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Any quasismooth function f(x) in a finite interval [0,x], which has only a finite number
of finite discontinuities and has only a finite number of extremes, can be approximated
by a uniformly convergent Fourier series and a correction function. The correction func-
tion consists of algebraic polynomials and Heaviside step functions and is required by the
aperiodicity at the endpoints (i.e., f(0) # f(xp)) and the finite discontinuities in between.
The uniformly convergent Fourier series and the correction function are collectively re-
ferred to as the corrected Fourier series. We prove that in order for the mth derivative of
the Fourier series to be uniformly convergent, the order of the polynomial need not ex-
ceed (m + 1). In other words, including the no-more-than-(m + 1) polynomial has elimi-
nated the Gibbs phenomenon of the Fourier series until its mth derivative. The corrected
Fourier series is then applied to function approximation; the procedures to determine the
coefficients of the corrected Fourier series are illustrated in detail using examples.

1. Introduction

The theory about the function approximation of finite functions in a finite interval by
a Fourier series emerged as early as the nineteenth century [2]. In particular, for any
quasismooth function in [0,xo], which is referred to as the single-valued finite function
f(x) that has only a finite number of finite discontinuities as well as a finite number of
maxima and minima in the interval [0,x,], one could obtain the following Fourier series
(partial sum):

; 2
Sn(x) = D Ane*, @, = T, (1.1)
In|=N X0

where the series coefficient A, is the Fourier projection of f(x) to the basic function e/®*,
that is,

Ay =F (f(x), = xiojo flx)e ™ dx. (1.2)
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Notice that different definitions for smoothness of a function have been used with dif-
ferent meanings in different contexts, for example, in statistics [4]. The concern here is
whether the Fourier series (1.1) converges to f(x). The well-known Dirichlet theorem [2]
states that for any quasismooth function,

[f(x=0)+ f(x+0)]

5 x € (0,x0),
lim Sy(x) = lim A,ein* = (1.3)
N N”""wzsw [£(0) + f (x0) ]
2

x = 0 or x.

If f(x) is aperiodic (i.e., f(0) # f(xo)) or there are discontinuities in (0,xp), the Fourier
series will not uniformly converge to f(x). The so-called Gibbs phenomenon appears
near the endpoints and those discontinuities [3]. On the other hand, if f(x) is a peri-
odic quasismooth function without discontinuities, the Fourier series (1.1) is uniformly
convergent to f (x) without the Gibbs phenomenon.

The Gibbs phenomenon is artificial oscillations near the discontinuities and aperiodic
endpoints. They are numerical noise without any physical meaning, and should be elim-
inated if possible. In [1], the Fourier series with Gibbs oscillations is reexpanded into a
Gegenbauer series. By doing so, they effectively filter out the Gibbs oscillation and obtain
a rapidly convergent series. In this study, we will show that by using a correction func-
tion we directly obtain a uniformly convergent Fourier series without Gibbs oscillation
(Section 2). We will refer to the correction function and Fourier series as the corrected
Fourier series. Since the corrected Fourier series is uniformly convergent, we will apply
it to the function approximation, as illustrated in Section 3. Section 4 then provides the
concluding remarks.

2. Corrected Fourier series

As stated in the introduction, a quasismooth function f(x) in [0,x,] has only a finite num-
ber of finite discontinuities as well as a finite number of maxima and minima in the inter-
val [0,x0]. Relevantly, a quasismooth continuous function is referred to as the quasismooth
function without any discontinuity within the interval, but it can be either periodic or
aperiodic.

Furthermore, two classes of functions are defined as follows. One is the class of mth
quasismooth functions Qm([0,x0]), of which the mth derivative of each member is a qua-
sismooth function in [0,x]. Another is the class of mth quasismooth continuous functions
Sm([0,x0]), of which the mth derivative of each member is a quasismooth continuous
function in [0,x]. Here m = 0. In the case of m = 0, Qo([0,x0]) has its member being
a quasismooth function and So([0,%0]) being a quasismooth continuous function. The
extension of Qm([0,x0]) and Sm([0,x0]) to the cases with multiple variables is straight-
forward; for two variables they are denoted as Qm ([0, 0], [0, ¥0]) and Sm([0,x0], [0, yo]),
respectively.

In addition, an mth uniformly convergent Fourier series in an interval means that the
Fourier series remains uniformly convergent until its mth derivative without Gibbs phe-
nomenon.
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For clarity, the following notations will be used:

F(x) | = F(xo) - F(0),

Xo | Yo (21)
F(x ) [3' 13 = F(x0, y0) + F(0,0) — F(x0,0) — F(0, yo).
Heaviside step function #(x — x;) is defined as
I, x=xj,
H(x—xj) = (2.2)
0, x<ux;.

LemMa 2.1. Any mth quasismooth function g,(x) € Qm([0,x0]) can be partitioned into
an mth quasismooth continuous function fu(x) € Sm([0,x0]) and mth integrals of a set of
Heaviside step functions as follows:

gm(x)=fm(x)+2hjw%(x—xj), (2.3)
: ]

m

where x; is one of the discontinuities of the mth derivative of g, (x), denoted as g,sqm) (x), with
jump bj, that is, bj = g (x)[2%.

In (2.3), the mth derivative of f,(x), denoted as fn(qm) (x), is continuous at the discon-
tinuities of g&m)(x). This can be easily shown:

X1+0

) = |:g£nn1)(x) — > b (x—x;) — biH(x _xl)}
j#l X1-0 (24)

— g () — b (x = x) ] |3 = g () |20~ by = 0.

X1-0

Therefore, fu(x) € Sm([0,x0]).

THEOREM 2.2. Any mth quasismooth continuous function fu,(x) € S;m([0,x0]) can be ap-
proximated uniformly by the sum of an mth uniformly convergent Fourier series and a poly-
nomial no more than (m+ 1)th order:

m+1

; 2
fn(x) = D> A+ az)lc—,, oy, = xLOH (2.5)
|n|<oo I=1 :

Proof. We start with m = 0. Any function fy(x) € So([0,x0]) is a quasismooth continuous
function. It can be expressed by a periodic quasismooth continuous function h(x) and a



36  Corrected Fourier series and function approximation
linear function as follows:

Jo(x) = h(x) + ax, (2.6)
where a = [ fo(x0) — fo(0)]/x0. It is easy to see the periodicity of h since h(0) = h(xy) =

f0(0). Because h(x) is a periodic, quasismooth continuous function, it can be approxi-
mated by a Fourier series that is uniformly convergent:

:‘n%wAnei“"", an:%”, 2.7)
where
Ay = F 1 (h(x)), xlo h(x)e~*dx. (2.8)
It follows that
folx)= D Ane™ +ax. (2.9)
[n|<oo

Notice that the right-hand side of the above equation has two parts: one is the Fourier se-
ries and other is a 1st-order polynomial. In other words, the function fy(x) is represented
by a corrected Fourier series. Hence, the theorem is true for m = 0.

In the next step, consider the 1st quasismooth continuous function f;(x) € $;([0,x0]).
Because its first derivative fl(l)(x) is a quasismooth continuous function in the interval
[0,x0], fl(l) (x) can be uniformly approximated by a corrected Fourier series:

fl(l)(x) _ Z Ay,ei“"x +ax = Z Aneia"x +A0 + ax. (210)

|n|<oo n#0

Its integration yields

A 2 2
filx) = Z n ”"""+A0x+Bo+a2 = Z B e""""+b1x+b2 (2.11)
n#0 oty : [n|<oo
where
Ay
T n 74 O:
Bn =4 1y bl = AO) bz =da. (212)
B() n= 0,

Since the termwise integration of a series improves its convergence, the implied uniformly
convergence in the above equation is valid. Thus, the theorem is valid for m = 1.

According to the axiom of the mathematical induction, our proof will be complete if
the theorem can be proved true for any f,41(x) € Sm+1([0,%0]) after it is assumed true
for any f,(x) € Sm([0,x0]).
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By definition, the 1st derivative of f,,+1(x) is an mth quasismooth continuous function
in Sy ([0,x0]), for which the theorem has been assumed true. Consequently, we have

m+1 m+1 l
W) = > Aget o+ Z al— S A+ Ag+ > a,—. (2.13)

[n|<oo I n#0 =1

Its integration yields

A, - m+1 I+1
- = D> —e™ +Ax+By+ VR~
Smr1(x) goiane 0x+ By lzzlal(”l)!
A m+2 1
= Z T einX L Aox + Bg + Z ar an (2.14)
o 10n =
m+2
= Z B, elon® 4 Zbll"
|n]<oo
where
A
= n#0, Ay =1,
B, =4 oy b= (2.15)
B, n=0, a1 =2

The right-hand side of (2.14) is the same as that of (2.5). This means that the theorem is

true for any f41(x) € Sm+1([0,x0]) after it is assumed true for any f,,(x) € Sm([0,x0]).
a

CoROLLARY 2.3. Any mth quasismooth function g, (x) € Qm([0,x0]) can be uniformly ap-
proximated by a corrected Fourier series consisting of three parts: an mth uniformly conver-
gent Fourier series, a no-more-than (m + 1)th-order polynomial, and an mth integral of the
Heaviside step functions at the discontinuities

m+1

.x X
z A, plonx | z al +Zb J (X—x]‘), o, = 2;:—7[ (2.16)

[n|<oo 0

It is easily seen that the corollary holds right after Lemma 2.1 and Theorem 2.2.

3. Function approximation: examples

As shown in the preceding section, the corrected Fourier series is uniformly convergent.
In this section, we will make use of the corrected Fourier series to uniformly approximate
quasismooth functions. Two 2nd quasismooth continuous functions in S,([0,x,]) and
S2([0,x0],[0, ¥0]), respectively, have been chosen to show how to determine coefficients
of the corrected Fourier series. Extending to higher-order functions should be straight-
forward but tedious.
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3.1. 2nd quasismooth continuous function f(x) € S3([0,x0]). According to the the-
orem in Section 2, the uniformly convergent corrected Fourier series of f(x) is in the
form of
; x? x°
fx) = Z Ane’“"x+a1x+a22—! +a3§, (3.1)

\n\<oo

and its 1st and 2nd derivatives are correspondingly

' 2
f(x) = Z ioan,,e""""+a1+a2x+a3%,
<o ’ (3.2)

= > (in) > Ape®™ + a; + asx.

\n\<oo

As implied, both derivatives of the corrected Fourier series are uniformly convergent.
Based on the endpoints values of f(x) and its derivatives (endpoints effect), we obtain
the following linear equations for a; (I = 1,2,3):

2 3
X X
fx) |JQCO = a1x0+a22—(!) +a33—(!),
2
P = e o, 63

f”(x) |’.§° = asXxo.

Obviously, if f(x) is periodic (i.e., f(x)[3" = f' ()’ = f" ()" =0), a; (I =1,2,3) are
zero. The corrected Fourier series is just the regular one, which is uniformly convergent
in the interval [0,x0]. The coefficients a; (I = 1,2, 3) are easily obtained by solving (3.3):

1 r Xo
as—xof )y
1 7 X0 X0
a = xof ), S (3.4)
1 X X
a = —f(x)|3 —a2> —as=0

The coefficient A, in (3.1) is the Fourier project (1.2) of f(x) — (a1x + a»(x?/2!) +
a3(x3/3!)) on the basic function e, that is,

Ap=F (f(x)), — (arlin+azhy + asls,), (3.5)
where I;, = F1 (x!/I!) .

If any of a; (I = 1,2,3) is nonzero or f(x) is aperiodic, then Gibbs oscillations are
expected in >, F; ( f (x)) ,e"~. However, the same oscillations exist in 213:1 > e,
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They cancel each other exactly in 3, A,e®* = > F | (f(x)) e — 37 | S, ailjei®>. As
aresult, >, A e is free of Gibbs oscillations and is uniformly convergent.

3.2. 2nd quasismooth continuous function with two unknowns f(x,y) € S;([0,x¢],
[0, ¥0]). At first, the function f(x,y) is a 2nd quasismooth continuous function with
respect to x. Therefore, for any y € [0, y],

52 3
flxy) = Z A, """"+a1(y)x+a2(y)—+a3(y)%. (3.6)

\n\<oo

In the above equation, A,(y) and a;(y) are 2nd quasismooth continuous functions with
respect to y. Thus, A,(y) and a;(y) can further expand into the following corrected
Fourier series:

2 y3
A= > Anmeﬁ"‘y+b1ny+52n [ tbangy
\m|<o<>
; (3.7)
a( Z Alm e’ﬁmy+dl1y+d12 +d13y— (1=1,2,3),
\m|<oo

where f3,, = 2mmn/y,. From (3.6) and (3.7), the corrected Fourier series for f(x,y) is

; x? X\
X ,V) = z Z Anmel(a"x+ﬁmy) + z (ﬂlmx+02m ol +azm 3') By

|n|<oo |m|<oo [m|<oco

o (3.8)

+ > (blny+b2n + by ) """"+Z Zdllo

[n|<oo I=11lh=1

In (3.8), nine unknowns dy, (I,lp = 1,2,3) are obtained by solving the following linear
equations:

j lo—jo
y . . X0 | Yo
lz‘ilzldﬂ() ) _ )' : (ZO_JO)'%(Z_])%(IO_JO) 0 |())’

B ot f(x,y) | ™7
B oxJdyio

(3.9)
(] = 0)1)2J j() = 0)112))

0 lo
which depend on the boundary values of f(x,y) and its Ist and 2nd partial derivatives
only. Notice that the first three terms on the right-hand side of (3.8) are identically zero
due to the periodicity of either e* or ey, If we arrange the nine unknowns into a
vector ordered as (dy1,d12,d13,d21,d22,d23,d31,d32,d33) and the equations ordered as j =
0, jo=0,1,2; j =1, jo=0,1,2;and j = 2, jo = 0,1,2, then the coefficient matrix of the
linear equations is up-triangular and can be easily inverted.
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The next task is to determine ayy, by, and Ay, In addition to the Fourier projection
F1(-)n (1.2), two additional Fourier projections are defined:

R
Foldm=r | CreBordy,
Yo Jo

o o (3.10)
%O<')nm = J I <'>eii(“"x+‘8my)d3€dy.
XoYo Jo Jo
With respect to x, the endpoints effects of f(x, y) and its derivatives yield
l lo
f|xo: Z (glmxo-l—azmz + a3 — ) zﬂm}’+z Zdllo Z_O l"
|m|<oo I=11=
) X0 xl*l Iy
o (. ,) 4 S Zduo Ak (3.11)
X0 e 1=2 1= :
Rf | - ¥
) > (asmxo)e + Z dsl, - X0+ 55
M lo i o bo!

Notice that the first and third terms in (3.8) are exactly zero due to the periodicity of e®*.
After the Fourier projection to e ¥ (i.e., %,(-) ), the following equations are resulted
and are solved for ay, (I =1,2,3) for each m:

xz .x )
aymt+aym—, + a3m = f | z z dll() ]l()m)
2! ! 2 I
1lp=1
2 X0 3
x5 o /Oof > _
AymXo + A3m =, 2l =9 < ox . l% lz dllo (l 1)|]lom) (312)
aZ Xo
azmXo = F2 < o j: >m - z ds1, * Xo0Jiym>

Ih=1

where Jim = Fo(y*/16!) m.
Similarly, the endpoints effect of f(x,y) and its partial derivative with respect to y
result in the following linear equations for by, for each n:

2 3 3
bln + bZn + b3n @ |é’0>n - z Z dllg Iln)
=1l=1
l—l

1

3
> sz )m, (3.13)
nool=1l

=2

o
bzn}’o+b3n§ = 9'T1<

22
bsnyo =% <ayJ2(

Yo
> - ZdB * Yolin,
0fm =1

where I;, = F1 (x!/I!) .
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After dyy,, aim, and by, are obtained, the rest of the coefficients A, are readily obtained
by the following Fourier projection:

3 3 3 3
Apm = Fo (f(-xa}/))nm - [Zalmlln + Z binJim + Z Z dllglln]lom]- (3.14)
-1 -1

I=11l=1

Just as in the first example, any possible Gibbs oscillations associated with the partial sum
of the first term in the above equation will be canceled exactly by those in the square
bracket.

After all, each coefficient in (3.8) has been determined. This completes the function
approximation of f(x, y) by a corrected Fourier series.

4. Concluding remarks

Any quasismooth function can be uniformly approximated by a corrected Fourier se-
ries, which consists of a uniformly convergent Fourier series and a correction function.
The corrected Fourier series is free of the Gibbs phenomenon, although the quasismooth
function can be aperiodic and have discontinuities in general.

The correction function consists of algebraic polynomials and Heaviside step func-
tions. The orders of the polynomials are no more than (m + 1), demanding that the mth
derivative of the corrected Fourier series be uniformly convergent. The corrected Fourier
series will not be overconstrained, if the function to be approximated has defined its
derivation only until mth order. The solution of an mth-order ordinary or partial differ-
ential equation is one such function whose (m + 1) derivative is not necessarily defined.
Applications of the corrected Fourier series to linear ordinary differential equations with
varying coefficients and to linear partial differential equations on irregular region will be
the subject of our future studies.
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