies”
each matrixin ¥ (M) to a matrix in (AF). Each ® € M(F (B), (4F)) defines a bounded
linear transformation by the Schur multiplication by @, that is, by the closed graph theo-
rem, ® o [ai] = [@jk(ajk)] from the Banach space ¥ (B) to the Banach space (4¥) is a
bounded linear transformation. Therefore, it has an operator norm

D (s @), 1)) = sup {|| D o All gy : A € F(B), |IAll < 1}. (4.4)
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THEOREM 4.1. The space M(F (B),(AF)) equipped with the norm defined above is a Ba-
nach space.

Proof. Since M(F (B),(AS)) = B(F(B),(AF)), the space of bounded linear trans-
formations from ¥ () to (AY), it suffices to show that it is closed. To that end, sup-
pose that {¥, = [W;Z 1} is a sequence in the space M(F" (B),(AF)) such that ¥, — T €
B(L(B),(AS)). Then each {1//;-2 boopisa Cauchy sequence in 9B’ therefore converges to
some yjx € B Let ¥ = [yjx]. We show that ¥ = T. Let € > 0. There is an N such that

||W,—¥pull <€ Vn=N,I>1. (4.5)
Let A€ ¥ (MW); and m € N. Then

(¥ oA =, <A], HW) o () (4.6)

< e||A,m || <e€llAll Vn=N,I>1.

WV, e Anﬂ Wit e Am

=

Taking limits as I — oo, we have

(¥, on-w “A], HW) <ellAll Vn=N,VAeY (B). (4.7)

Now as m — oo, we obtain
W, e A—WeA| q <€llAll Vn=N, VA€S (B). (4.8)
So we see that ¥,, — . Therefore, T(A) = Ve A forall A € ¥ (B). O

Let ¥ € (¥ (B))". For each (j,k), define alinear functional on % as follows. For b € %,
let Ay x be the matrix whose (j,k) entry is b and all others 0. Put

Vik(b) =V (Apjk). (4.9)

Then i is a bounded linear functional on %. Put By = [yk].
Each matrix ® = [¢jx] € M(F (B), (4F)) defines a linear functional

D(A) = D girlap), A=l[ap] €S (B). (4.10)
jok=1

TuEOREM 4.2. (1) Let ¥ € (¥ (B))’; and let Vjx and By be as defined above. Then
By € M(S (B),(AF)), ¥ -Bye¥H (B)". (4.11)

(2) The map ¥ — By from (K" (B))" to M(FL (B), (AF)) is an isometric isomorphism
between (K')* and M(F"(B), (AL)).
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Proof. (1) Let A = [aj] € S (B). For z € C, let sgn(z) = z/|z| if z # 0, and sgn(0) = 0
Let A = [sgn(yjr(aji))aji]. Then A € ¥ (B), and for each n,

Z |1/’]k ajk) | =|[¥(A |(&4J’ (4.12)
jik=1
So
> ly(a) | < IIPIIAI < o3 (4.13)
k=1
and By ¢ A € (AY) forall A € ¥ (B); that is, By € M(F" (B), (AL)).
For A =[aj] € I (B), we have for each n,
By(A ) =¥(A) (4.14)

by linearity. Since [|A, — All — 0asn — oo, by the continuity of both functionals, we have
By(A)=¥(A) VAcK (B) (4.15)

(2) Let ¥ € (I (B))". For each A = [ajk] € K (B) such that ||A]| < 1,

2 vik(aj) | < ||§‘I’||M(9”(%),(&d5"))’ (4.16)

k=1

|W(A)| = |By(A)] =

by the definition of the norm on M(F" (B), (4F)). Therefore,
NI < 1Bl s @), et)- (4.17)

Lete€ >0. Thereisan A = [aj;] € Y (B) such that ||A|| < 1 and

Bl @),y — = < 2 wix(a) | (4.18)
k=1

By the absolute convergence of the series, there is an N such that

> € —2€
D lwik(ap) | > > Tyic(ap) | -3 >||B‘P||M(E/”(%),(&QE/’))T' (4.19)
k=1 k=1

Let A be the matrix whose ( k) entry is (sgn(yjk(ajk))ajk) for j,k =1,2,...,N and all
others 0. Then A € 9’ (9B), |||| <1,and

—2€
¥( A Z | i (ajk |>||B‘1’HM S P(AS) 3 (4.20)
jik=1
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Therefore, we have

N1 > |Be ] 4y @), 157 — €- (4.21)
Since € is arbitrary, we have equality of the norms. O

A linear functional ® on &' (%) is singular if ®(A) = 0 for all A € ' (B). Recall that
for each ¥ € ' (B)’, there corresponds a bounded linear functional By on &' (B). De-
note

S (RB),:={By: Y S (B)}. (4.22)

TueoreM 4.3. The set ' (B). consisting of all singular linear functionals together with
the zero functional on ¥" (M) is a nontrivial closed subspace of the dual ¥ (B)" of ¥ ().
Furthermore,

FB) =S (B), 0 S (B).. (4.23)

Proof. Since K’ (?73) is a nontrivial closed subspace of ¥ (%), the Hahn-Banach theorem
ensures that " (). is a nonempty proper subset of ¥ (%)".

The preceding theorem shows that &’ (B) = (973)“ '(%):. Let ¥ = [yj] €
F(B),NF (B).. Then ¥(K) = 0 for all K € I’ (B). Let b € B; and let Ay ik be the
matrix whose (j,k) entry is b and all others 0. Then for each (j,k),

vik(b) = ¥ (Apjx) = 0. (4.24)

Therefore, ¥ = 0. O

Since % may not be the dual of any normed space, we cannot expect ¥ (%) to be a
dual space. For if it were, then it would not be hard to see that % must be a dual space as
well. We therefore assume, from this point on, that % is the dual of some Banach space
PRB+. We can then consider the space

Y]

AL (B), (AL)) = {B = [bj] b€ Be, S |aje(bjp) | < 00, VA =[ay] y’(%)}
ik=1
: (4.25)

with the norm

(o]
Z ajk(b

k=1

IIBII =sup{ = [aj] € (B, NIAlll pgr < 1}> (4.26)

for B = [bjx] € Ma(F (B), (AS)).

Arguments similar to those used in the proof of Theorem 4.1 can be used to prove that
Jl/ti(g’r(%), (AY)) is also a Banach space.

Since the predual of B(¢”) is the trace-class operators, which is the class of matrices that
are the trace norm limits of their upper left-hand corner truncations, we define, analo-
gously, the space M (S (B), (4S)) as the space of all matrices B € Jl/t#(y (B), (AB)) such
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that ||B — B || = 0 as n — oo. It is not hard to see that JM«(F (B), (s4S)) is a closed sub-

space of A/L#( (B), (&QS)) under the norm defined above. For brevity of notation, denote
by J the space M+(F (B), (4S)) with the induced norm. Then .l is a Banach space. We
show that &' (B) is the dual of L.

TaeoreM 4.4. Under the standing assumption that B has a predual By, and the notations
defined above, the dual of M is isometrically isomorphic to &' (B) (as Banach spaces).

Proof. By the definition of /L, it is clear thateach A = [aji] € Y (9B) can be used to define
a bounded linear functional ¢, on Al as

¢, (M) = > aj(my) VM=[mj] e M. (4.27)
k=1

Notice that by the definition (4.26) of the norm on Jl, we also have |¢, (M)| < [|A[l||M]].
Thus [|$all < [|All. Therefore, ¥'(%B) can be regarded as a subspace of M. Denote by
&1 the closed unit ball of ¥"(%B). Then ¥, separates points in Jl. We show that ¥, is
complete in the weak” topology, o, it inherits from M. To this end, let {A” = [a;k] Yaen
be a o-Cauchy net in ¥;. We show that for each (¢,7) € N X N, the net of the (4, 7)-entries
{a;y} of {A"} is a weak” Cauchy net in B. Let m € RB4. Choose M to be the matrix whose
(¢, v)-entry is m and zero for all others. Then we see that M € Jl and {gb (M) = a;w(m)}
is a Cauchy net in C. Thus {a ,}a is a weak” Cauchy net in 9. Since [|A*|| < 1 for all «
and IIa S = A, {a Jlaen 1S @ weak” Cauchy net in the closed unit ball of . Since
the closed unit ball is weak* compact, by the Alaoglu theorem, there is a,, € % such that
Ay — Ay in the weak™ topology. Let A = [aj]. We show that A € &) and that A" — A in
the weak” topology of M induced on &;. Let € > 0; and let M = [mjk] € M. There is an
ao such that [¢ . (M) — ¢Al‘ (M)| < €/2 for all a, 3 > ap. By definition of M, there is an N

such that ||M—Mm || < €/4 foralln = N. Thus, for n > N and «, 8 > &, we have

‘((ﬁb(A”))m _(‘p(A"))nJ)(M)) - ‘ - Aﬁ)(Mm)‘
< (8 =) M, M) | +] (60— ) M)

<l —</>Aﬁ||||Mm —M||+5

<

(4.28)

€
<E.

Forafixedn > N, (A“)m — A, inthe weak” topology 0. Taking limit in 3, we have

(), = (), )M | <€ ¥n=mno, o> 0. (4.29)
Since this is true for all # > N, we may take the limit as n — oo to obtain
(9 —¢)(M)| <€ Vaxa. (4.30)

This shows that A" — A in the weak ™ topology, and hence &, is o-complete.
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We claim that the norm on L is the same as that on &' (B), and M* = ¥ (B). For each
Ae I, ¢, 0l <Al < 1. Thus & is contained in the closed unit ball of M. Suppose this
inclusion is proper. Then there is Ay € M with ||Agll < 1 such that Ag ¢ &,. Since ¥ is
weak” closed and convex, by [3, Theorem V 2.10, page 417], there is a weak” continuous
linear functional on ", that is, an element M € J, such that

Re(pp(A)) <c—€e<c<Re(pm(Ay)) VAT, (4.31)

for some constants ¢ and € > 0.
For each A € ¥}, let A = (A, where { € C is chosen such that [{| =1 and ¢y (A) =

[prp(A)]. Since A€ P, foreach A € ¥;, we have, by the definition (4.26) of the norm on
M,

IMI| = sup {| gar(A) | = Re(gar(A)) : A € F1} < c—e < c < Re(Ppu(Ao)) < 1M,

(4.32)
a contradiction. Therefore, ¥ is the unit ball of AL".
Let A € ¥ (B). As a linear functional ¢4 on .,
l[pa]] = sup{|pa(M)|: M € M, |IM]| <1} < [IA]l. (4.33)

If [|¢pall = 1, then A is in the unit ball of M", which is just F1. Thus [|A]l < 1 < [[¢all <
[|A]l, and hence [|All = [[¢all. O
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